Download Datasheet

H3LIS100DL
MEMS motion sensor:
low-power high-g 3-axis digital accelerometer
Datasheet - production data
Description
The H3LIS100DL is a low-power highperformance 3-axis linear accelerometer
belonging to the “nano” family, with digital I2C/SPI
serial interface standard output.
The device features ultra-low-power operational
modes that allow advanced power saving and
smart sleep-to-wakeup functions.
TFLGA 3x3x1.0 mm3 16L
Features
The H3LIS100DL has a full scale of ±100 g and is
capable of measuring accelerations with output
data rates from 0.5 Hz to 400 Hz.
 Wide supply voltage, 2.16 V to 3.6 V
 Low-voltage compatible IOs, 1.8 V
 Ultra-low power consumption down to 10 μA in
low-power mode
 ±100 g full scale
The H3LIS100DL is available in a small thin
plastic land grid array package (LGA) and is
guaranteed to operate over an extended
temperature range from -40 °C to +85 °C.
 I2C/SPI digital output interface
 8-bit data output
 Sleep-to-wakeup function
 10000 g high shock survivability
 ECOPACK®, RoHS and “Green” compliant
Applications
 Shock detection
 Impact recognition and logging
Table 1. Device summary
Order codes
Temperature range [C]
Package
Packaging
H3LIS100DLTR
-40 to +85
TFLGA 3x3x1.0 mm3 16L
Tape and reel
April 2015
This is information on a product in full production.
DocID027504 Rev 2
1/38
www.st.com
Contents
H3LIS100DL
Contents
1
2
3
4
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2
I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3
Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1
5
2.3.1
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1
5.2
6
2/38
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID027504 Rev 2
H3LIS100DL
7
Contents
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2
CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3
CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4
CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 28
7.5
CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7
HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8
REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10
OUT_X (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.11
OUT_Y (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.12
OUT_Z (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.13
INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.14
INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.15
INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.16
INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.17
INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.18
INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.19
INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20
INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID027504 Rev 2
3/38
38
List of tables
H3LIS100DL
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
4/38
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 19
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26
Normal mode output data rate configurations and low-pass cutoff frequencies . . . . . . . . . 26
CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DocID027504 Rev 2
H3LIS100DL
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
List of tables
INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TFLGA 3x3x1.0 mm3 16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID027504 Rev 2
5/38
38
List of figures
H3LIS100DL
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
6/38
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
H3LIS100DL electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
TFLGA 3x3x1.0 mm3 16L mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID027504 Rev 2
H3LIS100DL
Block diagram and pin description
1
Block diagram and pin description
1.1
Block diagram
Figure 1. Block diagram
;
<
&+$5*(
$03/,),(5
=
A
&6
,&
$'
&219(57(5
08;
&21752/ /2*,&
6&/63&
6'$6'26',
63,
=
6'2 6$
<
;
75,00,1*
&,5&8,76
5()(5(1&(
&21752//2*,&
&/2&.
,17
,17(55837*(1
,17
$09
1.2
Pin description
Figure 2. Pin connections
=
3LQLQGLFDWRU
;
<
7239,(:
',5(&7,212)7+(
'(7(&7$%/(
$&&(/(5$7,216
%277209,(:
$09
DocID027504 Rev 2
7/38
38
Block diagram and pin description
H3LIS100DL
Table 2. Pin description
8/38
Pin#
Name
Function
1
Vdd_IO
2
NC
Not connected
3
NC
Not connected
4
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
5
GND
0 V supply
6
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
7
SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
8
CS
9
INT 2
Inertial interrupt 2
10
Reserved
Connect to GND
11
INT 1
Inertial interrupt 1
12
GND
0 V supply
13
GND
0 V supply
14
Vdd
Power supply
15
Reserved
16
GND
Power supply for I/O pins
SPI enable
I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Connect to Vdd
0 V supply
DocID027504 Rev 2
H3LIS100DL
Mechanical and electrical specifications
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted (a).
Table 3. Mechanical characteristics
Symbol
FS
Parameter
Test conditions
Min.
(2)
Max.
Unit
±100
g
(3)
780
mg/digit
TCSo
Sensitivity change vs.
temperature
±0.01
%/°C
TyOff
Typical zero-g level offset
accuracy(4)
±1.5
g
TCOff
Zero-g level change vs.
temperature
Max. delta from 25 °C
±5
mg/°C
An
Acceleration noise density
ODR 50Hz
50
mg/ Hz
NL
Non-linearity
Range -50g .. +50g
3
%FS
Top
Operating temperature range
Wh
Product weight
So
Measurement range
Typ.(1)
Sensitivity
-40
+85
20
°C
mgram
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Factory calibrated at ±1 g
4. Offset can be eliminated by enabling the built-in high-pass filter.
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. The
product calibration is done at ±1 g.
DocID027504 Rev 2
9/38
38
Mechanical and electrical specifications
2.2
H3LIS100DL
Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted (b).
Table 4. Electrical characteristics
Symbol
Vdd
Vdd_IO
Parameter
Test conditions
Supply voltage
(2)
I/O pins supply voltage
Min.
Typ.(1)
Max.
Unit
2.16
2.5
3.6
V
Vdd+0.1
V
1.71
Current consumption
in normal mode
300
μA
IddLP
Current consumption in lowpower mode
10
μA
IddPdn
Current consumption in
power-down mode
1
μA
VIH
Digital high-level input
voltage
VIL
Digital low-level input voltage
Idd
VOH
High-level output voltage
VOL
Low-level output voltage
ODR
Output data rate
in normal mode
ODRLP
BW
Output data rate in
low-power mode
0.8*Vdd_IO
0.2*Vdd_IO
0.9*Vdd_IO
DR bit set to 00
50
DR bit set to 01
100
DR bit set to 10
400
PM bit set to 010
0.5
PM bit set to 011
1
PM bit set to 100
2
PM bit set to 101
5
PM bit set to 110
10
System bandwidth
Ton
Turn-on time
Top
Operating temperature range
ODR = 100 Hz
-40
Hz
ODR/2
Hz
1/ODR+1 ms
s
+85
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the
measurement chain is powered off.
3. Refer to Table 20 for filter cutoff frequency.
4. Time to obtain valid data after exiting power-down mode.
b. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
DocID027504 Rev 2
V
Hz
1. Typical specifications are not guaranteed.
10/38
V
V
0.1*Vdd_IO
(3)
(4)
V
°C
H3LIS100DL
Mechanical and electrical specifications
2.3
Communication interface characteristics
2.3.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 5. SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min.
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max.
100
ns
10
MHz
ns
50
9
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Figure 3. SPI slave timing diagram (2)
2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors.
DocID027504 Rev 2
11/38
38
Mechanical and electrical specifications
H3LIS100DL
I2C - inter-IC control interface
2.3.2
Subject to general operating conditions for Vdd and Top.
Table 6. I2C slave timing values
Symbol
I2C standard mode (1)
Parameter
f(SCL)
SCL clock frequency
I2C fast mode (1)
Min.
Max.
Min.
Max.
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0.01
ns
0.01
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
KHz
μs
3.45
th(ST)
Unit
μs
ns
μs
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4. I2C slave timing diagram
5(3($7('
67$57
67$57
WVX65 WZ6365 6'$
WI6'$ WK6'$
WVX6'$
WU6'$
WVX63 6&/
WK67 Note:
12/38
WZ6&// WZ6&/+ 67$57
WU6&/
WI6&/
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
DocID027504 Rev 2
6723
H3LIS100DL
2.4
Mechanical and electrical specifications
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 7. Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)
AUNP
Acceleration (any axis, unpowered)
3000 g for 0.5 ms
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
4 (HBM)
kV
1.5 (CDM)
kV
200 (MM)
V
ESD
Note:
Ratings
Electrostatic discharge protection
Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This is an electrostatic-sensitive device (ESD), improper handling can cause
permanent damage to the part.
DocID027504 Rev 2
13/38
38
Mechanical and electrical specifications
2.5
Terminology
2.5.1
Sensitivity
H3LIS100DL
Sensitivity describes the gain of the sensor and can be determined by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and time. The sensitivity tolerance describes the
range of sensitivities of a large population of sensors.
2.5.2
Zero-g level
The zero-g level offset (TyOff) describes the deviation of an actual output signal from the
ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal
surface measures 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis measures 1 g.
The output is ideally in the middle of the dynamic range of the sensor (content of OUT
registers 00h, data expressed as two’s complement number). A deviation from the ideal
value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the
MEMS sensor and therefore can slightly change after mounting the sensor onto a printed
circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, refer to “Zero-g level change vs. temperature” (see TCOff in Table 3). The
zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels
of a population of sensors.
2.5.3
Sleep-to-wakeup
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further
reducing the system power consumption and develop new smart applications.
The H3LIS100DL may be set in a low-power operating mode, characterized by lower data
rate refreshes. In this way the device, even if sleeping, continues to sense acceleration and
generate interrupt requests.
When the “sleep-to-wakeup” function is activated, the H3LIS100DL is able to automatically
wake up as soon as the interrupt event has been detected, increasing the output data rate
and bandwidth.
With this feature the system may be efficiently switched from low-power mode to full
performance, depending on user-selectable positioning and acceleration events, therefore
ensuring power saving and flexibility.
14/38
DocID027504 Rev 2
H3LIS100DL
3
Functionality
Functionality
The H3LIS100DL is a “nano”, low-power, digital output 3-axis linear accelerometer housed
in an LGA package. The complete device includes a sensing element and an IC interface
able to take the information from the sensing element and to provide a signal to the external
world through an I2C/SPI serial interface.
3.1
Sensing element
A proprietary process is used to create a surface micromachined accelerometer. The
technology allows processing suspended silicon structures, which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with traditional packaging techniques, a cap is placed on top
of the sensing element to avoid blocking the moving parts during the molding phase of the
plastic encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady-state the nominal value of the capacitors are a few pF and when an acceleration
is applied, the maximum variation of the capacitive load is in the fF range.
3.2
IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage that will be
available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface, making the device
particularly suitable for direct interfacing with a microcontroller.
The H3LIS100DL features a data-ready signal (RDY) which indicates when a new set of
measured acceleration data is available, therefore simplifying data synchronization in the
digital system that uses the device.
3.3
Factory calibration
The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff).
The trim values are stored inside the device in non-volatile memory. Any time the device is
turned on, the trim parameters are downloaded into the registers to be used during active
operation. This allows the device to be used without further calibration.
DocID027504 Rev 2
15/38
38
Application hints
4
H3LIS100DL
Application hints
Figure 5. H3LIS100DL electrical connections
9GG
—)
9GGB,2
7239,( :
,17
Q)
6'26$
6'$6 ',6'2
6&/63&
,17
&6
*1'
'LJLWDOVLJQDO IURPWRVLJQDOFRQWUROOHU6LJQDOOHYHOVDUHGHILQHGE\SURSHUVHOHFWLRQRI9GGB,2
$09
The device core is supplied through the Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should
be placed as near as possible to pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data are selectable and
accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be
completely programmed by the user through the I2C/SPI interface.
4.1
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standards.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C.
Leave “pin 1 indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
16/38
DocID027504 Rev 2
H3LIS100DL
5
Digital interfaces
Digital interfaces
The registers embedded inside the H3LIS100DL may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
Table 8. Serial interface pin description
Pin name
CS
5.1
Pin description
SPI enable
I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
I2C serial interface
The H3LIS100DL I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 9. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bi-directional line used for sending and receiving the data
to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor
embedded inside the H3LIS100DL. When the bus is free both lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with
normal mode.
DocID027504 Rev 2
17/38
38
Digital interfaces
5.1.1
H3LIS100DL
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a high-to-low transition on the data line while the SCL line is held high. After this
has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the START condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a START condition with its address. If they match, the device considers itself
addressed by the master.
The slave address (SAD) associated to the H3LIS100DL is 001100xb. The SDO/SA0 pad
can be used to modify the less significant bit of the device address. If the SA0 pad is
connected to the voltage supply, LSB is ‘1’ (address 0011001b) or else, if the SA0 pad is
connected to ground, the LSB value is ‘0’ (address 0011000b). This solution allows the
connection and addressing of two different accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line low so that it
remains stable low during the high period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the H3LIS100DL behaves like a slave device and the following
protocol must be adhered to. After the START condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSB represent the actual register address while the MSB enables address auto increment.
If the MSB of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),
the master transmits to the slave with the direction unchanged. Table 10 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Table 11. Transfer when master is writing one byte to slave
Master
Slave
18/38
ST
SAD + W
SUB
SAK
DocID027504 Rev 2
DATA
SAK
SP
SAK
H3LIS100DL
Digital interfaces
Table 12. Transfer when master is writing multiple bytes to slave
Master
ST
SAD + W
SUB
Slave
SAK
DATA
DATA
SAK
SP
SAK
SAK
Table 13. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
ST SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DAT
A
NMAK
SP
DAT
A
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSB) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL low to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left high by
the slave. The master can then abort the transfer. A low-to-high transition on the SDA line
while the SCL line is high is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is master acknowledge and NMAK is no
master acknowledge.
DocID027504 Rev 2
19/38
38
Digital interfaces
5.2
H3LIS100DL
SPI bus interface
The H3LIS100DL SPI is a bus slave. The SPI allows the writing and reading of the device
registers.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Figure 6. Read and write protocol
&6
63&
6',
5:
', ', ', ', ', ', ', ',
06 $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in the case of multiple read/write bytes. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling
edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSB first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
In multiple read/write commands further blocks of 8 clock periods are added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When the
MS bit is ‘1’ the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
20/38
DocID027504 Rev 2
H3LIS100DL
5.2.1
Digital interfaces
SPI read
Figure 7. SPI read protocol
&6
63&
6',
5:
06 $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 8. Multiple byte SPI read protocol (2-byte example)
&6
63&
6',
5:
06 $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2
DocID027504 Rev 2
'2'2'2'2'2'2'2 '2
21/38
38
Digital interfaces
5.2.2
H3LIS100DL
SPI write
Figure 9. SPI write protocol
&6
63&
6',
', ', ', ', ', ', ', ',
5:
06 $' $' $' $' $' $'
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSB
first).
bit 16-...: data DI(...-8). Further data in multiple byte writes.
Figure 10. Multiple byte SPI write protocol (2-byte example)
&6
63&
6',
', ', ', ', ', ', ', ', ', ', ', ', ', ', ', ',
5:
06 $' $' $' $' $' $'
22/38
DocID027504 Rev 2
H3LIS100DL
5.2.3
Digital interfaces
SPI read in 3-wire mode
3-wire mode is entered by setting bit SIM (SPI serial interface mode selection) to ‘1’ in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
&6
63&
6',2
'2 '2 '2 '2 '2 '2 '2 '2
5:
06 $' $' $' $' $' $'
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first).
The multiple read command is also available in 3-wire mode.
DocID027504 Rev 2
23/38
38
Register mapping
6
H3LIS100DL
Register mapping
Table 15 provides a list of the 8-bit registers embedded in the device and the corresponding
addresses.
Table 15. Register address map
Name
Type
Reserved (do not modify)
WHO_AM_I
Register address
Hex
Binary
Default
00 - 0E
r
Reserved (do not modify)
0F
Reserved
000 1111 00110010
10 - 1F
rw
20
010 0000 00000111
CTRL_REG2
rw
21
010 0001 00000000
CTRL_REG3
rw
22
010 0010 00000000
CTRL_REG4
rw
23
010 0011 00000000
CTRL_REG5
rw
24
010 0100 00000000
HP_FILTER_RESET
r
25
010 0101
REFERENCE
rw
26
010 0110 00000000
STATUS_REG
r
27
010 0111 00000000
28
010 1000
29
010 1001
2A
010 1010
2B
010 1011
2C
010 1100
2D
010 1101
OUT_X
r
Reserved (do not modify)
OUT_Y
r
Reserved (do not modify)
OUT_Z
r
Reserved (do not modify)
Dummy register
Reserved
Output
Reserved
Output
Reserved
Output
2E - 2F
Reserved
INT1_CFG
rw
30
011 0000 00000000
INT1_SRC
r
31
011 0001 00000000
INT1_THS
rw
32
011 0010 00000000
INT1_DURATION
rw
33
011 0011 00000000
INT2_CFG
rw
34
011 0100 00000000
INT2_SRC
r
35
011 0101 00000000
INT2_THS
rw
36
011 0110 00000000
INT2_DURATION
rw
37
011 0111 00000000
Reserved (do not modify)
38 - 3F
Dummy register
Reserved
CTRL_REG1
Reserved (do not modify)
Comment
Reserved
Registers marked as Reserved must not be changed as they contain the factory calibration
values. Their content is automatically restored when the device is powered up. Writing to
those registers may change calibration data and thus lead to improper functioning of the
device.
24/38
DocID027504 Rev 2
H3LIS100DL
7
Register description
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register address, consisting of 7 bits, is used to identify them and to
write the data through the serial interface.
7.1
WHO_AM_I (0Fh)
Table 16. WHO_AM_I register
0
0
1
1
0
0
1
0
Device identification register.
This register contains the device identifier that for the H3LIS100DL is set to 32h.
7.2
CTRL_REG1 (20h)
Table 17. CTRL_REG1 register
PM2
PM1
PM0
DR1
DR0
Zen
Yen
Xen
Table 18. CTRL_REG1 description
PM2 - PM0
Power mode selection. Default value: 000
(000: power-down; Others: refer to Table 19)
DR1, DR0
Data rate selection. Default value: 00
(00: 50 Hz; Others: refer to Table 20)
Zen
Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen
Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen
X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
The PM bits allow the user to select between power-down and two operating active modes.
The device is in power-down mode when the PD bits are set to “000” (default value after
boot). Table 19 shows all the possible power mode configurations and respective output
data rates. Output data in the low-power mode are computed with the low-pass filter cutoff
frequency defined by the DR1, DR0 bits.
The DR bits, in normal mode operation, select the data rate at which acceleration samples
are produced. In low-power modes they define the output data resolution. Table 20 shows
all the possible configurations for the DR1 and DR0 bits.
DocID027504 Rev 2
25/38
38
Register description
H3LIS100DL
Table 19. Power mode and low-power output data rate configurations
PM2
PM1
PM0
Power mode selection
Output data rate [Hz]
ODRLP
0
0
0
Power-down
--
0
0
1
Normal mode
ODR
0
1
0
Low power
0.5
0
1
1
Low power
1
1
0
0
Low power
2
1
0
1
Low power
5
1
1
0
Low power
10
Table 20. Normal mode output data rate configurations and low-pass cutoff
frequencies
DR1(1)
DR0(1)
Output data rate [Hz]
ODR
Low-pass filter cutoff
frequency [Hz]
0
0
50
37
0
1
100
74
1
0
400
292
1. “11” bit configuration is not allowed and may cause incorrect device functionality
7.3
CTRL_REG2 (21h)
Table 21. CTRL_REG2 register
BOOT
HPM1
HPM0
FDS
HPen2
HPen1
HPCF1
HPCF0
Table 22. CTRL_REG2 description
26/38
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
HPM1, HPM0
High-pass filter mode selection. Default value: 00
(00: normal mode; Others: refer to Table 23)
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2
High-pass filter enabled for interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPen1
High-pass filter enabled for interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cutoff frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
DocID027504 Rev 2
H3LIS100DL
Register description
The BOOT bit is used to refresh the content of the internal registers stored in the Flash
memory block. At device power-up, the content of the Flash memory block is transferred to
the internal registers related to trimming functions in order to permit correct operation of the
device itself. If for any reason the content of the trimming registers is changed, it is sufficient
to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of
the internal Flash is copied inside the corresponding internal registers and it is used to
calibrate the device. These values are factory trimmed and they are different for every
accelerometer. They permit correct operation of the device and normally they do not have to
be changed. At the end of the boot process the BOOT bit is set again to ‘0’.
Table 23. High-pass filter mode configuration
HPM1
HPM0
High-pass filter mode
0
0
Normal mode (reset by reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode (reset by reading HP_RESET_FILTER)
HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency ft which is
given by:
1 - f s
f t = ln  1 – ---------- -----
HPc 2
The equation can be simplified to the following approximated equation:
fs
f t = ------------------6  HPc
Table 24. High-pass filter cutoff frequency configuration
ft [Hz]
ft [Hz]
ft [Hz]
Data rate = 50 Hz
Data rate = 100 Hz
Data rate = 400 Hz
00
1
2
8
01
0.5
1
4
10
0.25
0.5
2
11
0.125
0.25
1
HPcoeff2,1
DocID027504 Rev 2
27/38
38
Register description
7.4
H3LIS100DL
CTRL_REG3 [interrupt CTRL register] (22h)
Table 25. CTRL_REG3 register
IHL
PP_OD
LIR2
I2_CFG1
I2_CFG0
LIR1
I1_CFG1
I1_CFG0
Table 26. CTRL_REG3 description
IHL
Interrupt active high, low. Default value: 0
(0: active high; 1: active low)
PP_OD
Push-pull/open drain selection on interrupt pad. Default value 0.
(0: push-pull; 1: open drain)
LIR2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see Table 27)
LIR1
Latch interrupt request on the INT1_SRC register, with the INT1_SRC register
cleared by reading the INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see Table 27)
Table 27. Data signal on INT 1 and INT 2 pad
7.5
I1(2)_CFG1
I1(2)_CFG0
INT 1(2) Pad
0
0
Interrupt 1 (2) source
0
1
Interrupt 1 source OR interrupt 2 source
1
0
Data ready
1
1
Boot running
CTRL_REG4 (23h)
Table 28. CTRL_REG4 register
0
0
0
0
0
0
Table 29. CTRL_REG4 description
SIM
28/38
SPI serial interface mode selection. Default value: 0.
(0: 4-wire interface; 1: 3-wire interface)
DocID027504 Rev 2
0
SIM
H3LIS100DL
7.6
Register description
CTRL_REG5 (24h)
Table 30. CTRL_REG5 register
0
0
0
0
0
0
TurnOn1
TurnOn0
Table 31. CTRL_REG5 description
TurnOn1,
TurnOn0
Turn-on mode selection for sleep-to-wake function. Default value: 00.
The turn-on bits are used for turning on the sleep-to-wake function.
Table 32. Sleep-to-wake configuration
TurnOn1
TurnOn0
Sleep-to-wake status
0
0
Sleep-to-wake function is disabled
1
1
Turned on: The device is in low-power mode (ODR is defined in
CTRL_REG1)
Setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt
event occurs, the device is turned to normal mode, increasing the ODR to the value defined
in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not
automatically changed to “normal mode” configuration.
7.7
HP_FILTER_RESET (25h)
Dummy register. Reading at this address zeroes instantaneously the content of the internal
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to
0 g. This allows the settling time of the high-pass filter to be overcome.
7.8
REFERENCE (26h)
Table 33. REFERENCE register
Ref7
Ref6
Ref5
Ref4
Ref3
Ref2
Ref1
Ref0
Table 34. REFERENCE description
Ref7 - Ref0
Reference value for high-pass filter. Default value: 00h.
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’)
and the HPM bits are set to “01”, filter-out is generated, taking this value as a reference.
DocID027504 Rev 2
29/38
38
Register description
7.9
H3LIS100DL
STATUS_REG (27h)
Table 35. STATUS_REG register
ZYXOR
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
Table 36. STATUS_REG description
7.10
ZYXOR
X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data has overwritten the previous data before it was read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous data)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous data)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA
X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA
Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA
X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available;
1: new data for the X-axis is available)
OUT_X (29h)
X-axis acceleration data. The value is expressed as two’s complement.
7.11
OUT_Y (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement.
7.12
OUT_Z (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement.
30/38
DocID027504 Rev 2
XDA
H3LIS100DL
7.13
Register description
INT1_CFG (30h)
Table 37. INT1_CFG register
AOI
0
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Table 38. INT1_CFG description
AOI
AND/OR combination of interrupt events. Default value: 0.
(See Table 39)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for interrupt 1 source.
Table 39. Interrupt 1 source configurations
AOI
Interrupt mode
0
OR combination of interrupt events
1
AND combination of interrupt events
DocID027504 Rev 2
31/38
38
Register description
7.14
H3LIS100DL
INT1_SRC (31h)
Table 40. INT1_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 41. INT1_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refresh of data in the INT1_SRC register if the latched option is chosen.
7.15
INT1_THS (32h)
Table 42. INT1_THS register
0
THS6
THS5
THS4
THS3
THS2
THS1
THS0
D1
D0
Table 43. INT1_THS description
THS6 - THS0
7.16
Interrupt 1 threshold. Default value: 000 0000
INT1_DURATION (33h)
Table 44. INT1_DURATION register
0
32/38
D6
D5
D4
DocID027504 Rev 2
D3
D2
H3LIS100DL
Register description
Table 45. INT1_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
7.17
INT2_CFG (34h)
Table 46. INT2_CFG register
AOI
0
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Table 47. INT2_CFG description
AOI
AND/OR combination of interrupt events. Default value: 0.
(See Table 48)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for interrupt 2 source.
Table 48. Interrupt mode configuration
AOI
Interrupt mode
0
OR combination of interrupt events
1
AND combination of interrupt events
DocID027504 Rev 2
33/38
38
Register description
7.18
H3LIS100DL
INT2_SRC (35h)
Table 49. INT2_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 50. INT2_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 2 source register. Read-only register.
Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2
pin) and allows the refresh of data in the INT2_SRC register if the latched option is chosen.
7.19
INT2_THS (36h)
Table 51. INT2_THS register
0
THS6
THS5
THS4
THS3
THS2
THS1
THS0
D1
D0
Table 52. INT2_THS description
THS6 - THS0
7.20
Interrupt 2 threshold. Default value: 000 0000
INT2_DURATION (37h)
Table 53. INT2_DURATION register
0
D6
D5
D4
D3
D2
Table 54. INT2_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
34/38
DocID027504 Rev 2
H3LIS100DL
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
DocID027504 Rev 2
35/38
38
Package information
H3LIS100DL
Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data
mm
Dim.
Min.
Typ.
A1
Max.
1
A2
0.785
A3
0.200
D1
2.850
3.000
3.150
E1
2.850
3.000
3.150
L1
1.000
1.060
L2
2.000
2.060
N1
0.500
N2
1.000
M
0.040
0.100
P1
0.875
P2
1.275
0.160
T1
0.290
0.350
0.410
T2
0.190
0.250
0.310
d
0.150
k
0.050
Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing
B/
36/38
DocID027504 Rev 2
H3LIS100DL
9
Revision history
Revision history
Table 56. Document revision history
Date
Revision
Changes
11-Mar-2015
1
Initial release
21-Apr-2015
2
First public release
DocID027504 Rev 2
37/38
38
H3LIS100DL
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
38/38
DocID027504 Rev 2