Si5323 P I N - P ROGRAMMABLE P R E C I S I O N C LOCK M ULTIPLIER /J I T T E R A TTENUA TOR Features Ordering Information: See page 33. Applications Pin Assignments SONET/SDH OC-48/STM-16 and OC-192/STM-64 line cards GbE/10GbE, 1/2/4/8/10GFC line cards ITU G.709 line cards Optical modules Test and measurement Synchronous Ethernet Description CKOUT1– CKOUT1+ SFOUT1 NC GND SFOUT0 VDD Dual clock outputs with selectable signal format (LVPECL, LVDS, CML, CMOS) Support for ITU G.709 FEC ratios (255/238, 255/237, 255/236) LOL, LOS alarm outputs Pin-controlled output phase adjust Single supply 1.8 ±5%, 2.5 or 3.3 V ±10% operation with high PSRR On-chip voltage regulator Small size: 6 x 6 mm 36-lead QFN CKOUT2– Pin-selectable output frequencies ranging from 8 kHz–708 MHz Ultra-low jitter clock outputs as low as 250 fs rms (12 kHz–20 MHz) 270 fs rms (50 kHz–80 MHz) Integrated loop filter with selectable loop bandwidth (60 Hz–8.4 kHz) Meets ITU-T G.8251 and Telcordia OC-192 GR-253-CORE jitter specifications Hitless input clock switching with phase build-out and digital hold CKOUT2+ 36 35 34 33 32 31 30 29 28 RST 1 27 FRQSEL3 2 26 FRQSEL2 FRQTBL C1B 3 25 FRQSEL1 C2B 4 VDD 5 XA 6 XB 24 FRQSEL0 GND Pad 23 BWSEL1 22 BWSEL0 7 21 CS_CA GND 8 20 INC 19 DEC AUTOSEL 9 LOL CKIN1– RATE1 CKIN1+ DBL2_BY CKIN2– CKIN2+ VDD 10 11 12 13 14 15 16 17 18 RATE0 The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre Channel. The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz and generates two equal frequency-multiplied clock outputs ranging from 8 kHz to 1050 MHz. The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, and Fibre Channel rates. The Si5323 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5323 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. Functional Block Diagram Xtal or Refclock CKOUT1 CKIN1 DSPLL ® Signal Format CKOUT2 CKIN2 Disable/BYPASS Loss of Signal Control Signal Detect Loss of Lock VDD (1.8, 2.5, or 3.3 V) GND Frequency Select Manual/Auto / Switch Bandwidth Select Clock Select Rate Select Rev. 1.0 1/11 Skew Control Copyright © 2011 by Silicon Laboratories Si5323 Si5323 2 Rev. 1.0 Si5323 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . .9 1.2. Three-Level Input Pins (Example with External Resistors) . . . . . . . . . . . . . . . . . . . . .9 2. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.1. Example: SONET OC-192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4. Pin Descriptions: Si5323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8. Si5323 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Rev. 1.0 3 Si5323 1. Electrical Specifications Table 1. Recommended Operating Conditions (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Temperature Range Supply Voltage Symbol Test Condition Min Typ Max Unit –40 25 85 ºC 3.3 V nominal 2.97 3.3 3.63 V 2.5 V nominal 2.25 2.5 2.75 V 1.8 V nominal 1.71 1.8 1.89 V TA VDD Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted. Table 2. DC Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units Supply Current (Supply current is independent of VDD) IDD LVPECL Format 622.08 MHz Out All CKOUTs Enabled1 LVPECL Format 622.08 MHz Out Only 1 CKOUT Enabled1 CMOS Format 19.44 MHz Out All CKOUTs Enabled CMOS Format 19.44 MHz Out Only CKOUT1 Enabled — 251 279 mA — 217 243 mA — 204 234 mA — 194 220 mA 1.8 V ±5% 0.9 — 1.4 V 2.5 V ±10% 1.0 — 1.7 V 3.3 V ±10% 1.1 — 1.95 V Single-ended 20 40 60 k 0 — VDD V fCKIN < 212.5 MHz See Figure 2. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 2. 0.25 — — VPP CKIN Input Pins Input Common Mode Voltage (Input Threshold Voltage) Input Resistance Input Voltage Level Limits Single-ended Input Voltage Swing VICM CKNRIN CKNVIN VISE See note 2 Notes: 1. LVPECL outputs require nominal VDD > 2.5 V. 2. No overshoot or undershoot. 3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 4 Rev. 1.0 Si5323 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units VID fCKIN < 212.5 MHz See Figure 2. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 2. 0.25 — — VPP CKOVCM LVPECL 100 load line-to-line VDD – 1.42 — VDD – 1.25 V Differential Output Swing CKOVD LVPECL 100 load line-to-line 1.1 — 1.9 VPP Single-ended Output Swing CKOVSE LVPECL 100 load line-to-line 0.5 — 0.93 VPP Differential Output Voltage CKOVD CML 100 load line-to-line 350 425 500 mVPP Common Mode Output Voltage CKOVCM CML 100 load line-to-line — VDD – 0.36 — V Differential Output Voltage CKOVD LVDS 100 load line-to-line 500 700 900 mVPP Low swing LVDS 100 load line-to-line 350 425 500 mVPP CKOVCM LVDS 100 load line-to-line 1.125 1.2 1.275 V CKORD CML, LVDS, LVPECL — 200 — Output Voltage Low CKOVOLLH CMOS — — 0.4 V Output Voltage High CKOVOHLH VDD = 1.71 V CMOS 0.8 x VDD — — V Output Drive Current CKOIO CMOS Driving into CKOVOL for output low or CKOVOH for output high. CKOUT+ and CKOUT– shorted externally. VDD = 1.8 V — 7.5 — mA VDD = 3.3 V — 32 — mA Differential Input Voltage Swing Output Clocks (CKOUTn)1 Common Mode Common Mode Output Voltage Differential Output Resistance Notes: 1. LVPECL outputs require nominal VDD > 2.5 V. 2. No overshoot or undershoot. 3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. Rev. 1.0 5 Si5323 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units VIL VDD = 1.71 V — — 0.5 V VDD = 2.25 V — — 0.7 V VDD = 2.97 V — — 0.8 V VDD = 1.89 V 1.4 — — V VDD = 2.25 V 1.8 — — V VDD = 3.63 V 2.5 — — V 2-Level LVCMOS Input Pins Input Voltage Low Input Voltage High VIH Input Low Current IIL — — 50 µA Input High Current IIH — — 50 µA Weak Internal Input Pull-up Resistor RPUP — 75 — k Weak Internal Input Pull-down Resistor RPDN — 75 — k Input Voltage Low VILL — — 0.15 x VDD V Input Voltage Mid VIMM 0.45 x VDD — 0.55 x VDD V Input Voltage High VIHH 0.85 x VDD — — V Input Low Current IILL3 –20 — — µA Input Mid Current 3 –2 — 2 µA 3 — — 20 µA 3-Level Input Pins Input High Current IIMM IIHH Notes: 1. LVPECL outputs require nominal VDD > 2.5 V. 2. No overshoot or undershoot. 3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 6 Rev. 1.0 Si5323 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units VOL IO = 2 mA VDD = 1.71 V — — 0.4 V IO = 2 mA VDD = 2.97 V — — 0.4 V IO = –2 mA VDD = 1.71 V VDD – 0.4 — — V IO = –2 mA VDD = 2.97 V VDD – 0.4 — — V RST = 0 –100 — 100 µA — 12 — k 0 — 1.2 V 0.5 — 1.2 VPP — 12 — k 0 — 1.2 V 0.5 — 1.2 VPP, each LVCMOS Output Pins Output Voltage Low Output Voltage High VOH Disabled Leakage Current IOZ Single-Ended Reference Clock Input Pin XA (XB with cap to gnd) Input Resistance XARIN Input Voltage Level Limits XAVIN Input Voltage Swing XAVPP XTAL/RefCLK RATE[1:0] = LM, ML, MH, or HM Differential Reference Clock Input Pins (XA/XB) Input Resistance XA/XBRIN Differential Input Voltage Level Limits XA/XBVIN Input Voltage Swing XTAL/RefCLK RATE[1:0] = LM, ML, MH, or HM XAVPP/XBVPP Notes: 1. LVPECL outputs require nominal VDD > 2.5 V. 2. No overshoot or undershoot. 3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. V SIGNAL + Differential I/Os VICM , VOCM SIGNAL – (SIGNAL +) – (SIGNAL –) VICM, VOCM VISE , VOSE Single-Ended Peak-to-Peak Voltage Differential Peak-to-Peak Voltage VID,VOD t SIGNAL + VID = (SIGNAL+) – (SIGNAL–) SIGNAL – Figure 1. Voltage Characteristics Rev. 1.0 7 Si5323 80% CKIN, CKOUT 20% tF tR Figure 2. Rise/Fall Time Characteristics 8 Rev. 1.0 Si5323 1.1. Three-Level (3L) Input Pins (No External Resistors) Si5323 VDD 75 k Iimm 75 k External Driver Figure 3. Three-Level Input Pins 1.2. Three-Level Input Pins (Example with External Resistors) V DD V DD Si5323 18 k 75 k 18 k 75 k 3L input current External Driver One of eight resistors from a Panasonic EXB-D10C183J (or similar) resistor pack Figure 4. Three-Level Input Pins Table 3. Three-Level Input Pins1,2,3,4 Parameter Min Max Input Low Current –30 µA — Input Mid Current –11 µA –11 µA Input High Current — –30 µA Notes: 1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external driver using the external resistor values indicated in this example. In most designs, an external resistor voltage divider is recommended. 2. Resistor packs are only needed if the leakage current of the external driver exceeds the current specified in Table 2, Iimm. Any resistor pack may be used (e.g., Panasonic EXB-D10C183J). PCB layout is not critical. 3. If a pin is tied to ground or VDD, no resistors are needed. 4. If a pin is left open (no connect), no resistors are needed. Rev. 1.0 9 Si5323 Table 4. AC Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units .008 — 710 MHz 40 — 60 % 2 — — ns — — 3 pF — — 11 ns .008 — 710 MHz — — 212.5 MHz CMOS Output VDD = 1.71 Cload = 5 pF — — 8 ns CMOS Output VDD = 2.97 Cload = 5 pF — — 2 ns CKIN Input Pins Input Frequency Input Duty Cycle (Minimum Pulse Width) CKNF CKNDC Input Capacitance CKNCIN Input Rise/Fall Time CKNTRF Whichever is smaller (i.e., the 40%/60% limitation applies only to high clock frequencies) 20–80% See Figure 2 CKOUTn Output Pins Output Frequency (Output not configured for CMOS or disable) Maximum Output Frequency in CMOS Format CKOF CKOFMC Single-ended Output Rise/Fall (20–80%) CKOTRF Differential Output Rise/Fall Time CKOTRF 20 to 80 %, fOUT = 622.08 — 230 350 ps Output Duty Cycle Differential Uncertainty CKODC 100 Load Line to Line Measured at 50% Point (not for CMOS) — — ±40 ps tRSTMIN 1 — — µs CIN — — 3 pF — 25 — ns — 750 µs 10 — ms LVCMOS Input Pins Minimum Reset Pulse Width Input Capacitance LVCMOS Output Pins Rise/Fall Times tRF LOSTRIG LOSn Trigger Window Time to Clear LOL after LOS Cleared tCLRLOL 10 CLOAD = 20 pf See Figure 2 From last CKIN to LOS fin unchanged and XA/XB stable. LOS to LOL Rev. 1.0 — Si5323 Table 4. AC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Lock Time tLOCKHW Whenever RST, FRQTBL, RATE, BWSEL, or FRQSEL are changed, with valid CKIN to LOL; BW = 100 Hz — Output Clock Phase Change tP_STEP After clock switch f3 128 kHz — Typ Max Units 1.2 sec 200 — ps — 0.05 0.1 dB PLL Performance Closed Loop Jitter Peaking JPK Jitter Tolerance Spurious Noise Phase Change due to Temperature Variation JTOL BW determined by BWSEL[1:0] 5000/ BW — — ns pkpk SPSPUR Max spur @ n x f3 (n > 1, n x f3 < 100 MHz) — –93 –70 dBc tTEMP Max phase changes from – 40 to +85 ºC — 300 500 ps Table 5. Performance Specifications1, 2, 3, 4, 5 (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Unit Jitter Generation fIN = fOUT = 622.08 MHz, LVPECL Output Format BW = 120 Hz JGEN 50 kHz–80 MHz — 0.27 0.42 ps rms 12 kHz–20 MHz — 0.25 0.41 ps rms 800 Hz–80 MHz — 0.28 0.45 ps rms Phase Noise fIN = fOUT = 622.08 MHz LVPECL Output Format CKOPN 1 kHz offset — –106 –87 dBc/Hz 10 kHz offset — –121 –100 dBc/Hz 100 kHz offset — –122 –104 dBc/Hz 1 MHz offset — –132 –119 dBc/Hz Notes: 1. BWSEL [1:0] loop bandwidth settings provided in Table 11 on page 27. 2. 114.285 MHz 3rd OT crystal used as XA/XB input. 3. VDD = 2.5 V 4. TA = 85 °C 5. Test condition: fIN = 622.08 MHz, fOUT = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-80%), LVPECL clock output. Rev. 1.0 11 Si5323 Table 6. Thermal Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Unit Thermal Resistance Junction to Ambient JA Still Air — 32 — ºC/W Thermal Resistance Junction to Case JC Still Air — 14 — ºC/W Table 7. Absolute Maximum Ratings Parameter Symbol Value Unit DC Supply Voltage VDD –0.5 to 3.8 V LVCMOS Input Voltage VDIG –0.3 to (VDD + 0.3) V CKINn Voltage Level Limits CKNVIN 0 to VDD V XA/XB Voltage Level Limits XAVIN 0 to 1.2 V Operating Junction Temperature TJCT –55 to 150 C Storage Temperature Range TSTG –55 to 150 C 2 kV ESD MM Tolerance; All pins except CKIN+/CKIN– 150 V ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN– 750 V ESD MM Tolerance; CKIN+/CKIN– 100 V ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except CKIN+/CKIN– Latch-Up Tolerance JESD78 Compliant Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. 12 Rev. 1.0 Si5323 2. Typical Phase Noise Plots The following is the typical phase noise performance of the Si5323. The clock input source was a Rohde and Schwarz model SML03 RF Generator. The phase noise analyzer was an Agilent model E5052B. The Si5323 operates at 3.3 V with an ac coupled differential PECL output and an ac coupled differential sine wave input from the RF generator at 0 dBm. Note that, as with any PLL, the output jitter that is below the loop BW is caused by the jitter at the input clock. The loop BW was 120 Hz. 2.1. Example: SONET OC-192 Figure 5. Typical Phase Noise Plot Jitter Band Jitter, RMS SONET_OC48, 12 kHz to 20 MHz 250 fs SONET_OC192_A, 20 kHz to 80 MHz 274 fs SONET_OC192_B, 4 to 80 MHz 166 fs SONET_OC192_C, 50 kHz to 80 MHz 267 fs Brick Wall, 800 Hz to 80 MHz 274 fs Note: SONET jitter bands include the SONET skirts. The phase noise plot is brick wall integration. Rev. 1.0 13 Si5323 C4 1 µF System Power Supply C3 0.1 µF Ferrite Bead C2 0.1 µF VDD = 3.3 V CKIN1+ GND 130 VDD 130 C1 0.1 µF 0.1 µF CKOUT1+ + 100 CKIN1– 82 CKOUT1– 82 – 0.1 µF 0.1 µF Clock Outputs CKOUT2+ Input Clock Sources1 + 100 VDD = 3.3 V CKOUT2– 130 – 0.1 µF 130 CKIN2+ CKIN2– 82 82 Option 1: LOS1 CKIN_1 Loss of Signal LOS2 CKIN_2 Loss of Signal LOL XA PLL Loss of Lock Indicator 114.285 MHz Crystal XB Option 2: Si5323 0.1 µF Ext. Refclk+ XA 0.1 µF Ext. Refclk– XB VDD 15 k Crystal/Ref Clk Rate Manual/Automatic Clock Selection (L) 15 k VDD Bandwidth Select FRQTBL2 15 k VDD 15 k CKSEL3 15 k VDD 15 k Frequency Select AUTOSEL2 15 k 15 k RATE2 15 k VDD 15 k Input Clock Select Frequency Table Select VDD G N D FRQSEL[3:0]2 15 k BWSEL[1:0]2 GND 15 k Skew Increment INC Skew Decrement DEC VDD 15 k Signal Format Select VDD Clock Output 2 Disable/ 15 k Bypass Mode Control P A D4 SFOUT[1:0]2 15 k DBL2_BY2 15 k Reset RST Notes: 1. Assumes differential LVPECL termination (3.3 V) on clock inputs. 2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD). 3. Assumes manual input clock selection. 4. GND pad must be connected for normal operation. Figure 6. Si5323 Typical Application Circuit 14 Rev. 1.0 Si5323 3. Functional Description The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre Channel. The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz and generates two frequencymultiplied clock outputs ranging from 8 kHz to 1050 MHz. The two input clocks are at the same frequency and the two output clocks are at the same frequency. The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, and Fibre Channel rates. In addition to providing clock multiplication in SONET and datacom applications, the Si5323 supports SONET-to-datacom frequency translations. Silicon Laboratories offers a PCbased software utility, DSPLLsim, that can be used to look up valid Si5323 frequency translations. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation). The Si5323 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides anyfrequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5323 PLL loop bandwidth is selectable via the BWSEL[1:0] pins and supports a range from 60 Hz to 8.4 kHz. The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio. The Si5323 supports hitless switching between the two input clocks in compliance with GR-253-CORE and GR1244-CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (<200 ps typ). Manual and automatic revertive and non-revertive input clock switching options are available via the AUTOSEL input pin. The Si5323 monitors both input clocks for loss-of-signal and provides a LOS alarm when it detects missing pulses on either input clock. The device monitors the lock status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. electrical format of the clock outputs is programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, the second clock output can be powered down to minimize power consumption. The phase difference between the selected input clock and the output clocks is adjustable in 200 ps increments for system skew control. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8, 2.5, or 3.3 V supply. 3.1. External Reference An external, 38.88 MHz clock or a low-cost 114.285 MHz 3rd overtone crystal is used as part of a fixed-frequency oscillator within the DSPLL. This external reference is required for the device to perform jitter attenuation. Silicon Laboratories recommends using a high-quality crystal. Specific recommendations may be found in the Any-Frequency Precision Clock Family Reference Manual. An external clock from a high quality OCXO or TCXO can also be used as a reference for the device. In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference when the DSPLL is in digital hold will be tracked by the output of the device. Note that crystals can have temperature sensitivities. 3.2. Further Documentation Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5323. Additional design support is available from Silicon Laboratories through your distributor. Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing (click on Documentation). The Si5323 provides a digital hold capability that allows the device to continue generation of a stable output clock when the selected input reference is lost. During digital hold, the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding digital hold. The Si5323 has two differential clock outputs. The Rev. 1.0 15 Si5323 3.3. Frequency Plan Tables The Si5323 provides flexible frequency plans for SONET, Datacom, and interworking between the two (Table 8, Table 9, and Table 10 respectively). Both CKINn inputs must be the same Fin frequency and CKOUTn outputs as specified in the tables. The following notes apply to Tables 8, 9, and 10: 1. All multiplication ratios are exact, but the frequency values are rounded. 2. For loop bandwidth settings, BWSEL[1:0], f3 values, and frequency operating ranges, consult the DSPLLsim software configuration utility. Table 8. SONET Clock Multiplication Settings (FRQTBL=L) 16 Plan # FRQSEL [3:0] fIN (MHz) Mult Factor fOUT* (MHz) 0 LLLL 0.008 1 0.008 1 LLLM 2430 19.44 2 LLLH 4860 38.88 3 LLML 9720 77.76 4 LLMM 19440 155.52 5 LLMH 38880 311.04 6 LLHL 77760 622.08 7 LLHM 1 19.44 8 LLHH 2 38.88 9 LMLL 4 77.76 10 LMLM 8 155.52 11 LMLH 8 x (255/238) 166.63 12 LMML 8 x (255/237) 167.33 13 LMMM 8 x (255/236) 168.04 14 LMMH 16 311.04 15 LMHL 32 622.08 16 LMHM 32 x (255/238) 666.51 17 LMHH 32 x (255/237) 669.33 18 LHLL 32 x (255/236) 672.16 19 LHLM 48 933.12 20 LHLH 54 1049.76 19.44 Rev. 1.0 Si5323 Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued) Plan # FRQSEL [3:0] fIN (MHz) Mult Factor fOUT* (MHz) 21 LHML 38.88 1 38.88 22 LHMM 2 77.76 23 LHMH 4 155.52 24 LHHL 16 622.08 25 LHHM 16 x (255/238) 666.51 26 LHHH 16 x (255/237) 669.33 27 MLLL 16 x (255/236) 672.16 28 MLLM 1/4 19.44 29 MLLH 1/2 38.88 30 MLML 1 77.76 31 MLMM 2 155.52 32 MLMH 2 x (255/238) 166.63 33 MLHL 2 x (255/237) 167.33 34 MLHM 2 x (255/236) 168.04 35 MLHH 4 311.04 36 MMLL 8 622.08 37 MMLM 8 x (255/238) 666.51 38 MMLH 8 x (255/237) 669.33 39 MMML 8 x (255/236) 672.16 40 MMMM 1/8 19.44 41 MMMH 1/4 38.88 42 MMHL 1/2 77.76 43 MMHM 1 155.52 44 MMHH 255/238 166.63 45 MHLL 255/237 167.33 46 MHLM 255/236 168.04 47 MHLH 2 311.04 48 MHML 4 622.08 49 MHMM 4 x (255/238) 666.51 50 MHMH 4 x (255/237) 669.33 51 MHHL 4 x (255/236) 672.16 77.76 155.52 Rev. 1.0 17 Si5323 Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued) 18 Plan # FRQSEL [3:0] fIN (MHz) Mult Factor fOUT* (MHz) 52 MHHM 166.63 238/255 155.52 53 MMHM 1 166.63 54 MHHH 4 x (238/255) 622.08 55 MHML 4 666.51 56 HLLL 237/255 155.52 57 MMHM 1 167.33 58 HLLM 4 x (237/255) 622.08 59 MHML 4 669.33 60 HLLH 236/255 155.52 61 MMHM 1 168.04 62 HLML 4 x (236/255) 622.08 63 MHML 4 672.16 64 HLMM 1 311.04 65 HLMH 2 622.08 66 HLHL 2 x (255/238) 666.51 67 HLHM 2 x (255/237) 669.33 68 HLHH 2 x (255/236) 672.16 69 HMLL 1/32 19.44 70 HMLM 1/16 38.88 71 HMLH 1/8 77.76 72 HMML 1/4 155.52 73 HMMM 1/2 311.04 74 HMMH 1 622.08 75 HMHL 255/238 666.51 76 HMHM 255/237 669.33 77 HMHH 255/236 672.16 78 HHLL 1/4 x 238/255 155.52 79 HMML 1/4 166.63 80 HHLM 238/255 622.08 81 HMMH 1 666.51 167.33 168.04 311.04 622.08 666.51 Rev. 1.0 Si5323 Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued) Plan # FRQSEL [3:0] fIN (MHz) Mult Factor fOUT* (MHz) 82 HHLH 669.33 1/4 x 237/255 155.52 83 HMML 1/4 167.33 84 HHML 237/255 622.08 85 HMMH 1 669.33 86 HHMM 1/4 x 236/255 155.52 87 HMML 1/4 168.04 88 HHMH 236/255 622.08 89 HMMH 1 672.16 672.16 Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 0 LLLL 15.625 2 31.25 1 LLLM 4 62.5 2 LLLH 8 125 3 LLML 16 250 4 LLMM 17/4 106.25 5 LLMH 5 125 25 6 LLHL 25/4 x 66/64 161.13 7 LLHM 51/8 x 66/64 164.36 8 LLHH 25/4 x 66/64 x 255/238 172.64 9 LMLL 25/4 x 66/64 x 255/237 173.37 10 LMLM 51/8 x 66/64 x 255/238 176.1 11 LMLH 51/8 x 66/64 x 255/237 176.84 12 LMML 17/2 212.5 13 LMMM 17 425 14 LMMH 25 x 66/64 644.53 15 LMHL 51/2 x 66/64 657.42 16 LMHM 25 x 66/64 x 255/238 690.57 17 LMHH 25 x 66/64 x 255/237 693.48 18 LHLL 51/2 x 66/64 x 255/238 704.38 19 LHLM 51/2 x 66/64 x 255/237 707.35 20 LHLH 2 62.5 31.25 21 LHML 4 125 22 LHMM 8 250 Rev. 1.0 19 Si5323 Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued) 20 Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 23 LHMH 53.125 2 106.25 24 LHHL 4 212.5 25 LHHM 8 425 26 LHHH 3/2 x 66/64 164.36 27 MLLL 3/2 x 66/64 x 255/238 176.1 28 MLLM 3/2 x 66/64 x 255/237 176.84 29 MLLH 2 212.5 30 MLML 4 425 31 MLMM 6 x 66/64 657.42 32 MLMH 6 x 66/64 x 255/238 704.38 33 MLHL 6 x 66/64 x 255/237 707.35 34 MLHM 10/8 x 66/64 161.13 35 MLHH 10/8 x 66/64 x 255/238 172.64 36 MMLL 10/8 x 66/64 x 255/237 173.37 37 MMLM 5 x 66/64 644.53 38 MMLH 5 x 66/64 x 255/238 690.57 5 x 66/64 x 255/237 693.48 66/64 161.13 106.25 125 39 MMML 40 MMMM 41 MMMH 66/64 x 255/238 172.64 42 MMHL 66/64 x 255/237 173.37 43 MMHM 4 x 66/64 644.53 44 MMHH 4 x 66/64 x 255/238 690.57 45 MHLL 4 x 66/64 x 255/237 693.48 46 MMMM 66/64 164.36 47 MMMH 66/64 x 255/238 176.1 48 MMHL 66/64 x 255/237 176.84 49 MMHM 4 x 66/64 657.4 50 MMHH 4 x 66/64 x 255/238 704.38 51 MHLL 4 x 66/64 x 255/237 707.35 52 MHLM 4/5 x 64/66 125 53 MHLH 255/238 172.64 54 MHML 255/237 173.37 55 MHMM 4 644.53 56 MHMH 4 x 255/238 690.57 57 MHHL 4 x 255/237 693.48 156.25 159.375 161.13 Rev. 1.0 Si5323 Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued) Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 58 MHHM 164.36 2/3 x 64/66 106.25 59 MHLH 255/238 176.1 60 MHML 255/237 176.84 61 MHMM 4 657.42 62 MHMH 4 x 255/238 704.38 63 MHHL 4 x 255/237 707.35 64 MHHH 4/5 x 64/66 x 238/255 125 65 HLLL 64/66 x 238/255 156.25 66 HLLM 238/255 161.13 67 HLLH 4 x 238/255 644.53 68 MHMM 4 690.57 69 HLML 4/5 x 64/66 x 237/255 125 70 HLMM 64/66 x 237/255 156.25 71 HLMH 237/255 161.13 72 HLHL 4 x 237/255 644.53 73 MHMM 4 693.48 74 HLHM 2/3 x 64/66 x 238/255 106.25 75 HLLL 64/66 x 238/255 159.375 76 HLLM 238/255 164.36 77 HLLH 4 x 238/255 657.42 78 MHMM 4 704.38 79 HLHH 2/3 x 64/66 x 237/255 106.25 80 HLMM 64/66 x 237/255 159.375 81 HLMH 237/255 164.36 82 HLHL 4 x 237/255 657.42 83 MHMM 4 707.35 84 HMLL 212.5 2 425 85 HMLM 425 1 425 86 HMLH 644.53 1/5 x 64/66 125 87 HMML 1/4 161.13 88 HMMM 1 644.53 89 HMMH 255/238 690.57 90 HMHL 255/237 693.48 91 HMHM 1/6 x 64/66 106.25 92 HMML 1/4 164.36 93 HMMM 1 657.42 94 HMMH 255/238 704.38 95 HMHL 255/237 707.35 172.64 173.37 176.1 176.84 657.42 Rev. 1.0 21 Si5323 Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued) 22 Plan # FRQSEL[3:0] fIN (MHz) Mult Factor 96 HMHH 690.57 1/5 x 64/66 x 238/255 125 97 HHLL 1/4 x 64/66 x 238/255 156.25 98 HHLM 1/4 x 238/255 161.13 99 HMML 1/4 172.64 100 HHLH 238/255 644.53 101 HMMM 1 690.57 102 HHML 1/5 x 64/66 x 237/255 125 103 HHMM 1/4 x 64/66 x 237/255 156.25 104 HHMH 1/4 x 237/255 161.13 105 HMML 1/4 173.37 106 HHHL 237/255 644.53 107 HMMM 1 693.48 108 HHHM 1/6 x 64/66 x 238/255 106.25 109 HHLL 1/4 x 64/66 x 238/255 159.375 110 HHLM 1/4 x (238/255) 164.36 111 HMML 1/4 176.1 112 HHLH 238/255 657.42 113 HMMM 1 704.38 114 HHHH 1/6 x 64/66 x 237/255 106.25 115 HHMM 1/4 x 64/66 x 237/255 159.375 116 HHMH 1/4 x (237/255) 164.36 117 HMML 1/4 176.84 118 HHHL 237/255 657.42 119 HMMM 1 707.35 693.48 704.38 707.35 Rev. 1.0 fOUT* (MHz) Si5323 Table 10. SONET to Datacom Clock Multiplication Settings Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 0 LLLL 0.008 3125 25 1 LLLM 6480 51.84 2 LLLH 53125/8 53.125 3 LLML 15625/2 62.5 4 LLMM 53125/4 106.25 5 LLMH 15625 125 6 LLHL 78125/4 156.25 7 LLHM 159375/8 159.375 8 LLHH 53125/2 212.5 9 LMLL 53125 425 Rev. 1.0 23 Si5323 Table 10. SONET to Datacom Clock Multiplication Settings (Continued) 24 Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 10 LMLM 19.440 625/486 25 11 LMLH 10625/3888 53.125 12 LMML 3125/972 62.5 13 LMMM 10625/1944 106.25 14 LMMH 3125/486 125 15 LMHL 15625/1944 156.25 16 LMHM 31875/3888 159.375 17 LMHH 15625/1944 x 66/64 161.13 18 LHLL 31875/3888 x 66/64 164.36 19 LHLM 15625/1944 x 66/64 x 255/23 8 172.64 20 LHLH 31875/3888 x 66/64 x 255/23 8 176.1 21 LHML 10625/972 212.5 22 LHMM 10625/486 425 23 LHMH 15625/486 x 6 6/64 644.53 24 LHHL 31875/972 x 6 6/64 657.42 25 LHHM 15625/486 x 6 6/64 x 255/238 690.57 26 LHHH 31875/972 x 6 6/64 x 255/238 704.38 27 MLLL 1 27 28 MLLM 250/91 74.17582 29 MLLH 11/4 74.25 30 MLML 2 125 31 MLMM 4 250 32 MLMH 91/250 27 33 MLHL 1 74.17582 34 MLHM 91 x 11/250 x 4 74.25 27.000 62.500 74.176 Rev. 1.0 Si5323 Table 10. SONET to Datacom Clock Multiplication Settings (Continued) Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 35 MLHH 74.250 4/11 27 36 MMLL 4 x 250/11 x 9 1 74.17582 37 MMLM 1 74.25 38 MMLH 10625/7776 106.25 39 MMML 3125/1944 125 40 MMMM 15625/7776 156.25 41 MMMH 31875/15552 159.375 42 MMHL 15625/7776 x 66/64 161.13 43 MMHM 31875/15552 x 66/64 164.36 44 MMHH 15625/7776 x 66/64 x 255/23 8 172.64 45 MHLL 31875/15552 x 66/64 x 255/2 38 176.1 46 MHLM 10625/3888 212.5 47 MHLH 10625/1944 425 48 MHML 15625/1944 x 66/64 644.53 49 MHMM 31875/3888 x 66/64 657.42 50 MHMH 15625/1944 x 66/64 x 255/23 8 690.57 51 MHHL 31875/3888 x 66/64 x 255/23 8 704.38 77.760 Rev. 1.0 25 Si5323 Table 10. SONET to Datacom Clock Multiplication Settings (Continued) 26 Plan # FRQSEL[3:0] fIN (MHz) Mult Factor fOUT* (MHz) 52 MHHM 155.520 15625/15552 156.25 53 MHHH 31875/31104 159.375 54 HLLL 15625/15552 x 66/64 161.13 55 HLLM 31875/31104 x 66/64 164.36 56 HLLH 15625/15552 x 66/64 x 255/2 38 172.64 57 HLML 31875/31104 x 66/64 x 255/2 38 176.1 58 HLMM 10625/7776 212.5 59 HLMH 10625/3888 425 60 HLHL 15625/3888 x 66/64 644.53 61 HLHM 31875/7776 x 66/64 657.42 62 HLHH 15625/3888 x 66/64 x 255/23 8 690.57 63 HMLL 31875/7776 x 66/64 x 255/23 8 704.38 64 HMLM 15625/15552 x 66/64 644.53 65 HMLH 31875/31104 x 66/64 657.42 66 HMML 15625/15552 x 66/64 x 255/2 38 690.57 67 HMMM 31875/31104 x 66/64 x 255/2 38 704.38 622.080 Rev. 1.0 Si5323 3.3.1. Recommended Reset Guidelines Follow the recommended RESET guidelines in Table 11 when reset should be applied to the device. Table 11. Si5323 Pins and Reset Pin # Si5323 Pin Name Must Reset after Changing 2 FRQTBL Yes 11 RATE0 Yes 14 DBL2_BY No 15 RATE1 Yes 19 DEC No 20 INC No 22 BWSEL0 Yes 23 BWSEL1 Yes 24 FRQSEL0 Yes 25 FRQSEL1 Yes 26 FRQSEL2 Yes 27 FRQSEL3 Yes 30 SFOUT1 No, but skew not guaranteed without Reset 33 SFOUT0 No, but skew not guaranteed without Reset Rev. 1.0 27 Si5323 CKOUT1– CKOUT1+ SFOUT1 GND SFOUT0 VDD CKOUT2– CKOUT2+ NC 4. Pin Descriptions: Si5323 36 35 34 33 32 31 30 29 28 RST 1 27 FRQSEL3 FRQTBL 2 26 FRQSEL2 C1B 3 25 FRQSEL1 C2B 4 XA 6 XB 24 FRQSEL0 GND Pad VDD 5 23 BWSEL1 22 BWSEL0 7 21 CS_CA GND 8 20 INC 19 DEC AUTOSEL 9 LOL CKIN1– RATE1 CKIN1+ DBL2_BY CKIN2– CKIN2+ RATE0 VDD 10 11 12 13 14 15 16 17 18 Pin assignments are preliminary and subject to change. Table 12. Si5323 Pin Descriptions Pin # 1 Pin Name RST I/O I Signal Level LVCMOS 2 FRQTBL I 3-Level 3 C1B O LVCMOS 28 Description External Reset. Active low input that performs external hardware reset of device. Resets all internal logic to a known state. Clock outputs are tristated during reset. After rising edge of RST signal, the Si5323 will perform an internal self-calibration when a valid input signal is present. This pin has a weak pull-up. Frequency Table Select. Selects SONET/SDH, datacom, or SONET/SDH to datacom frequency table. L = SONET/SDH M = Datacom H = SONET/SDH to Datacom This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tristate. CKIN1 Loss of Signal. Active high loss-of-signal indicator for CKIN1. Once triggered, the alarm will remain active until CKIN1 is validated. 0 = CKIN1 present 1 = LOS on CKIN1 Rev. 1.0 Si5323 Table 12. Si5323 Pin Descriptions (Continued) Pin # 4 Pin Name C2B I/O O Signal Level LVCMOS 5, 10, 32 VDD VDD Supply 7 6 XB XA I Analog 8, 31 GND GND Supply 9 AUTOSEL I 3-Level 11 15 RATE0 RATE1 I 3-Level 12 13 CKIN2+ CKIN2– I Description CKIN2 Loss of Signal. Active high loss-of-signal indicator for CKIN2. Once triggered, the alarm will remain active until CKIN2 is validated. 0 = CKIN2 present 1 = LOS on CKIN2 Supply. The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins: 5 0.1 µF 10 0.1 µF 32 0.1 µF A 1.0 µF should also be placed as close to device as is practical. External Crystal or Reference Clock. External crystal should be connected to these pins to use internal oscillator based reference. Refer to Family Reference Manual for interfacing to an external reference. External reference must be from a high-quality clock source (TCXO, OCXO). Frequency of crystal or external clock is set by the RATE pins. Ground. Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device. Manual/Automatic Clock Selection. Three level input that selects the method of input clock selection to be used. L = Manual M = Automatic non-revertive H = Automatic revertive This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. External Crystal or Reference Clock Rate. Three level inputs that select the type and rate of external crystal or reference clock to be applied to the XA/XB port. Refer to the Family Reference Manual for settings. These pins have both a weak pull-up and a weak pull-down and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Clock Input 2. Differential input clock. This input can also be driven with a single-ended signal. Input frequency selected from a table of values. The same frequency must be applied to CKIN1 and CKIN2. Rev. 1.0 29 Si5323 Table 12. Si5323 Pin Descriptions (Continued) Pin # 14 Pin Name DBL2_BY I/O I Signal Level 3-Level 16 17 CKIN1+ CKIN1– I Multi 18 LOL O LVCMOS 19 DEC I LVCMOS 20 INC I LVCMOS Description Output 2 Disable/Bypass Mode Control. Controls enable of CKOUT2 divider/output buffer path and PLL bypass mode. L = CKOUT2 enabled M = CKOUT2 disabled H = Bypass mode with CKOUT2 enabled This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Clock Input 1. Differential input clock. This input can also be driven with a single-ended signal. Input frequency selected from a table of values. The same frequency must be applied to CKIN1 and CKIN2. PLL Loss of Lock Indicator. This pin functions as the active high PLL loss of lock indicator. 0 = PLL locked 1 = PLL unlocked Skew Decrement. A pulse on this pin decreases the input to output device skew by 1/fOSC (approximately 200 ps). There is no limit on the range of skew adjustment by this method. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock transition. Detailed operations and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. This pin has a weak pull-down. Skew Increment. A pulse on this pin increases the input to output device skew by 1/fOSC (approximately 200 ps). There is no limit on the range of skew adjustment by this method. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock transition. Detailed operations and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. Note: If NI_HS = 4, increment is not available. This pin has a weak pull-down. 30 Rev. 1.0 Si5323 Table 12. Si5323 Pin Descriptions (Continued) Pin # 21 Pin Name CS_CA I/O I/O Signal Level LVCMOS 23 22 BWSEL1 BWSEL0 I 3-Level 27 26 25 24 FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0 I 3-Level 29 28 CKOUT1– CKOUT1+ O Multi Description Input Clock Select/Active Clock Indicator. Input: If manual clock selection mode is chosen (AUTOSEL = L), this pin functions as the manual input clock selector. This input is internally deglitched to prevent inadvertent clock switching during changes in the CS input state. 0 = Select CKIN1 1 = Select CKIN2 If configured as an input, this pin must be set high or low. Output: If automatic clock selection mode is chosen (AUTOSEL = M or H), this pin indicates which of the two input clocks is currently the active clock. If alarms exist on both CKIN1 and CKIN2, indicating that the digital hold state has been entered, CA will indicate the last active clock that was used before entering the hold state. 0 = CKIN1 active input clock 1 = CKIN2 active input clock Bandwidth Select. Three level inputs that select the DSPLL closed loop bandwidth. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual. These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Multiplier Select. Three level inputs that select the input clock and clock multiplication ratio, depending on the FRQTBL setting. Consult the Any-Frequency Precision Clock Family Reference Manual or DSPLLsim configuration software for settings, both available for download at www.silabs.com/timing (click on Documentation). These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Clock Output 1. Differential output clock with a frequency selected from a table of values. Output signal format is selected by SFOUT pins. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. Rev. 1.0 31 Si5323 Table 12. Si5323 Pin Descriptions (Continued) Pin # 33 30 Pin Name SFOUT0 SFOUT1 I/O I Signal Level 3-Level Description Signal Format Select. Three level inputs that select the output signal format (common mode voltage and differential swing) for both CKOUT1 and CKOUT2. SFOUT[1:0] 34 35 CKOUT2– CKOUT2+ O Multi 36 NC — — GND PAD GND GND Supply 32 Signal Format HH Reserved HM LVDS HL CML MH LVPECL MM Reserved ML LVDS—Low Swing LH CMOS LM Disable LL Reserved These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. CMOS outputs do not support bypass mode. LVPECL outputs are not available when VDD = 1.8 V. Clock Output 2. Differential output clock with a frequency selected from a table of values. Output signal format is selected by SFOUT pins. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. No Connect. These pins must be left unconnected for normal operation. Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane. Rev. 1.0 Si5323 5. Ordering Guide Ordering Part Number Package ROHS6, Pb-Free Temperature Range Si5323-C-GM 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5322/23-EVB Evaluation Board Note: Add an “R” at the end of the device to denote tape and reel option (i.e., Si5323-C-GMR). Package Outline: 36-Pin QFN Rev. 1.0 33 Si5323 6. Package Outline: 36-Pin QFN Figure 7 illustrates the package details for the Si5323. Table 13 lists the values for the dimensions shown in the illustration. Figure 7. 36-Pin Quad Flat No-Lead (QFN) Table 13. Package Dimensions Symbol Millimeters Symbol Millimeters Min Nom Max Min Nom Max A 0.80 0.85 0.90 L 0.50 0.60 0.70 A1 0.00 0.02 0.05 — — 12º b 0.18 0.25 0.30 aaa — — 0.10 bbb — — 0.10 ccc — — 0.08 D D2 6.00 BSC 3.95 4.10 4.25 e 0.50 BSC ddd — — 0.10 E 6.00 BSC eee — — 0.05 E2 3.95 4.10 4.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC outline MO-220, variation VJJD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 34 Rev. 1.0 Si5323 7. Recommended PCB Layout Figure 8. PCB Land Pattern Diagram Figure 9. Ground Pad Recommended Layout Rev. 1.0 35 Si5323 Table 14. PCB Land Pattern Dimensions Dimension MIN MAX e 0.50 BSC. E 5.42 REF. D 5.42 REF. E2 4.00 4.20 D2 4.00 4.20 GE 4.53 — GD 4.53 — X — 0.28 Y 0.89 REF. ZE — 6.31 ZD — 6.31 Notes (General): 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-SM-782 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Notes (Solder Mask Design): 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Notes (Stencil Design): 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad. Notes (Card Assembly): 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 36 Rev. 1.0 Si5323 8. Si5323 Device Top Mark Mark Method: Laser Font Size: 0.80 mm Right-Justified Line 1 Marking: Si5323 Customer Part Number See Ordering Guide for options Line 2 Marking: C-GM C = Product Revision G = Temperature Range –40 to 85 °C (RoHS6) M = QFN Package Line 3 Marking: YYWWRF YY = Year WW = Work Week R = Die Revision F = Internal code Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Line 4 Marking: Pin 1 Identifier Circle = 0.75 mm Diameter Lower-Left Justified XXXX Internal Code Rev. 1.0 37 Si5323 NOTES: 38 Rev. 1.0 Si5323 DOCUMENT CHANGE LIST Revision 0.1 to Revision 0.2 Changed LVTTL to LVCMOS in Table 7, “Absolute Maximum Ratings,” on page 12. Added Figure 5, “Typical Phase Noise Plot,” on page 13. Updated Figure 6, “Si5323 Typical Application Circuit,” on page 14 to show external reference interface. Added RATE0 and expanded the RATE[1:0] description in 4. "Pin Descriptions: Si5323”. Updated 5. "Ordering Guide" on page 33. Added 7. "Recommended PCB Layout”. Revision 0.2 to Revision 0.3 Changed 1.8 V operating range to ±5%. Updated Table 1 on page 4. Updated Table 7 on page 12. Added table under Figure 5 on page 13. Updated 3. "Functional Description" on page 15. Clarified 4. "Pin Descriptions: Si5323" on page 28 including pull-up/pull-down. Updated SFOUT values. Revision 0.3 to Rev 1.0 Updated feature list on page 1. Updated all Electrical Specification tables. Updated Typical phase noise performance plot and table values. Added Section 3.3. "Frequency Plan Tables" on page 16. Updated package outline drawing. Added ground pad layout drawing. Added Top Device Mark section. Updated Section 5. "Ordering Guide” table Added product selection guide Rev. 1.0 39 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com