H3LIS100DL MEMS motion sensor: low-power high-g 3-axis digital accelerometer Datasheet - production data Description The H3LIS100DL is a low-power highperformance 3-axis linear accelerometer belonging to the “nano” family, with digital I2C/SPI serial interface standard output. The device features ultra-low-power operational modes that allow advanced power saving and smart sleep-to-wakeup functions. TFLGA 3x3x1.0 mm3 16L Features The H3LIS100DL has a full scale of ±100 g and is capable of measuring accelerations with output data rates from 0.5 Hz to 400 Hz. Wide supply voltage, 2.16 V to 3.6 V Low-voltage compatible IOs, 1.8 V Ultra-low power consumption down to 10 μA in low-power mode ±100 g full scale The H3LIS100DL is available in a small thin plastic land grid array package (LGA) and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C. I2C/SPI digital output interface 8-bit data output Sleep-to-wakeup function 10000 g high shock survivability ECOPACK®, RoHS and “Green” compliant Applications Shock detection Impact recognition and logging Table 1. Device summary Order codes Temperature range [C] Package Packaging H3LIS100DLTR -40 to +85 TFLGA 3x3x1.0 mm3 16L Tape and reel April 2015 This is information on a product in full production. DocID027504 Rev 2 1/38 www.st.com Contents H3LIS100DL Contents 1 2 3 4 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.3 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 5 2.3.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1.1 5.2 6 2/38 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DocID027504 Rev 2 H3LIS100DL 7 Contents Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.4 CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 28 7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.10 OUT_X (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.11 OUT_Y (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.12 OUT_Z (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.15 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DocID027504 Rev 2 3/38 38 List of tables H3LIS100DL List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 4/38 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26 Normal mode output data rate configurations and low-pass cutoff frequencies . . . . . . . . . 26 CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID027504 Rev 2 H3LIS100DL Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. List of tables INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TFLGA 3x3x1.0 mm3 16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DocID027504 Rev 2 5/38 38 List of figures H3LIS100DL List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. 6/38 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 H3LIS100DL electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 TFLGA 3x3x1.0 mm3 16L mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID027504 Rev 2 H3LIS100DL Block diagram and pin description 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram ; < &+$5*( $03/,),(5 = A &6 ,& $' &219(57(5 08; &21752/ /2*,& 6&/63& 6'$6'26', 63, = 6'2 6$ < ; 75,00,1* &,5&8,76 5()(5(1&( &21752//2*,& &/2&. ,17 ,17(55837*(1 ,17 $09 1.2 Pin description Figure 2. Pin connections = 3LQLQGLFDWRU ; < 7239,(: ',5(&7,212)7+( '(7(&7$%/( $&&(/(5$7,216 %277209,(: $09 DocID027504 Rev 2 7/38 38 Block diagram and pin description H3LIS100DL Table 2. Pin description 8/38 Pin# Name Function 1 Vdd_IO 2 NC Not connected 3 NC Not connected 4 SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) 5 GND 0 V supply 6 SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) 7 SDO SA0 SPI serial data output (SDO) I2C less significant bit of the device address (SA0) 8 CS 9 INT 2 Inertial interrupt 2 10 Reserved Connect to GND 11 INT 1 Inertial interrupt 1 12 GND 0 V supply 13 GND 0 V supply 14 Vdd Power supply 15 Reserved 16 GND Power supply for I/O pins SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) Connect to Vdd 0 V supply DocID027504 Rev 2 H3LIS100DL Mechanical and electrical specifications 2 Mechanical and electrical specifications 2.1 Mechanical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (a). Table 3. Mechanical characteristics Symbol FS Parameter Test conditions Min. (2) Max. Unit ±100 g (3) 780 mg/digit TCSo Sensitivity change vs. temperature ±0.01 %/°C TyOff Typical zero-g level offset accuracy(4) ±1.5 g TCOff Zero-g level change vs. temperature Max. delta from 25 °C ±5 mg/°C An Acceleration noise density ODR 50Hz 50 mg/ Hz NL Non-linearity Range -50g .. +50g 3 %FS Top Operating temperature range Wh Product weight So Measurement range Typ.(1) Sensitivity -40 +85 20 °C mgram 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Factory calibrated at ±1 g 4. Offset can be eliminated by enabling the built-in high-pass filter. a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. The product calibration is done at ±1 g. DocID027504 Rev 2 9/38 38 Mechanical and electrical specifications 2.2 H3LIS100DL Electrical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (b). Table 4. Electrical characteristics Symbol Vdd Vdd_IO Parameter Test conditions Supply voltage (2) I/O pins supply voltage Min. Typ.(1) Max. Unit 2.16 2.5 3.6 V Vdd+0.1 V 1.71 Current consumption in normal mode 300 μA IddLP Current consumption in lowpower mode 10 μA IddPdn Current consumption in power-down mode 1 μA VIH Digital high-level input voltage VIL Digital low-level input voltage Idd VOH High-level output voltage VOL Low-level output voltage ODR Output data rate in normal mode ODRLP BW Output data rate in low-power mode 0.8*Vdd_IO 0.2*Vdd_IO 0.9*Vdd_IO DR bit set to 00 50 DR bit set to 01 100 DR bit set to 10 400 PM bit set to 010 0.5 PM bit set to 011 1 PM bit set to 100 2 PM bit set to 101 5 PM bit set to 110 10 System bandwidth Ton Turn-on time Top Operating temperature range ODR = 100 Hz -40 Hz ODR/2 Hz 1/ODR+1 ms s +85 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the measurement chain is powered off. 3. Refer to Table 20 for filter cutoff frequency. 4. Time to obtain valid data after exiting power-down mode. b. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. DocID027504 Rev 2 V Hz 1. Typical specifications are not guaranteed. 10/38 V V 0.1*Vdd_IO (3) (4) V °C H3LIS100DL Mechanical and electrical specifications 2.3 Communication interface characteristics 2.3.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 5. SPI slave timing values Value (1) Symbol Parameter Unit Min. tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) SDO output disable time Max. 100 ns 10 MHz ns 50 9 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 3. SPI slave timing diagram (2) 2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. 3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors. DocID027504 Rev 2 11/38 38 Mechanical and electrical specifications H3LIS100DL I2C - inter-IC control interface 2.3.2 Subject to general operating conditions for Vdd and Top. Table 6. I2C slave timing values Symbol I2C standard mode (1) Parameter f(SCL) SCL clock frequency I2C fast mode (1) Min. Max. Min. Max. 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0.01 ns 0.01 0.9 tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300 START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 tw(SP:SR) Bus free time between STOP and START condition KHz μs 3.45 th(ST) Unit μs ns μs 1. Data based on standard I2C protocol requirement, not tested in production. 2. Cb = total capacitance of one bus line, in pF. Figure 4. I2C slave timing diagram 5(3($7(' 67$57 67$57 WVX65 WZ6365 6'$ WI6'$ WK6'$ WVX6'$ WU6'$ WVX63 6&/ WK67 Note: 12/38 WZ6&// WZ6&/+ 67$57 WU6&/ WI6&/ Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. DocID027504 Rev 2 6723 H3LIS100DL 2.4 Mechanical and electrical specifications Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins supply voltage -0.3 to 4.8 V -0.3 to Vdd_IO +0.3 V Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) APOW Acceleration (any axis, powered, Vdd = 2.5 V) AUNP Acceleration (any axis, unpowered) 3000 g for 0.5 ms 10000 g for 0.1 ms 3000 g for 0.5 ms 10000 g for 0.1 ms TOP Operating temperature range -40 to +85 °C TSTG Storage temperature range -40 to +125 °C 4 (HBM) kV 1.5 (CDM) kV 200 (MM) V ESD Note: Ratings Electrostatic discharge protection Supply voltage on any pin should never exceed 4.8 V. This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This is an electrostatic-sensitive device (ESD), improper handling can cause permanent damage to the part. DocID027504 Rev 2 13/38 38 Mechanical and electrical specifications 2.5 Terminology 2.5.1 Sensitivity H3LIS100DL Sensitivity describes the gain of the sensor and can be determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. 2.5.2 Zero-g level The zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis measures 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, refer to “Zero-g level change vs. temperature” (see TCOff in Table 3). The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors. 2.5.3 Sleep-to-wakeup The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further reducing the system power consumption and develop new smart applications. The H3LIS100DL may be set in a low-power operating mode, characterized by lower data rate refreshes. In this way the device, even if sleeping, continues to sense acceleration and generate interrupt requests. When the “sleep-to-wakeup” function is activated, the H3LIS100DL is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system may be efficiently switched from low-power mode to full performance, depending on user-selectable positioning and acceleration events, therefore ensuring power saving and flexibility. 14/38 DocID027504 Rev 2 H3LIS100DL 3 Functionality Functionality The H3LIS100DL is a “nano”, low-power, digital output 3-axis linear accelerometer housed in an LGA package. The complete device includes a sensing element and an IC interface able to take the information from the sensing element and to provide a signal to the external world through an I2C/SPI serial interface. 3.1 Sensing element A proprietary process is used to create a surface micromachined accelerometer. The technology allows processing suspended silicon structures, which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with traditional packaging techniques, a cap is placed on top of the sensing element to avoid blocking the moving parts during the molding phase of the plastic encapsulation. When an acceleration is applied to the sensor, the proof mass displaces from its nominal position, causing an imbalance in the capacitive half bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady-state the nominal value of the capacitors are a few pF and when an acceleration is applied, the maximum variation of the capacitive load is in the fF range. 3.2 IC interface The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that will be available to the user through an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface, making the device particularly suitable for direct interfacing with a microcontroller. The H3LIS100DL features a data-ready signal (RDY) which indicates when a new set of measured acceleration data is available, therefore simplifying data synchronization in the digital system that uses the device. 3.3 Factory calibration The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff). The trim values are stored inside the device in non-volatile memory. Any time the device is turned on, the trim parameters are downloaded into the registers to be used during active operation. This allows the device to be used without further calibration. DocID027504 Rev 2 15/38 38 Application hints 4 H3LIS100DL Application hints Figure 5. H3LIS100DL electrical connections 9GG ) 9GGB,2 7239,( : ,17 Q) 6'26$ 6'$6 ',6'2 6&/63& ,17 &6 *1' 'LJLWDOVLJQDO IURPWRVLJQDOFRQWUROOHU6LJQDOOHYHOVDUHGHILQHGE\SURSHUVHOHFWLRQRI9GGB,2 $09 The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should be placed as near as possible to pin 14 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data are selectable and accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high. The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the I2C/SPI interface. 4.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020C. Leave “pin 1 indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. 16/38 DocID027504 Rev 2 H3LIS100DL 5 Digital interfaces Digital interfaces The registers embedded inside the H3LIS100DL may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 8. Serial interface pin description Pin name CS 5.1 Pin description SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SA0 SDO I2C less significant bit of the device address (SA0) SPI serial data output (SDO) I2C serial interface The H3LIS100DL I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 9. I2C terminology Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the H3LIS100DL. When the bus is free both lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal mode. DocID027504 Rev 2 17/38 38 Digital interfaces 5.1.1 H3LIS100DL I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the START condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a START condition with its address. If they match, the device considers itself addressed by the master. The slave address (SAD) associated to the H3LIS100DL is 001100xb. The SDO/SA0 pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to the voltage supply, LSB is ‘1’ (address 0011001b) or else, if the SA0 pad is connected to ground, the LSB value is ‘0’ (address 0011000b). This solution allows the connection and addressing of two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the H3LIS100DL behaves like a slave device and the following protocol must be adhered to. After the START condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSB represent the actual register address while the MSB enables address auto increment. If the MSB of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write), the master transmits to the slave with the direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 10. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 11. Transfer when master is writing one byte to slave Master Slave 18/38 ST SAD + W SUB SAK DocID027504 Rev 2 DATA SAK SP SAK H3LIS100DL Digital interfaces Table 12. Transfer when master is writing multiple bytes to slave Master ST SAD + W SUB Slave SAK DATA DATA SAK SP SAK SAK Table 13. Transfer when master is receiving (reading) one byte of data from slave Master ST SAD + W Slave SUB SAK SR SAD + R SAK NMAK SAK SP DATA Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave Master Slave ST SAD+W SUB SAK SR SAD+R SAK MAK SAK DATA MAK DAT A NMAK SP DAT A Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSB) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge. DocID027504 Rev 2 19/38 38 Digital interfaces 5.2 H3LIS100DL SPI bus interface The H3LIS100DL SPI is a bus slave. The SPI allows the writing and reading of the device registers. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. Figure 6. Read and write protocol &6 63& 6', 5: ', ', ', ', ', ', ', ', 06 $' $' $' $' $' $' 6'2 '2 '2 '2 '2 '2 '2 '2 '2 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in the case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSB first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). In multiple read/write commands further blocks of 8 clock periods are added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’ the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 20/38 DocID027504 Rev 2 H3LIS100DL 5.2.1 Digital interfaces SPI read Figure 7. SPI read protocol &6 63& 6', 5: 06 $' $' $' $' $' $' 6'2 '2 '2 '2 '2 '2 '2 '2 '2 The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). bit 16-... : data DO(...-8). Further data in multiple byte reads. Figure 8. Multiple byte SPI read protocol (2-byte example) &6 63& 6', 5: 06 $' $' $' $' $' $' 6'2 '2 '2 '2 '2 '2 '2 '2 '2 DocID027504 Rev 2 '2'2'2'2'2'2'2 '2 21/38 38 Digital interfaces 5.2.2 H3LIS100DL SPI write Figure 9. SPI write protocol &6 63& 6', ', ', ', ', ', ', ', ', 5: 06 $' $' $' $' $' $' The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple writes. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSB first). bit 16-...: data DI(...-8). Further data in multiple byte writes. Figure 10. Multiple byte SPI write protocol (2-byte example) &6 63& 6', ', ', ', ', ', ', ', ', ', ', ', ', ', ', ', ', 5: 06 $' $' $' $' $' $' 22/38 DocID027504 Rev 2 H3LIS100DL 5.2.3 Digital interfaces SPI read in 3-wire mode 3-wire mode is entered by setting bit SIM (SPI serial interface mode selection) to ‘1’ in CTRL_REG4. Figure 11. SPI read protocol in 3-wire mode &6 63& 6',2 '2 '2 '2 '2 '2 '2 '2 '2 5: 06 $' $' $' $' $' $' The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). The multiple read command is also available in 3-wire mode. DocID027504 Rev 2 23/38 38 Register mapping 6 H3LIS100DL Register mapping Table 15 provides a list of the 8-bit registers embedded in the device and the corresponding addresses. Table 15. Register address map Name Type Reserved (do not modify) WHO_AM_I Register address Hex Binary Default 00 - 0E r Reserved (do not modify) 0F Reserved 000 1111 00110010 10 - 1F rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 HP_FILTER_RESET r 25 010 0101 REFERENCE rw 26 010 0110 00000000 STATUS_REG r 27 010 0111 00000000 28 010 1000 29 010 1001 2A 010 1010 2B 010 1011 2C 010 1100 2D 010 1101 OUT_X r Reserved (do not modify) OUT_Y r Reserved (do not modify) OUT_Z r Reserved (do not modify) Dummy register Reserved Output Reserved Output Reserved Output 2E - 2F Reserved INT1_CFG rw 30 011 0000 00000000 INT1_SRC r 31 011 0001 00000000 INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 INT2_CFG rw 34 011 0100 00000000 INT2_SRC r 35 011 0101 00000000 INT2_THS rw 36 011 0110 00000000 INT2_DURATION rw 37 011 0111 00000000 Reserved (do not modify) 38 - 3F Dummy register Reserved CTRL_REG1 Reserved (do not modify) Comment Reserved Registers marked as Reserved must not be changed as they contain the factory calibration values. Their content is automatically restored when the device is powered up. Writing to those registers may change calibration data and thus lead to improper functioning of the device. 24/38 DocID027504 Rev 2 H3LIS100DL 7 Register description Register description The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register address, consisting of 7 bits, is used to identify them and to write the data through the serial interface. 7.1 WHO_AM_I (0Fh) Table 16. WHO_AM_I register 0 0 1 1 0 0 1 0 Device identification register. This register contains the device identifier that for the H3LIS100DL is set to 32h. 7.2 CTRL_REG1 (20h) Table 17. CTRL_REG1 register PM2 PM1 PM0 DR1 DR0 Zen Yen Xen Table 18. CTRL_REG1 description PM2 - PM0 Power mode selection. Default value: 000 (000: power-down; Others: refer to Table 19) DR1, DR0 Data rate selection. Default value: 00 (00: 50 Hz; Others: refer to Table 20) Zen Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled) Yen Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled) Xen X-axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled) The PM bits allow the user to select between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to “000” (default value after boot). Table 19 shows all the possible power mode configurations and respective output data rates. Output data in the low-power mode are computed with the low-pass filter cutoff frequency defined by the DR1, DR0 bits. The DR bits, in normal mode operation, select the data rate at which acceleration samples are produced. In low-power modes they define the output data resolution. Table 20 shows all the possible configurations for the DR1 and DR0 bits. DocID027504 Rev 2 25/38 38 Register description H3LIS100DL Table 19. Power mode and low-power output data rate configurations PM2 PM1 PM0 Power mode selection Output data rate [Hz] ODRLP 0 0 0 Power-down -- 0 0 1 Normal mode ODR 0 1 0 Low power 0.5 0 1 1 Low power 1 1 0 0 Low power 2 1 0 1 Low power 5 1 1 0 Low power 10 Table 20. Normal mode output data rate configurations and low-pass cutoff frequencies DR1(1) DR0(1) Output data rate [Hz] ODR Low-pass filter cutoff frequency [Hz] 0 0 50 37 0 1 100 74 1 0 400 292 1. “11” bit configuration is not allowed and may cause incorrect device functionality 7.3 CTRL_REG2 (21h) Table 21. CTRL_REG2 register BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0 Table 22. CTRL_REG2 description 26/38 BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) HPM1, HPM0 High-pass filter mode selection. Default value: 00 (00: normal mode; Others: refer to Table 23) FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register) HPen2 High-pass filter enabled for interrupt 2 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPen1 High-pass filter enabled for interrupt 1 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPCF1, HPCF0 High-pass filter cutoff frequency configuration. Default value: 00 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64) DocID027504 Rev 2 H3LIS100DL Register description The BOOT bit is used to refresh the content of the internal registers stored in the Flash memory block. At device power-up, the content of the Flash memory block is transferred to the internal registers related to trimming functions in order to permit correct operation of the device itself. If for any reason the content of the trimming registers is changed, it is sufficient to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of the internal Flash is copied inside the corresponding internal registers and it is used to calibrate the device. These values are factory trimmed and they are different for every accelerometer. They permit correct operation of the device and normally they do not have to be changed. At the end of the boot process the BOOT bit is set again to ‘0’. Table 23. High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normal mode (reset by reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode (reset by reading HP_RESET_FILTER) HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency ft which is given by: 1 - f s f t = ln 1 – ---------- ----- HPc 2 The equation can be simplified to the following approximated equation: fs f t = ------------------6 HPc Table 24. High-pass filter cutoff frequency configuration ft [Hz] ft [Hz] ft [Hz] Data rate = 50 Hz Data rate = 100 Hz Data rate = 400 Hz 00 1 2 8 01 0.5 1 4 10 0.25 0.5 2 11 0.125 0.25 1 HPcoeff2,1 DocID027504 Rev 2 27/38 38 Register description 7.4 H3LIS100DL CTRL_REG3 [interrupt CTRL register] (22h) Table 25. CTRL_REG3 register IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0 Table 26. CTRL_REG3 description IHL Interrupt active high, low. Default value: 0 (0: active high; 1: active low) PP_OD Push-pull/open drain selection on interrupt pad. Default value 0. (0: push-pull; 1: open drain) LIR2 Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I2_CFG1, I2_CFG0 Data signal on INT 2 pad control bits. Default value: 00. (see Table 27) LIR1 Latch interrupt request on the INT1_SRC register, with the INT1_SRC register cleared by reading the INT1_SRC register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I1_CFG1, I1_CFG0 Data signal on INT 1 pad control bits. Default value: 00. (see Table 27) Table 27. Data signal on INT 1 and INT 2 pad 7.5 I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad 0 0 Interrupt 1 (2) source 0 1 Interrupt 1 source OR interrupt 2 source 1 0 Data ready 1 1 Boot running CTRL_REG4 (23h) Table 28. CTRL_REG4 register 0 0 0 0 0 0 Table 29. CTRL_REG4 description SIM 28/38 SPI serial interface mode selection. Default value: 0. (0: 4-wire interface; 1: 3-wire interface) DocID027504 Rev 2 0 SIM H3LIS100DL 7.6 Register description CTRL_REG5 (24h) Table 30. CTRL_REG5 register 0 0 0 0 0 0 TurnOn1 TurnOn0 Table 31. CTRL_REG5 description TurnOn1, TurnOn0 Turn-on mode selection for sleep-to-wake function. Default value: 00. The turn-on bits are used for turning on the sleep-to-wake function. Table 32. Sleep-to-wake configuration TurnOn1 TurnOn0 Sleep-to-wake status 0 0 Sleep-to-wake function is disabled 1 1 Turned on: The device is in low-power mode (ODR is defined in CTRL_REG1) Setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt event occurs, the device is turned to normal mode, increasing the ODR to the value defined in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not automatically changed to “normal mode” configuration. 7.7 HP_FILTER_RESET (25h) Dummy register. Reading at this address zeroes instantaneously the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This allows the settling time of the high-pass filter to be overcome. 7.8 REFERENCE (26h) Table 33. REFERENCE register Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 Table 34. REFERENCE description Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h. This register sets the acceleration value taken as a reference for the high-pass filter output. When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’) and the HPM bits are set to “01”, filter-out is generated, taking this value as a reference. DocID027504 Rev 2 29/38 38 Register description 7.9 H3LIS100DL STATUS_REG (27h) Table 35. STATUS_REG register ZYXOR ZOR YOR XOR ZYXDA ZDA YDA Table 36. STATUS_REG description 7.10 ZYXOR X, Y and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data has overwritten the previous data before it was read) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) OUT_X (29h) X-axis acceleration data. The value is expressed as two’s complement. 7.11 OUT_Y (2Bh) Y-axis acceleration data. The value is expressed as two’s complement. 7.12 OUT_Z (2Dh) Z-axis acceleration data. The value is expressed as two’s complement. 30/38 DocID027504 Rev 2 XDA H3LIS100DL 7.13 Register description INT1_CFG (30h) Table 37. INT1_CFG register AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE Table 38. INT1_CFG description AOI AND/OR combination of interrupt events. Default value: 0. (See Table 39) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt 1 source. Table 39. Interrupt 1 source configurations AOI Interrupt mode 0 OR combination of interrupt events 1 AND combination of interrupt events DocID027504 Rev 2 31/38 38 Register description 7.14 H3LIS100DL INT1_SRC (31h) Table 40. INT1_SRC register 0 IA ZH ZL YH YL XH XL Table 41. INT1_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refresh of data in the INT1_SRC register if the latched option is chosen. 7.15 INT1_THS (32h) Table 42. INT1_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 D1 D0 Table 43. INT1_THS description THS6 - THS0 7.16 Interrupt 1 threshold. Default value: 000 0000 INT1_DURATION (33h) Table 44. INT1_DURATION register 0 32/38 D6 D5 D4 DocID027504 Rev 2 D3 D2 H3LIS100DL Register description Table 45. INT1_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 7.17 INT2_CFG (34h) Table 46. INT2_CFG register AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE Table 47. INT2_CFG description AOI AND/OR combination of interrupt events. Default value: 0. (See Table 48) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt 2 source. Table 48. Interrupt mode configuration AOI Interrupt mode 0 OR combination of interrupt events 1 AND combination of interrupt events DocID027504 Rev 2 33/38 38 Register description 7.18 H3LIS100DL INT2_SRC (35h) Table 49. INT2_SRC register 0 IA ZH ZL YH YL XH XL Table 50. INT2_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X Low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read-only register. Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2 pin) and allows the refresh of data in the INT2_SRC register if the latched option is chosen. 7.19 INT2_THS (36h) Table 51. INT2_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 D1 D0 Table 52. INT2_THS description THS6 - THS0 7.20 Interrupt 2 threshold. Default value: 000 0000 INT2_DURATION (37h) Table 53. INT2_DURATION register 0 D6 D5 D4 D3 D2 Table 54. INT2_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. 34/38 DocID027504 Rev 2 H3LIS100DL 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID027504 Rev 2 35/38 38 Package information H3LIS100DL Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data mm Dim. Min. Typ. A1 Max. 1 A2 0.785 A3 0.200 D1 2.850 3.000 3.150 E1 2.850 3.000 3.150 L1 1.000 1.060 L2 2.000 2.060 N1 0.500 N2 1.000 M 0.040 0.100 P1 0.875 P2 1.275 0.160 T1 0.290 0.350 0.410 T2 0.190 0.250 0.310 d 0.150 k 0.050 Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing B/ 36/38 DocID027504 Rev 2 H3LIS100DL 9 Revision history Revision history Table 56. Document revision history Date Revision Changes 11-Mar-2015 1 Initial release 21-Apr-2015 2 First public release DocID027504 Rev 2 37/38 38 H3LIS100DL IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 38/38 DocID027504 Rev 2