Download Datasheet

AIS328DQ
High-performance ultra low-power 3-axis accelerometer with digital
output for automotive applications
Datasheet — production data
Features
■
Wide supply voltage range: 2.4 V to 3.6 V
■
Low voltage compatible IOs: 1.8 V
■
Ultra low-power mode consumption: down to
10 µA
■
±2g/±4g/±8g dynamically selectable full-scale
■
SPI / I2C digital output interface
■
16-bit data output
■
2 independent programmable interrupt
generators
■
System sleep/wakeup function
■
Extended temperature range: -40 °C to 105 °C
■
Embedded self-test
■
High shock survivability: up to 10000 g
■
ECOPACK® RoHS and “Green” compliant
■
AEC-Q100 qualification
QFN 24 (4 x 4 x 1.8 mm3)
Applications
■
Telematics and black boxes
■
In-dash car navigation
■
Tilt / inclination measurement
■
Anti-theft devices
■
Intelligent power saving
■
Impact recognition and logging
■
Vibration monitoring and compensation
■
Motion-activated functions
Table 1.
Description
The AIS328DQ is an ultra low-power high
performance 3-axis linear accelerometer with a
digital serial interface SPI standard output. An I2C
compatible interface is also available. The device
features ultra low-power operational modes that
allow advanced power saving and smart sleep-towakeup functions. The AIS328DQ has dynamic
user-selectable full-scales of ±2g/±4g/±8g and is
capable of measuring accelerations with output
data rates from 0.5 Hz to 1 kHz. The self-test
capability allows the user to check the functioning
of the sensor in the final application. The device
may be configured to generate an interrupt signal
through inertial wakeup events, or by the position
of the device itself. Thresholds and the timing of
interrupt generators are programmable by the end
user on-the-fly. Available in a small quad flat pack
no-lead package (QFPN) with a 4x4 mm footprint,
the AIS328DQ is able to respond to the trend
towards application miniaturization, and is
guaranteed to operate over a temperature range
from -40 °C to +105 °C.
Device summary
Order codes
Temperature range [° C]
Package
Packaging
AIS328DQ
-40 to +105
QFPN 4x4x1.8 24L
Tray
AIS328DQTR
-40 to +105
QFPN 4x4x1.8 24L
Tape and reel
April 2012
This is information on a product in full production.
Doc ID 18160 Rev 3
1/43
www.st.com
43
Contents
AIS328DQ
Contents
1
2
3
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2
I²C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4
Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1
I²C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1
5.2
6
2/43
I²C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Doc ID 18160 Rev 3
AIS328DQ
7
Contents
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2
CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3
CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4
CTRL_REG3 [Interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27
7.5
CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7
HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8
REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.9
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10
OUT_X_L (28h), OUT_X_H (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.13
INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.14
INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.15
INT1_THS(32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.16
INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.17
INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.18
INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.19
INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20
INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.1
General guidelines about soldering surface-mounted accelerometers . . 38
9.2
PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2.1
10
PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3
Stencil design and solder paste application . . . . . . . . . . . . . . . . . . . . . . . 39
9.4
Process considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Doc ID 18160 Rev 3
3/43
List of tables
AIS328DQ
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
4/43
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I²C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26
Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 26
CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Doc ID 18160 Rev 3
AIS328DQ
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
List of tables
INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Doc ID 18160 Rev 3
5/43
List of figures
AIS328DQ
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
6/43
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Detectable accelerations and pin indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I²C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AIS328DQ electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Multiple bytes SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions . . . . . . . . . . . . . . . . 38
Recommended land and solder mask design for QFPN packages . . . . . . . . . . . . . . . . . . 40
Doc ID 18160 Rev 3
AIS328DQ
Block diagram and pin description
1
Block diagram and pin description
1.1
Block diagram
Figure 1.
Block diagram
X+
CHARGE
Y+
AMPLIFIER
Z+
a
CS
I2C
ADC
MUX
CONTROL
LOGIC
Z-
SCL/SPC
SDA/SDO/SDI
SPI
SDO/SA0
YX-
SELF TEST
TRIMMING
CIRCUITS
REFERENCE
CONTROL LOGIC
INT 1
INTERRUPT GEN.
INT 2
CLOCK
AM10246V1
1.2
Pin description
Figure 2.
Detectable accelerations and pin indicator
Z
Pin 1 indicator
19
X
1
18
24
1
6
7
12
(BOTTOM VIEW)
13
Y
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
Doc ID 18160 Rev 3
7/43
Block diagram and pin description
Table 2.
8/43
AIS328DQ
Pin description
Pin#
Name
Function
1,2
NC
3
INT_2
Inertial interrupt 2
4
Reserved
Connect to GND
5
VDD
Power supply
6
GND
0 V supply
7
INT_1
Inertial interrupt 1
8
GND
0 V supply
9
GND
0 V supply
10
GND
0 V supply
11
SPC
SCL
SPI serial port clock (SPC)
I²C serial clock (SCL)
Internal active pull-up
12
CS
13
Reserved
Connect to Vdd
14
VDD_IO
Power supply for I/O pins
15
SDO
SA0
SPI serial data output (SDO)
I²C less significant bit of the device address (SA0)
Internal active pull-up
16
SDI
SDO
SDA
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
I²C serial data (SDA)
Internal active pull-up
17-24
NC
Not connected
SPI enable
I²C/SPI mode selection (0: SPI enabled; 1: I²C mode)
Internal active pull-up
Not internally connected
Doc ID 18160 Rev 3
AIS328DQ
Mechanical and electrical specifications
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
@ Vdd=3.3 V, T=-40 °C to +105 °C unless otherwise noted(a).
Table 3.
Symbol
FS
So
Off
TyOff
TCOff
An
CrAx
Vst
Mechanical characteristics
Parameter
Measurement range
Test conditions
(2)
Sensitivity
Zero-g level offset
accuracy(3),(4),(5)
Typical zero-g level offset
accuracy(5),(6)
Zero-g level change vs.
temperature
Acceleration noise density
Cross-axis
Wh
Product weight
Top
Operating temperature range
Typ.(1)
FS bit set to 00
±2.0
FS bit set to 01
±4.0
FS bit set to 11
±8.0
Max.
Unit
g
FS bit set to 00
12-bit representation
0.90
0.98
1.06
FS bit set to 01
12-bit representation
1.81
1.95
2.12
FS bit set to 11
12-bit representation
3.62
3.91
4.25
mg/digit
X,Y axes
-200
200
Z-axis
-300
300
FS bit set to 00
-30
±20
30
Excursion from 25 °C (X, Y
axes)
-2
±0.2
2
Excursion from 25 °C (Zaxis)
-3
±0.8
3
100
218
600
µg/√Hz
+5
%
FS bit set to 00
(7)
Self-test output
change(8),(9),(10)
Min.
mg
mg
mg/°C
-5
FS bit set to 00
X-axis
-500
-800
-1100
LSb
FS bit set to 00
Y-axis
500
800
1100
LSb
FS bit set to 00
Z-axis
400
600
800
LSb
60
-40
mgram
+105
°C
1. Typical values are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Zero-g level offset value after MSL3 preconditioning.
4. Zero-g level offset at the FS bit set to 01 and 11 is guaranteed by design.
a. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.
Doc ID 18160 Rev 3
9/43
Mechanical and electrical specifications
AIS328DQ
5. Offset can be eliminated by enabling the built-in high-pass filter.
6. Typical zero-g level offset as per factory calibration @ T = 25 °C.
7. Guaranteed by design.
8. The sign of “Self-test output change” is defined by a sign bit, for all axes. Values in Table 3 are defined with the STsign bit
in the CTRL_REG4 register equal to logic “0” (positive self-test), at T = 25 °C.
9. Self-test output changes with the power supply. “Self-test output change” is defined as
OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=4g/4096 at 12-bit representation, ±2 g fullscale.
10. Output data reaches 99% of final value after 3/ODR when enabling self-test mode, due to device filtering.
2.2
Electrical characteristics
@ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted(b).
Table 4.
Symbol
Vdd
Vdd_IO
Electrical characteristics
Parameter
Test conditions
Supply voltage
I/O pins supply
voltage(2)
Idd
Current consumption
in normal mode
2.4 V to 3.6 V
IddLP
Current consumption
in low-power mode
ODR=1 Hz, BW=500
Hz, T=25 °C
IddPdn
Current consumption in
power-down mode
VIH
Digital high level input
voltage
VIL
Digital low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
ODR
ODRLP
Output data rate
in normal mode
Output data rate
in low-power mode
Min.
Typ(1).
Max.
Unit
2.4
3.3
3.6
V
1.8
Vdd+0.1
V
200
450
µA
8
10
12
µA
0.1
1
2
µA
0.8*Vdd_IO
V
0.2*Vdd_IO
0.9*Vdd_IO
V
V
0.1*Vdd_IO
DR bit set to 00
50
DR bit set to 01
100
DR bit set to 10
400
DR bit set to 11
1000
V
Hz
PM bit set to 010
0.5
PM bit set to 011
1
PM bit set to 100
2
PM bit set to 101
5
PM bit set to 110
10
Hz
b. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.
10/43
Doc ID 18160 Rev 3
AIS328DQ
Mechanical and electrical specifications
Table 4.
Electrical characteristics (continued)
Symbol
Parameter
BW
System bandwidth
Ton
Turn-on time(3)
Top
Operating temperature range
Test conditions
Typ(1).
Min.
Max.
Unit
ODR/2
ODR = 100 Hz
0.9/ODR
+1 ms
Hz
1/ODR+1 ms
1.1/ODR
+1 ms
s
+105
°C
-40
1. Typical values are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the
measurement chain is powered off.
3. Time to obtain valid data after exiting power-down mode.
2.3
Communication interface characteristics
2.3.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 5.
SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min.
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max.
100
ns
10
MHz
ns
50
9
SDO output disable time
50
Doc ID 18160 Rev 3
11/43
Mechanical and electrical specifications
Figure 3.
CS
AIS328DQ
SPI slave timing diagram (2)
(3)
(3)
tc(SPC)
tsu(CS)
SPC
(3)
(3)
tsu(SI)
SDI
th(SI)
LSB IN
MSB IN
(3)
tv(SO)
SDO
th(CS)
tdis(SO)
th(SO)
MSB OUT
(3)
(3)
LSB OUT
(3)
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
2. Measurement points are made at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors.
2.3.2
I²C - inter IC control interface
Subject to general operating conditions for Vdd and top.
Table 6.
I²C slave timing values
I²C standard mode (1)
Symbol
f(SCL)
I²C fast mode (1)
Parameter
SCL clock frequency
Unit
Min.
Max.
Min.
Max.
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0.01
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
KHz
µs
3.45
0.01
ns
0.9
µs
µs
tw(SP:SR)
Bus free time between STOP
and START condition
1. Data based on standard I²C protocol requirement, not tested in production.
12/43
Doc ID 18160 Rev 3
AIS328DQ
Mechanical and electrical specifications
I²C slave timing diagram (c)
Figure 4.
REPEATED
START
START
tsu(SR)
START
tw(SP:SR)
SDA
tf(SDA)
th(SDA)
tsu(SDA)
tr(SDA)
tsu(SP)
STOP
SCL
th(ST)
2.4
tw(SCLL)
tw(SCLH)
tr(SCL)
tf(SCL)
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 7.
Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4
V
I/O pin supply voltage
-0.3 to 4
V
-0.3 to Vdd_IO +0.3
V
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
3000 g for 0.5 ms
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)(1)
AUNP
Acceleration (any axis, unpowered)(1)
TOP
Operating temperature range
-40 to +105
°C
TSTG
Storage temperature range
-40 to +125
°C
4 (HBM)
kV
1.5 (CDM)
kV
200 (MM)
V
ESD
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
Electrostatic discharge protection
c. Measurement points are made at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Doc ID 18160 Rev 3
13/43
Mechanical and electrical specifications
AIS328DQ
1. Design guarantee; characterization done at 1500 g/0.5 ms, 3000 g/0.3 ms, 10000 g/0.1 ms; tests under
these conditions have passed successfully.
Note:
Supply voltage on any pin should never exceed 4.0 V.
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
2.5
Terminology
2.5.1
Sensitivity
Sensitivity describes the gain of the sensor and can be determined, for example, by applying
a 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done
easily by pointing the axis of interest towards the center of the earth, noting the output value,
rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again.
By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger output value
from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the
sensor. This value changes very little over temperature and also over time. The sensitivity
tolerance describes the range of sensitivity of a large population of sensors.
2.5.2
Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface
measures 0 g on the X-axis and 0 g on the Y-axis, whereas the Z-axis measures 1 g. The
output is ideally in the center of the dynamic range of the sensor (the content of the OUT
registers is 00h, data expressed as 2’s complement number). A deviation from the ideal
value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the
MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a
printed circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, see “Zero-g level change vs. temperature” in Table 3. The zero-g level
tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a
population of sensors.
2.5.3
Self-test
Self-test allows the sensor functionality to be tested without moving it. The self-test function
is off when the self-test bit (ST) of CTRL_REG4 (control register 4) is programmed to ‘0‘.
When the self-test bit of CTRL_REG4 is programmed to ‘1’ an actuation force is applied to
the sensor, simulating a definite input acceleration. In this case, the sensor outputs exhibit a
change in their DC levels which are related to the selected full-scale through the device
sensitivity.
When self-test is activated, the device output level is given by the algebraic sum of the
signals produced by the acceleration acting on the sensor and by the electrostatic test-force.
If the output signals change within the amplitude specified in Table 3, then the sensor is
working properly and the parameters of the interface chip are within the defined
specifications.
14/43
Doc ID 18160 Rev 3
AIS328DQ
2.5.4
Mechanical and electrical specifications
Sleep-to-wakeup
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further
reduction of system power consumption and development of new smart applications. The
AIS328DQ may be set to a low-power operating mode, characterized by lower data rate
refreshments. In this way the device, even if sleeping, continues to sense acceleration and
to generate interrupt requests.
When the “sleep-to-wakeup” function is activated, the AIS328DQ is able to automatically
wake up as soon as the interrupt event has been detected, increasing the output data rate
and bandwidth.
With this feature, the system may be efficiently switched from low-power mode to fullperformance depending on user-selectable positioning and acceleration events, therefore
ensuring power saving and flexibility.
Doc ID 18160 Rev 3
15/43
Functionality
3
AIS328DQ
Functionality
The AIS328DQ is a “nano”, low-power, digital output 3-axis linear accelerometer packaged
in a QFPN package. The device includes a sensing element and an IC interface capable of
taking information from the sensing element and providing a signal to external applications
through an I²C/SPI serial interface.
3.1
Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology makes it possible to construct suspended silicon structures which are attached
to the substrate at several points called “anchors”, and are free to move in the direction of
the sensed acceleration. To be compatible with traditional packaging techniques, a cap is
placed on top of the sensing element to prevent blocking of moving parts during the
moulding phase of the plastic encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state, the nominal value of the capacitors are a few pF, and when an acceleration
is applied the maximum variation of the capacitive load is in the fF range.
3.2
IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that is
made available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I²C/SPI interface, therefore making the
device particularly suitable for direct interfacing with a microcontroller.
The AIS328DQ features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available, therefore simplifying data synchronization in the
digital system that uses the device.
The AIS328DQ may also be configured to generate an inertial wakeup and free-fall interrupt
signal based on a programmed acceleration event along the enabled axes. Both free-fall
and wakeup can be available simultaneously on two different pins.
3.3
Factory calibration
The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff).
The trimming values are stored inside the device in non-volatile memory. When the device is
turned on, the trimming parameters are downloaded into the registers to be used during
active operation. This allows the device to be used without further calibration.
16/43
Doc ID 18160 Rev 3
AIS328DQ
Application hints
Figure 5.
AIS328DQ electrical connections
24
19
18
1
SDA/SDI/SDO
INT 2
TOP VIEW
SDO/SA0
Vdd_IO
Vdd
13
6
GND
X
CS
10uF
Z
12
SCL/SPC
100nF
7
INT 1
4
Application hints
1
Y
Digital signal from/to signal controller. Signal’s levels are defined by proper selection of Vdd_IO
AM10247v1
The device core is supplied through the Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 µF aluminum) should
be placed as near as possible to pin 5 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to obtain proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO
without blocking the communication bus; in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I²C or SPI interfaces. When using the I²C, CS must be tied high.
The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can
be completely programmed by the user through the I²C/SPI interface.
Doc ID 18160 Rev 3
17/43
Digital interfaces
5
AIS328DQ
Digital interfaces
The registers embedded in the AIS328DQ may be accessed through both the I²C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I²C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
Table 8.
Serial interface pin description
Pin name
SPI enable
I²C/SPI mode selection (1: I²C mode; 0: SPI enabled)
CS
5.1
Pin description
SCL
SPC
I²C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I²C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I²C less significant bit of the device address (SA0)
SPI serial data output (SDO)
I²C serial interface
The AIS328DQ I²C is a bus slave. The I²C is employed to write data into registers, the
content of which can also be read back.
The relevant I²C terminology is provided in Table 9 below.
Table 9.
Serial interface pin description
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both lines are connected to Vdd_IO through a pull-up resistor
embedded in the AIS328DQ. When the bus is free, both lines are high.
The I²C interface is compliant with fast mode (400 kHz) I²C standards as well as with the
normal mode.
18/43
Doc ID 18160 Rev 3
AIS328DQ
5.1.1
Digital interfaces
I²C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The slave address (SAD) associated to the AIS328DQ is 001100xb. The SDO/SA0 pad can
be used to modify the less significant bit of the device address. If the SA0 pad is connected
to voltage supply, LSb is ‘1’ (address 0011001b), otherwise if the SA0 pad is connected to
ground, the LSb value is ‘0’ (address 0011000b). This solution permits the connection and
addressing of two different accelerometers to the same I²C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I²C embedded in the AIS328DQ behaves like a slave device, and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent. Once a slave
acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7
LSb represent the actual register address while the MSb enables address auto-increment. If
the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write)
the master transmits to the slave with direction unchanged. Table 10 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10.
SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Table 11.
Transfer when master is writing one byte to slave
Master
ST
SAD + W
Slave
Table 12.
Master
Slave
SAD+R/W
SUB
SAK
DATA
SAK
SP
SAK
Transfer when master is writing multiple bytes to slave
ST
SAD + W
SUB
SAK
DATA
SAK
Doc ID 18160 Rev 3
DATA
SAK
SP
SAK
19/43
Digital interfaces
Table 13.
Master
AIS328DQ
Transfer when master is receiving (reading) one byte of data from slave
ST
SAD + W
Slave
Table 14.
Master
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when master is receiving (reading) multiple bytes of data from slave
ST SAD+W
Slave
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver cannot receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is master acknowledge and NMAK is no
master acknowledge.
5.2
SPI bus interface
The AIS328DQ SPI is a bus slave. The SPI allows the writing and reading of the registers of
the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and
SDO.
Figure 6.
Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
20/43
Doc ID 18160 Rev 3
AIS328DQ
Digital interfaces
CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the
transmission and returns high at the end. SPC is the serial port clock and is controlled by
the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are,
respectively, the serial port data input and output. Those lines are driven at the falling edge
of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in cases of multiple read/write bytes. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC, after the falling
edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC, just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods are added. When MS bit is
‘0’ the address used to read/write data remains the same for every block. When MS bit is ‘1’
the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
5.2.1
SPI read
Figure 7.
SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI read command is performed with 16 clock pulses. Multiple byte read commands
are performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
readings.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Doc ID 18160 Rev 3
21/43
Digital interfaces
AIS328DQ
Figure 8.
Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8
5.2.2
SPI write
Figure 9.
SPI write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI write command is performed with 16 clock pulses. Multiple byte write commands
are performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
22/43
Doc ID 18160 Rev 3
AIS328DQ
5.2.3
Digital interfaces
SPI read in 3-wire mode
3-wire mode is entered by setting to ‘1’ the bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
Note:
If AIS328DQ is used in a multi-SPI slave environment (several devices sharing the same
SPI bus), the accelerometer can be forced by software to remain in SPI mode. This
objective can be achieved by sending at the beginning of the SPI communication the
following sequence to the device:
a = read(0x17)
write(0x17, (0x80 OR a))
The programming of this register is a possibility to enhance the robustness of the SPI
system.
Doc ID 18160 Rev 3
23/43
Register mapping
6
AIS328DQ
Register mapping
Table 15 below provides a list of the 8-bit registers embedded in the device, and the related
addresses.
Table 15.
Register address map
Register address
Name
Type
Default
Hex
Reserved (do not modify)
WHO_AM_I
00 - 0E
r
Reserved (do not modify)
0F
Reserved
000 1111 00110010 Dummy register
10 - 1F
Reserved
CTRL_REG1
rw
20
010 0000 00000111
CTRL_REG2
rw
21
010 0001 00000000
CTRL_REG3
rw
22
010 0010 00000000
CTRL_REG4
rw
23
010 0011 00000000
CTRL_REG5
rw
24
010 0100 00000000
r
25
010 0101
REFERENCE
rw
26
010 0110 00000000
STATUS_REG
r
27
010 0111 00000000
OUT_X_L
r
28
010 1000
output
OUT_X_H
r
29
010 1001
output
OUT_Y_L
r
2A
010 1010
output
OUT_Y_H
r
2B
010 1011
output
OUT_Z_L
r
2C
010 1100
output
OUT_Z_H
r
2D
010 1101
output
HP_FILTER_RESET
Reserved (do not modify)
INT1_CFG
Dummy register
2E - 2F
Reserved
rw
30
011 0000 00000000
r
31
011 0001 00000000
INT1_THS
rw
32
011 0010 00000000
INT1_DURATION
rw
33
011 0011 00000000
INT2_CFG
rw
34
011 0100 00000000
r
35
011 0101 00000000
INT2_THS
rw
36
011 0110 00000000
INT2_DURATION
rw
37
011 0111 00000000
INT1_SOURCE
INT2_SOURCE
Reserved (do not modify)
38 - 3F
Comment
Binary
Reserved
Registers marked as Reserved must not be changed. Writing to those registers may change
calibration data and therefore lead to a non-proper working device.
24/43
Doc ID 18160 Rev 3
AIS328DQ
Register mapping
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibrated values. Their content is automatically restored when the device is powered
up.
Doc ID 18160 Rev 3
25/43
Register description
7
AIS328DQ
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register addresses, composed of 7 bits, are used to identify the
device and to write the data through the serial interface.
7.1
WHO_AM_I (0Fh)
Table 16.
0
WHO_AM_I register
0
1
1
0
0
1
0
This is the device identification register. This register contains the device identifier, which for
the AIS328DQ is set to 32h.
7.2
CTRL_REG1 (20h)
Table 17.
PM2
Table 18.
CTRL_REG1 register
PM1
PM0
DR1
DR0
Zen
Yen
Xen
CTRL_REG1 description
PM2 - PM0
Power mode selection. Default value: 000
(000: power-down; Others: refer to Table 19)
DR1, DR0
Data rate selection. Default value: 00
(00:50 Hz; Others: refer to Table 20)
Zen
Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen
Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen
X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
PM bits allow selection between power-down and two operating active modes. The device is
in power-down mode when the PD bits are set to “000” (default value after boot). Table 19
shows all the possible power mode configurations and respective output data rates. Output
data in the low-power modes are computed with the low-pass filter cut-off frequency defined
by the DR1 and DR0 bits.
DR bits, in normal-mode operation, select the data rate at which acceleration samples are
produced. In low-power mode they define the output data resolution. Table 20 shows all the
possible configurations for the DR1 and DR0 bits.
26/43
Doc ID 18160 Rev 3
AIS328DQ
Register description
Table 19.
PM2
PM1
PM0
Power mode selection
Output data rate [Hz]
ODRLP
0
0
0
Power-down
--
0
0
1
Normal mode
ODR
0
1
0
Low-power
0.5
0
1
1
Low-power
1
1
0
0
Low-power
2
1
0
1
Low-power
5
1
1
0
Low-power
10
Table 20.
7.3
Power mode and low-power output data rate configurations
Normal-mode output data rate configurations and low-pass cut-off
frequencies
DR1
DR0
Output Data Rate [Hz]
ODR
Low-pass filter cut-off
frequency [Hz]
0
0
50
37
0
1
100
74
1
0
400
292
1
1
1000
780
CTRL_REG2 (21h)
Table 21.
CTRL_REG2 register
BOOT
Table 22.
HPM1
HPM0
FDS
HPen2
HPen1
HPCF1
HPCF0
CTRL_REG2 description
BOOT
HPM1, HPM0
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
High-pass filter mode selection. Default value: 00
(00: normal mode; Others: refer to Table 23)
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2
High-pass filter enabled for interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPen1
High-pass filter enabled for interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cut-off frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
Doc ID 18160 Rev 3
27/43
Register description
AIS328DQ
The BOOT bit is used to refresh the content of internal registers stored in the Flash memory
block. At device power-up, the content of the Flash memory block is transferred to the
internal registers related to the trimming functions, to permit good behavior of the device. If
for any reason the content of the trimming register is changed, this bit can be used to restore
the correct values. When the BOOT bit is set to ‘1’ the content of the internal Flash is copied
to the corresponding internal registers and is used to calibrate the device. These values are
factory-trimmed and they are different for every accelerometer. They permit good behavior
of the device and normally do not need to be modified. At the end of the boot process, the
BOOT bit is again set to ‘0’.
Table 23.
High-pass filter mode configuration
HPM1
HPM0
High-pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode (reset reading HP_RESET_FILTER)
HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency ft which is
given by:
fs
1 -⎞ ⋅ -----f t = ln ⎛ 1 – ----------⎝
⎠
2π
HPc
The equation can be simplified to the following approximated equation:
fs
ft = --------------------6 ⋅ HPc
Table 24.
ft [Hz]
ft [Hz]
Data rate = 50 Hz
Data rate = 100 Hz
00
1
2
8
20
01
0.5
1
4
10
10
0.25
0.5
2
5
11
0.125
0.25
1
2.5
HPcoeff2,1
7.4
ft [Hz]
ft [Hz]
Data rate = 400 Hz Data rate = 1000 Hz
CTRL_REG3 [Interrupt CTRL register] (22h)
Table 25.
IHL
28/43
High-pass filter cut-off frequency configuration
CTRL_REG3 register
PP_OD
LIR2
I2_CFG1
I2_CFG0
Doc ID 18160 Rev 3
LIR1
I1_CFG1
I1_CFG0
AIS328DQ
Register description
Table 26.
CTRL_REG3 description
IHL
Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
PP_OD
Push-pull/open drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
LIR2
Latch interrupt request on the INT2_SRC register, with the INT2_SRC register
cleared by reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see Table 27)
LIR1
Latch interrupt request on the INT1_SRC register, with the INT1_SRC register
cleared by reading the INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see Table 27)
Table 27.
7.5
Data signal on INT 1 and INT 2 pad
I1(2)_CFG1
I1(2)_CFG0
INT 1(2) Pad
0
0
Interrupt 1 (2) source
0
1
Interrupt 1 source OR interrupt 2 source
1
0
Data ready
1
1
Boot running
CTRL_REG4 (23h)
Table 28.
BDU
Table 29.
CTRL_REG4 register
BLE
FS1
FS0
STsign
0
ST
SIM
CTRL_REG4 description
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated between MSb and LSb
reading)
BLE
Big/little endian data selection. Default value 0.
(0: data LSb @ lower address; 1: data MSb @ lower address)
FS1, FS0
Full-scale selection. Default value: 00.
(00: ±2 g; 01: ±4 g; 11: ±8 g)
STsign
Self-test sign. Default value: 00.
(0: self-test plus; 1 self-test minus)
Doc ID 18160 Rev 3
29/43
Register description
Table 29.
AIS328DQ
CTRL_REG4 description (continued)
ST
Self-test enable. Default value: 0.
(0: self-test disabled; 1: self-test enabled)
SIM
SPI serial interface mode selection. Default value: 0.
(0: 4-wire interface; 1: 3-wire interface)
The BDU bit is used to inhibit the output register update between the reading of upper and
lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are
updated continuously. If it is not certain to read faster than output data rate, it is
recommended to set the BDU bit to ‘1’. In this way, after the reading of the lower (upper)
register part, the content of that output register is not updated until the upper (lower) part is
read also. This feature prevents the reading of LSb and MSb related to different samples.
7.6
CTRL_REG5 (24h)
Table 30.
0
CTRL_REG5 register
0
Table 31.
TurnOn1,
TurnOn0
0
0
0
0
TurnOn1
TurnOn0
CTRL_REG5 description
Turn-on mode selection for sleep-to-wake function. Default value: 00.
TurnOn bits are used for turning on the sleep-to-wake function.
Table 32.
Sleep-to-wake configuration
TurnOn1
TurnOn0
Sleep-to-wake status
0
0
Sleep-to-wake function is disabled
1
1
Turned on: the device is in low power mode (ODR is defined in
CTRL_REG1)
By setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt
event occurs, the device is switched to normal mode, increasing the ODR to the value
defined in CTRL_REG1. Although the device is in normal mode, the CTRL_REG1 content is
not automatically changed to “normal mode” configuration.
7.7
HP_FILTER_RESET (25h)
Dummy register. Reading at this address instantaneously zeroes the content of the internal
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to
0 g. This makes it possible to surmount the settling time of the high-pass filter.
30/43
Doc ID 18160 Rev 3
AIS328DQ
7.8
Register description
REFERENCE (26h)
Table 33.
Ref7
Table 34.
Ref7 - Ref0
REFERENCE register
Ref6
Ref5
Ref4
Ref3
Ref2
Ref1
Ref0
REFERENCE description
Reference value for high-pass filter. Default value: 00h.
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM
bits are set to “01”, filter out is generated taking this value as a reference.
7.9
STATUS_REG (27h)
Table 35.
ZYXOR
Table 36.
STATUS_REG register
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS_REG description
ZYXOR
X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data has overwritten the previous one before it was read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous one)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous one)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous one)
ZYXDA
X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA
Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA
X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available;
1: new data for the X-axis is available)
Doc ID 18160 Rev 3
31/43
Register description
7.10
AIS328DQ
OUT_X_L (28h), OUT_X_H (29)
X-axis acceleration data. The value is expressed as 2’s complement.
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as 2’s complement.
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as 2’s complement.
7.13
INT1_CFG (30h)
Table 37.
AOI
Table 38.
INT1_CFG register
6D
ZHIE
ZLIE
YLIE
XHIE
XLIE
INT1_CFG description
AOI
AND/OR combination of interrupt events. Default value: 0.
(See Table 39)
6D
6 direction detection function enable. Default value: 0.
(See Table 39)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for interrupt 1 source.
32/43
YHIE
Doc ID 18160 Rev 3
AIS328DQ
Register description
Table 39.
7.14
Interrupt 1 source configurations
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
INT1_SRC (31h)
Table 40.
0
Table 41.
INT1_SRC register
IA
ZH
ZL
YH
YL
XH
XL
INT1_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshing of data in the INT1_SRC register if the latched option was
chosen.
7.15
INT1_THS(32h)
Table 42.
0
INT1_THS register
THS6
THS5
THS4
Doc ID 18160 Rev 3
THS3
THS2
THS1
THS0
33/43
Register description
Table 43.
AIS328DQ
INT1_THS description
THS6 - THS0
7.16
Interrupt 1 threshold. Default value: 000 0000
INT1_DURATION (33h)
Table 44.
0
Table 45.
D6 - D0
INT1_DURATION register
D6
D5
D4
D3
D2
D1
D0
INT2_DURATION description
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
7.17
INT2_CFG (34h)
Table 46.
AOI
Table 47.
34/43
INT2_CFG register
6D
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
INT2_CFG description
AOI
AND/OR combination of interrupt events. Default value: 0.
(see Table 48)
6D
6-direction detection function enable. Default value: 0.
(see Table 48)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Doc ID 18160 Rev 3
AIS328DQ
Register description
Configuration register for interrupt 2 source.
Table 48.
7.18
Interrupt mode configuration
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
INT2_SRC (35h)
Table 49.
0
Table 50.
INT2_SRC register
IA
ZH
ZL
YH
YL
XH
XL
INT2_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 2 source register. Read only register.
Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2
pin) and allows the refreshing of data in the INT2_SRC register if the latched option was
chosen.
7.19
INT2_THS (36h)
Table 51.
0
INT2_THS register
THS6
THS5
THS4
Doc ID 18160 Rev 3
THS3
THS2
THS1
THS0
35/43
Register description
Table 52.
AIS328DQ
INT2_THS description
THS6 - THS0
7.20
Interrupt 1 threshold. Default value: 000 0000
INT2_DURATION (37h)
Table 53.
0
Table 54.
D6 - D0
INT2_DURATION register
D6
D5
D4
D3
D2
D1
INT2_DURATION description
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
36/43
Doc ID 18160 Rev 3
D0
AIS328DQ
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Doc ID 18160 Rev 3
37/43
Package information
AIS328DQ
Figure 12. QFPN 4x4x1.8mm3, 24L: mechanical data and package dimensions
mm
Dim.
A
A1
A3
b
D
D2
E
E2
e
L
aaa
eee
Min.
Typ.
Max.
1.75
0.00
1.80
1.85
0.05
0.20
2.20
2.20
0.35
0.203 ref
0.25
4.00 bsc
2.30
4.00 bsc
2.30
0.50 bsc
0.40
0.10
0.08
0.30
2.40
2.40
0.45
QFPN-24 (4x4x1.8 mm3)
Quad Flat Package No lead
8212912_C
38/43
Doc ID 18160 Rev 3
AIS328DQ
9
Soldering information
Soldering information
The QFPN-24 package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C, in MSL3 conditions.
For complete land pattern and soldering recommendations, please refer to the TN0019
technical note TN0019 available on www.st.com.
9.1
General guidelines about soldering surface-mounted
accelerometers
As common PCB design and industrial practice when considering accelerometer soldering,
there are always 3 elements to take into consideration:
1. PCB with its own conductive layers (i.e. copper) and other organic materials used for
board protection and dielectric isolation.
2. ACCELEROMETER to be mounted on the board. The accelerometer senses acceleration, but it senses also the mechanical stress coming from the board. This stress is minimized with simple PCB design rules.
3. SOLDERING PASTE like SnAgCu. This soldering paste can be dispensed on the board
with a screen printing method through a stencil. The pattern of the soldering paste on the
PCB is given by the stencil mask itself.
9.2
PCB design guidelines
PCB land and solder masking general recommendations are shown in Figure 13. Refer to
Figure 12 for specific device size, land count and pitch.
●
It is recommended to open solder mask external to PCB land
●
It is mandatory, for correct device functionality, to ensure that some clearance is
present between the accelerometer thermal pad and PCB. In order to obtain this
clearance it is recommended to open the PCB thermal pad solder mask
●
The area below the sensor (on the same side of the board) must be defined as keepout
area. It is strongly recommended not to place any structure in the top metal layer
underneath the sensor
●
Traces connected to pads should be as symmetrical as possible. Symmetry and
balance for pad connection helps component self alignment and leads to a better
control of solder paste reduction after reflow
●
For better performances over temperature it is strongly recommended not to place
large insertion components like buttons or shielding boxes at distances less than 2 mm
from the sensor
●
Central die pad and “Pin 1 Indicator” are physically connected to GND. Leave “Pin 1
Indicator” unconnected during soldering.
Doc ID 18160 Rev 3
39/43
Soldering information
9.2.1
AIS328DQ
PCB design rules
Figure 13. Recommended land and solder mask design for QFPN packages
PACKAGE FOOTPRINT
PCB LAND
SOLDER MASK OPENING
PCB THERMAL PAD NOT TO
BE DESIGNED ON PCB
PCB THERMAL PAD SOLDER
MASK OPENING SUGGESTED
TO INCREASE DEVICE
THERMAL PAD TO PCB
CLEARANCE
C
A
D
B
AM10242V1
A = Clearance from PCB land edge to solder mask opening ≤0.1 mm to ensure that some
solder mask remains between PCB pads
B = PCB land length = QFPN solder pad length + 0.1 mm
C = PCB land width = QFPN solder pad width + 0.1 mm
D = PCB thermal pad solder mask opening = QFPN thermal pad side + 0.2 mm
9.3
Stencil design and solder paste application
The thickness and the pattern of the soldering paste are important for proper accelerometer
mounting process.
40/43
Doc ID 18160 Rev 3
AIS328DQ
9.4
Soldering information
●
Stainless steel stencils are recommended for solder paste applications
●
A stencil thickness of 125 - 150 µm (5 - 6 mils) is recommended for screen printing
●
The final thickness of soldering paste should allow proper cleaning of flux residuals and
clearance between sensor package and PCB
●
Stencil aperture should have a rectangular shape with a dimension up to 25 µm (1mil)
smaller than PCB land
●
The openings of the stencil for the signal pads should be between 50% and 80% of the
PCB pad area
●
Optionally, for better solder paste release, the aperture walls should be trapezoidal and
the corners rounded
●
The fine pitch of the IC leads requires accurate alignment of the stencil to the printed
circuit board. The stencil and printed circuit assembly should be aligned to within 25 µm
(1 mil) prior to application of the solder paste.
Process considerations
●
In the case of using no self-cleaning solder paste, it is mandatory to properly wash the
board after soldering to eliminate any possible source of leakage between adjacent
pads due to flux residues
●
The PCB soldering profile depends on the number, size and placement of components
in the application board. It is not functional to define a specific soldering profile for the
accelerometer only. The user should use a time and temperature reflow profile that is
derived from the PCB design and manufacturing experience.
Doc ID 18160 Rev 3
41/43
Revision history
10
AIS328DQ
Revision history
Table 55.
42/43
Document revision history
Date
Revision
Changes
26-Oct-2010
1
Initial release.
26-Jan-2012
2
Updated Figure 2: Detectable accelerations and pin indicator and
Figure 12: QFPN 4x4x1.8mm3, 24L: mechanical data and package
dimensions.
Updated Table 2: Pin description, Table 3: Mechanical
characteristics, Table 4: Electrical characteristics and Table 6: I²C
slave timing values.
Added new Section 9: Soldering information.
Document promoted from preliminary data to datasheet.
13-Apr-2012
3
Minor text changes in Section 4: Application hints.
Doc ID 18160 Rev 3
AIS328DQ
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 18160 Rev 3
43/43