Si5317 Data Sheet

Si5317
P I N - C ONTR OLLED 1 – 7 11 M H Z J I T T E R C LEANING C L O C K
Features
Ordering Information:
Applications
See page 40.

Data converter clocking
 Wireless infrastructure
 Networking, SONET/SDH
Switches and routers
 Medical instrumentation
 Test and measurement
Pin Assignments
The Si5317 is a flexible 1:1 jitter cleaning clock for high-performance applications
that require jitter attenuation without clock multiplication. The Si5317 accepts a
single clock input ranging from 1 to 711 MHz and generates two low jitter clock
outputs at the same frequency. The clock frequency range and loop bandwidth are
selectable from a simple look-up table. The Si5317 is based on Silicon
Laboratories' 3rd-generation DSPLL® technology, which provides jitter attenuation
on any frequency in a highly integrated PLL solution that eliminates the need for
external VCXO and loop filter components. The DSPLL loop bandwidth is user
selectable, providing jitter performance optimization at the application level.
NC
Description
CKOUT1–

CKOUT1+

SFOUT1

VDD

GND

CKOUT2-

Selectable output clock signal
format: LVPECL, LVDS, CML or
CMOS
Single supply: 1.8, 2.5, or 3.3 V
Loss of lock and loss of signal
alarms
VCO freeze during LOS/LOL
On-chip voltage regulator with high
PSRR
Small size: 6 x 6 mm, 36-QFN
Wide temperature range: –40 to
+85 ºC
SFOUT0

Provides jitter attenuation for any clock 
frequency
One clock input / two clock outputs

Input/output frequency range:
1–711 MHz

Ultra low jitter: 300 fs
(12 kHz–20 MHz) typical

Simple pin control interface

Selectable loop bandwidth for jitter

attenuation: 60 Hz–8.4 kHz
Meets OC-192 GR-253-CORE jitter

specifications
CKOUT2+

36 35 34 33 32 31 30 29 28
RST 1
27 FRQSEL3
FRQTBL 2
26 FRQSEL2
LOS 3
25 FRQSEL1
NC 4
XA 6
XB
24 FRQSEL0
GND
Pad
VDD 5
23 BWSEL1
22 BWSEL0
7
21 NC
GND 8
20 INC
19 DEC
NC 9
Functional Block Diagram
LOL
CKIN–
CKIN+
RATE1
DBL2_BY
NC
NC
VDD
XTAL/Clock
RATE0
10 11 12 13 14 15 16 17 18
Clock Out1
Clock In
DSPLL ®
Signal Format [1:0]
Clock Out2
Status/Control
Frequency Table
Frequency Select [3:0]
Bandwidth Select [1:0]
Phase Skew INC/DEC
Rev. 1.1 4/11
High
PSRR
Regulator
VDD (1.8, 2.5, 3.3 V)
GND
Loss of Lock
Loss of Signal
XTAL/Clock Rate [1:0]
Copyright © 2011 by Silicon Laboratories
Si5317
Si5317
2
Rev. 1.1
Si5317
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . .9
1.2. Three-Level Input Pins (Example with External Resistors) . . . . . . . . . . . . . . . . . . . . .9
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.1. Frequency Range Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Output Skew Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5. VCO Freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6. PLL Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4. High-Speed I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1. Input Clock Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Output Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5. Crystal/Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
5.1. Crystal/Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
6. Power Supply Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
7.1. Example: SONET OC-192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
9. Pin Descriptions: Si5317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
12. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13. Si5317 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Rev. 1.1
3
Si5317
1. Electrical Specifications
Table 1. Recommended Operating Conditions
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Temperature Range
Supply Voltage
Symbol
Test Condition
Min
Typ
Max
Unit
–40
25
85
ºC
3.3 V nominal
2.97
3.3
3.63
V
2.5 V nominal
2.25
2.5
2.75
V
1.8 V nominal
1.71
1.8
1.89
V
TA
VDD
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.
Table 2. DC Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Supply Current (Supply
current is independent of
VDD)
Symbol
Test Condition
Min
Typ
Max
Units
IDD
LVPECL Format
622.08 MHz Out
All CKOUTs Enabled1
LVPECL Format
622.08 MHz Out
Only 1 CKOUT Enabled1
CMOS Format
19.44 MHz Out
All CKOUTs Enabled2
CMOS Format
19.44 MHz Out
Only CKOUT1 Enabled2
—
251
279
mA
—
217
243
mA
—
204
234
mA
—
194
220
mA
1.8 V ± 5%
0.9
—
1.4
V
2.5 V ± 10%
1.0
—
1.7
V
3.3 V ± 10%
1.1
—
1.95
V
Single-ended
20
40
60
k
0
—
VDD
V
fCKIN < 212.5 MHz
See Figure 2.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 2.
0.25
—
—
VPP
CKIN Input Pin
Input Common Mode
Voltage
(Input Threshold Voltage)
Input Resistance
Input Voltage Level Limits
Single-ended Input Voltage
Swing
VICM
CKNRIN
CKNVIN
VISE
See note
3
Notes:
1. LVPECL outputs require VDD > 2.25 V.
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most
designs, an external resistor voltage divider is recommended.
3. No overshoot or undershoot.
4
Rev. 1.1
Si5317
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
VID
fCKIN < 212.5 MHz
See Figure 2.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 2.
0.25
—
—
VPP
VOCM
LVPECL 100  load
line-to-line
VDD –
1.42
—
VDD –
1.25
V
Differential Output Swing
VOD
LVPECL 100  load
line-to-line
1.1
—
1.9
VPP
Single-ended Output Swing
VSE
LVPECL 100  load
line-to-line
0.5
—
0.93
VPP
Differential Output Voltage
CKOVD
CML 100  load
line-to-line
350
425
500
mVPP
Common Mode
Output Voltage
CKOVCM
CML 100  load
line-to-line
—
VDD –
0.36
—
V
Differential
Output Voltage
CKOVD
LVDS 100  load
line-to-line
500
700
900
mVPP
Low swing LVDS 100  load
line-to-line
350
425
500
mVPP
CKOVCM
LVDS 100  load
line-to-line
1.125
1.2
1.275
V
Output Voltage Low
CKOVOLLH
CMOS
—
—
0.4
V
Output Voltage High
CKOVOHLH
VDD = 1.71 V
CMOS
0.8 x VDD
—
—
V
Output Drive Current
CKOIO
CMOS
Driving into CKOVOL for output low or CKOVOH for output
high. CKOUT+ and CKOUT–
shorted externally.
VDD = 1.8 V
—
7.5
—
mA
VDD = 3.3 V
—
32
—
mA
VDD = 1.71 V
—
—
0.5
V
VDD = 2.25 V
—
—
0.7
V
VDD = 2.97 V
—
—
0.8
V
Differential Input
Voltage Swing
CKOUT Output Clock1
Common Mode
Common Mode
Output Voltage
2-Level LVCMOS Input Pins
Input Voltage Low
VIL
Notes:
1. LVPECL outputs require VDD > 2.25 V.
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most
designs, an external resistor voltage divider is recommended.
3. No overshoot or undershoot.
Rev. 1.1
5
Si5317
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Input Voltage High
Symbol
Test Condition
Min
Typ
Max
Units
VIH
VDD = 1.89 V
1.4
—
—
V
VDD = 2.25 V
1.8
—
—
V
VDD = 3.63 V
2.5
—
—
V
Input Low Current
IIL
—
—
50
µA
Input High Current
IIH
—
—
50
µA
Weak Internal Input Pull-up
Resistor
RPUP
—
75
—
k
Weak Internal Input
Pull-down Resistor
RPDN
—
75
—
k
Input Voltage Low
VILL
—
—
0.15 x VDD
V
Input Voltage Mid
VIMM
0.45 x VDD
—
0.55 x VDD
V
Input Voltage High
VIHH
0.85 x VDD
—
—
V
Input Low Current
IILL
2
–20
—
—
µA
Input Mid Current
IIMM2
–2
—
2
µA
2
—
—
20
µA
3-Level Input Pins
Input High Current
IIHH
Notes:
1. LVPECL outputs require VDD > 2.25 V.
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most
designs, an external resistor voltage divider is recommended.
3. No overshoot or undershoot.
6
Rev. 1.1
Si5317
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
VOL
IO = 2 mA
VDD = 1.62 V
—
—
0.4
V
IO = 2 mA
VDD = 2.97 V
—
—
0.4
V
IO = –2 mA
VDD = 1.62 V
VDD – 0.4
—
—
V
IO = –2 mA
VDD = 2.97 V
VDD – 0.4
—
—
V
—
12
—
k
0
—
1.2
V
0.5
—
1.2
VPP
—
12
—
k
0
—
1.2
V
0.5
—
2.4
VPP
LVCMOS Output Pins
Output Voltage Low
Output Voltage High
VOH
Single-Ended Reference Clock Input Pin XA (XB with cap to gnd)
Input Resistance
XARIN
Input Voltage Level Limits
XAVIN
Input Voltage Swing
XAVPP
XTAL/RefCLK
RATE[1:0] = LM, ML, MH, or
HM
Differential Reference Clock Input Pins (XA/XB)
Input Resistance
XA/XBRIN
Differential Input Voltage
Level Limits
XA/XBVIN
Input Voltage Swing
XTAL/RefCLK
RATE[1:0] = LM, ML, MH, or
HM
XAVPP/XBVPP
Notes:
1. LVPECL outputs require VDD > 2.25 V.
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most
designs, an external resistor voltage divider is recommended.
3. No overshoot or undershoot.
Rev. 1.1
7
Si5317
V
SIGNAL +
Differential I/Os VICM , VOCM
SIGNAL –
VISE , VOSE
Single-Ended
Peak-to-Peak Voltage
(SIGNAL +) – (SIGNAL –)
Differential Peak-to-Peak Voltage
VID,VOD
VICM, VOCM
t
SIGNAL +
VID = (SIGNAL+) – (SIGNAL–)
SIGNAL –
Figure 1. Voltage Characteristics
80%
DOUT, CLOUT
20%
tF
tR
Figure 2. Rise/Fall Time Characteristics
8
Rev. 1.1
Si5317
1.1. Three-Level (3L) Input Pins (No External Resistors)
Si5317
VDD
75 k
Iimm
75 k
External Driver
Figure 3. Three-Level Input Pins
1.2. Three-Level Input Pins (Example with External Resistors)
V DD
V DD
Si5317
18 k
75 k
18 k
75 k
3L input current
External Driver
One of eight resistors from a Panasonic EXB -D10C183J
(or similar) resistor pack
Figure 4. Three-Level Input Pins
Rev. 1.1
9
Si5317
Table 3. Three-Level Input Pins1,2,3,4
Parameter
Min
Max
Input Low Current
–30 µA
—
Input Mid Current
–11 µA
–11 µA
Input High Current
—
–30 µA
Notes:
1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external
driver using the external resistor values indicated in this example. In most designs, an external
resistor voltage divider is recommended.
2. Resistor packs are only needed if the leakage current of the external driver exceeds the
current specified in Table 2, Iimm. Any resistor pack may be used (e.g. Panasonic EXBD10C183J). PCB layout is not critical.
3. If a pin is tied to ground or VDD, no resistors are needed.
4. If a pin is left open (no connect), no resistors are needed.
10
Rev. 1.1
Si5317
Table 4. AC Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Input Frequency
Symbol
Test Condition
CKNF
Min
Typ
Max
Units
1
—
711
MHz
40
—
60
%
2
—
—
ns
CKIN Input Pins
Input Duty Cycle (Minimum Pulse
Width)
CKNDC
Input Capacitance
CKNCIN
Input Rise/Fall Time
CKNTRF
Whichever is smaller
—
—
3
pF
—
—
11
ns
1
—
711
MHz
1
—
212.5
MHz
CMOS Output
VDD = 1.62
Cload = 5 pF
—
—
8
ns
CMOS Output
VDD = 2.97
Cload = 5 pF
—
—
2
ns
20–80%
See Figure 2
CKOUT Output Pins
Output Frequency (Output not
configured for CMOS or disable)
Maximum Output Frequency in
CMOS Format
CKOF
CKOFMC
Single-ended Output Rise/Fall
(20–80%)
CKOTRF
Differential Output Rise/Fall Time
CKOTRF
20 to 80 %, fOUT = 622.08
—
230
350
ps
Output Duty Cycle Differential
Uncertainty
CKODC
100  Load
Line to Line
Measured at 50% Point
(not for CMOS)
—
—
±40
ps
—
—
3
pF
LVCMOS Pins
Input Capacitance
CIN
Rev. 1.1
11
Si5317
Table 4. AC Characteristics (Continued)
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
tRF
CLOAD = 20 pf
See Figure 2
—
25
—
ns
—
750
µs
10
—
ms
1.2
sec
LVCMOS Output Pins
Rise/Fall Times
LOSTRIG
LOSn Trigger Window
Time to Clear LOL after LOS Cleared tCLRLOL
From last CKIN to LOS
fin unchanged and XA/XB
stable.
LOS to  LOL
—
Whenever RST, FRQTBL,
RATE, BWSEL, or FRQSEL
are changed, with valid CKIN
to LOL; BW = 100 Hz
—
PLL Performance
Lock Time
tLOCKHW
Closed Loop Jitter Peaking
—
0.05
0.1
dB
BW determined by
BWSEL[1:0]
5000/
BW
—
—
ns pkpk
1
—
—
µs
SPSPUR
Max spur @ n x f3
(n > 1, n x f3 < 100 MHz)
—
–93
–70
dBc
tTEMP
Max phase changes from
–40 to +85 ºC
—
300
500
ps
JPK
Jitter Tolerance
JTOL
Minimum Reset Pulse Width
Spurious Noise
Phase Change due to Temperature
Variation
tRSTMIN
Table 5. Performance Specifications1, 2, 3, 4, 5
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Jitter Generation
fIN = fOUT = 622.08 MHz,
LVPECL output format
BW = 120 Hz
JGEN
Phase Noise
fIN = fOUT = 622.08 MHz
LVPECL output format
CKOPN
Test Condition
Min
Typ
Max
Unit
—
0.32
0.42
ps rms
12 kHz–20 MHz
—
0.31
0.41
ps rms
800 Hz–80 MHz
—
0.4
0.45
ps rms
1 kHz offset
—
–106
–87
dBc/Hz
10 kHz offset
—
–121
–100
dBc/Hz
100 kHz offset
—
–132
–104
dBc/Hz
1 MHz offset
—
–132
–119
dBc/Hz
50 kHz–80 MHz
Notes:
1. BWSEL [1:0] loop bandwidth settings provided in Table 9 on page 22.
2. 114.285 MHz 3rd OT crystal used as XA/XB input.
3. VDD = 2.5 V
4. TA = 85 °C
5. Test condition: fIN = 622.08 MHz, fOUT = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time
(20-80%), LVPECL clock output.
12
Rev. 1.1
Si5317
Table 6. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Thermal Resistance
Junction to Ambient
JA
Still Air
—
32
—
ºC/W
Thermal Resistance
Junction to Case
JC
—
14
—
ºC/W
Table 7. Absolute Maximum Limits
Parameter
Symbol
Value
Unit
DC Supply Voltage
VDD
–0.5 to 3.8
V
LVCMOS Input Voltage
VDIG
–0.3 to (VDD + 0.3)
V
CKINn Voltage Level Limits
CKNVIN
0 to VDD
V
XA/XB Voltage Level Limits
XAVIN
0 to 1.2
V
Operating Junction Temperature
TJCT
–55 to 150
C
Storage Temperature Range
TSTG
–55 to 150
C
2
kV
ESD MM Tolerance; All pins except CKIN+/CKIN–
150
V
ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN–
750
V
ESD MM Tolerance; CKIN+/CKIN–
100
V
ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except
CKIN+/CKIN–
Latch-Up Tolerance
JESD78 Compliant
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods of time may affect device reliability.
Rev. 1.1
13
Si5317
2. Functional Description
External Crystal or
Reference Clock
RATE[1:0]
XA
XB
2
CKIN+
CKIN–
2
f3
DSPLL®
fOSC
SFOUT[1:0]
2
LOS
LOL
RST
BWSEL[1:0]
FRQSEL[3:0]
FRQTBL
INC
DEC
CKOUT+
CKOUT–
CKOUT+
CKOUT–
Alarms
DBL2_BY
Control
Bandwidth
Control
Frequency
Control
Voltage
Regulator with
High PSRR
Skew Control
VDD (1.8, 2.5, or 3.3 V)
GND
Figure 5. Detailed Block Diagram
2.1. Overview
The Si5317 is a 1:1 jitter-attenuating precision clock for applications requiring sub 1 ps jitter performance. The
Si5317 accepts one clock input ranging from 1 to 711 MHz and generates two clock outputs at the same frequency
ranging from 1 to 711 MHz. The Si5317 is based on Silicon Laboratories' 3rd-generation DSPLL® technology,
which provides jitter attenuation on any frequency in a highly integrated PLL solution that eliminates the need for
external VCXO and loop filter components. The nominal operating frequency is selectable from a look-up table.
The Si5317 PLL loop bandwidth (BW) is selectable via the BWSEL[1:0] pins and supports a range from 60 Hz to
8.4 kHz.
The Si5317 monitors the input clock for loss-of-signal (LOS) and provides a LOS alarm when it detects missing
pulses on the input clock. The device monitors the lock status of the DSPLL. The lock detect algorithm works by
continuously monitoring the phase of the input clock in relation to the phase of the feedback clock.
The Si5317 provides a VCO freeze capability that allows the device to continue generation of a stable output clock
when the selected input clock is lost. During VCO freeze, the DSPLL latches its VCO settings and uses its XA/XB
clock as its frequency reference.
The Si5317 has two output clock drivers and can be configured as four single-ended or two differential outputs.
The signal format of the clock output is selectable to support LVPECL, LVDS, CML, or CMOS loads. The device
operates from a single 1.8, 2.5, or 3.3 V supply. The use of LVPECL requires a VDD > 2.25 V.
14
Rev. 1.1
Si5317
3. Frequency Plan Tables
For ease of use, the Si5317 is pin-controlled to enable simple device configuration of the frequency range plan and
PLL loop bandwidth via a predefined look-up table. The DSPLL has been optimized for jitter performance and
tunability for each frequency range and PLL loop bandwidth provided in Table 9 on page 22.
Many of the control inputs are three levels: High, Low, and Medium. High and Low are standard voltage levels
determined by the supply pins: VDD and Ground. If the input pin is left floating, it is driven to nominally half of VDD.
Effectively, this creates three logic levels for these controls. See section 6. "Power Supply Filtering" on page 33 and
section 1.2. "Three-Level Input Pins (Example with External Resistors)" on page 9 for additional information.
3.1. Frequency Range Plan
The input to output clock frequency range is set by the 3-level FRQSEL[3:0] and FRQTBL pins. The CKIN and
CKOUT is the same frequency range as specified in Table 8. Due to the wide tunability of the Si5317, each
frequency plan provides overlap between adjacent settings. To select a frequency plan, the desired frequency
should be selected as close to the defined center frequency. In certain cases where the desired frequency is
exactly between two overlapping plans, either FRQTBL and FRQSEL setting can be used.
3.1.1. PLL Loop Bandwidth Plan
The Si5317's loop bandwidth ranges from 60 Hz to 8.4 kHz. For each frequency range, the corresponding loop
bandwidth is provided in a simple look-up table (see Table 9 on page 22). The loop bandwidth is digitally
programmable using the three-level BWSEL [1:0] input pins.
3.2. Output Skew Adjustment
The overall device skew (CKIN to CKOUTn phase delay) is adjustable via the INC and DEC input pins. A positive
edge triggered pulse applied to the INC pin increases the device skew defined by Table 8, INC/DEC step size, for
each given frequency plan. The identical operation on the DEC pin decreases the skew by the same amount.
Using the INC and DEC pins, there is no limit to the range of skew adjustment that can be made. Following a
powerup or reset, the overall device skew will revert to the reset value, although the input-to-output skew is
effectively random. The rate of change for each INC/DEC operation is defined by the selected loop bandwidth,
BWSEL[1:0].
Rev. 1.1
15
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
BWSEL [1:0] (BW in Hz)
Min
Center
Max
LH
ML
MM
MH
HL
0
L
LLLL
.95
1.00
1.05
—
3814
927
230
114
57
0.21
1
L
LLLM
1.00
1.05
1.10
—
3814
927
230
114
57
0.21
2
L
LLLH
1.05
1.10
1.15
—
3834
931
231
115
57
0.21
3
L
LLML
1.10
1.15
1.20
—
4052
983
244
121
60
0.21
4
L
LLMM
1.15
1.20
1.25
—
4251
1030
255
127
63
0.21
5
L
LLMH
1.20
1.25
1.30
—
4451
1078
267
133
66
0.21
6
L
LLHL
1.25
1.30
1.35
—
4652
1125
279
139
69
0.21
7
L
LLHM
1.30
1.35
1.40
—
4852
1172
290
145
72
0.21
8
L
LLHH
1.35
1.40
1.45
—
5054
1219
302
150
75
0.21
9
L
LMLL
1.40
1.45
1.50
—
5256
1267
314
156
78
0.21
10
L
LMLM
1.45
1.50
1.55
—
5256
1267
314
156
78
0.21
11
L
LMLH
1.50
1.55
1.60
—
5459
1314
325
162
81
0.21
12
L
LMML
1.55
1.60
1.65
—
5866
1409
349
174
87
0.21
13
L
LMMM
1.60
1.65
1.70
—
5866
1409
349
174
87
0.21
14
L
LMMH
1.65
1.70
1.75
—
6071
1457
360
180
89
0.21
15
L
LMHL
1.70
1.75
1.80
—
6276
1504
372
185
92
0.21
16
L
LMHM
1.75
1.80
1.85
—
6483
1552
384
191
95
0.21
17
L
LMHH
1.80
1.85
1.90
—
6688
1599
395
197
98
0.21
18
L
LHLL
1.85
1.90
1.95
—
6895
1647
407
203 101
0.21
19
L
LHLM
1.90
1.95
2.00
4696 2285
560
139
69
—
0.21
20
L
LHLH
1.95
2.00
2.10
4832 2350
575
143
71
—
0.21
21
L
LHML
2.00
2.10
2.20
4967 2415
591
147
73
—
0.21
22
L
LHMM
2.10
2.20
2.30
5239 2544
622
154
77
—
0.21
23
L
LHMH
2.20
2.30
2.40
—
4052
983
244
121
60
0.21
24
L
LHHL
2.30
2.40
2.50
—
4251
1030
255
127
63
0.21
25
L
LHHM
2.40
2.50
2.60
—
4451
1078
267
133
66
0.21
26
L
LHHH
2.50
2.60
2.70
—
4651
1125
279
139
69
0.21
27
L
MLLL
2.60
2.70
2.80
—
4852
1172
290
145
72
0.20
28
L
MLLM
2.70
2.80
2.90
—
5054
1219
302
150
75
0.21
29
L
MLLH
2.80
2.90
3.00
—
5255
1267
314
156
78
0.20
30
L
MLML
2.90
3.00
3.10
—
5458
1314
325
162
81
0.20
31
L
MLMM
3.00
3.10
3.20
—
5859
1409
349
174
87
0.20
32
L
MLMH
3.10
3.20
3.30
—
5859
1409
349
174
87
0.20
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
16
INC/DEC
Phase
Change
HM
(ns)
Rev. 1.1
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings (Continued)
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
BWSEL [1:0] (BW in Hz)
Min
Center
Max
LH
ML
MM
MH
HL
INC/DEC
Phase
Change
HM
(ns)
33
L
MLHL
3.20
3.30
3.40
—
6071
1457
360
180
89
0.21
34
L
MLHM
3.30
3.40
3.50
—
6071
1457
360
180
89
0.21
35
L
MLHH
3.40
3.50
3.60
—
6276
1504
372
185
92
0.21
36
L
MMLL
3.50
3.60
3.70
—
6483
1552
384
191
95
0.21
37
L
MMLM
3.60
3.70
3.80
—
6895
1647
407
203 101
0.21
38
L
MMLH
3.70
3.80
3.90
—
6895
1647
407
203 101
0.21
39
L
MMML
3.80
3.90
4.00
—
4650
1125
279
139
69
0.20
40
L
MMMM
3.90
4.00
4.20
—
4786
1156
286
143
71
0.21
41
L
MMMH
4.00
4.20
4.40
—
4919
1188
294
147
73
0.21
42
L
MMHL
4.20
4.40
4.60
—
5457
1314
325
162
81
0.20
43
L
MMHM
4.40
4.60
4.80
—
5457
1314
325
162
81
0.20
44
L
MMHH
4.60
4.80
5.00
—
5730
1378
341
170
85
0.21
45
L
MHLL
4.80
5.00
5.20
—
6268
1504
372
185
92
0.20
46
L
MHLM
5.00
5.20
5.40
—
6273
1504
372
185
92
0.20
47
L
MHLH
5.20
5.40
5.60
—
6550
1568
387
193
96
0.20
48
L
MHML
5.40
5.60
5.80
—
6823
1631
403
201 100
0.20
49
L
MHMM
5.60
5.80
6.00
—
6823
1631
403
201 100
0.20
50
L
MHMH
5.80
6.00
6.20
—
6333
3064
748
185
92
0.20
51
L
MHHL
6.00
6.20
6.40
—
6571
3176
774
192
96
0.20
52
L
MHHM
6.20
6.40
6.60
—
6811
3289
801
199
99
0.20
53
L
MHHH
6.40
6.60
6.80
—
6071
1457
360
180
89
0.21
54
L
HLLL
6.60
6.80
7.00
—
6534
1567
387
193
96
0.20
55
L
HLLM
6.80
7.00
7.20
—
6534
1567
387
193
96
0.20
56
L
HLLH
7.00
7.20
7.40
—
6483
1552
384
191
95
0.21
57
L
HLML
7.20
7.40
7.60
—
6686
1599
395
197
98
0.20
58
L
HLMM
7.40
7.60
7.80
—
6891
1647
407
203 101
0.20
59
L
HLMH
7.60
7.80
8.00
—
4648
1125
279
139
69
0.20
60
L
HLHL
7.80
8.00
8.40
—
4786
1156
286
143
71
0.21
61
L
HLHM
8.00
8.40
8.80
—
4919
1188
294
147
73
0.21
62
L
HLHH
8.40
8.80
9.00
—
6599
1580
391
195
97
0.20
63
L
HMLL
8.80
9.00
9.20
—
7080
1693
418
209 104
0.19
64
L
HMLM
9.00
9.20
9.60
—
7080
1693
418
209 104
0.19
65
L
HMLH
9.20
9.60
10.00
—
5727
1377
341
170
85
0.20
66
L
HMML
9.60
10.00
10.50
—
6003
1441
356
178
88
0.21
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
Rev. 1.1
17
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings (Continued)
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
BWSEL [1:0] (BW in Hz)
Min
Center
Max
LH
ML
MM
MH
HL
67
L
HMMM
10.00
10.50
11.00
—
6273
1504
372
185
92
0.20
68
L
HMMH
10.50
11.00
11.50
—
6992
1672
413
206 103
0.20
69
L
HMHL
11.00
11.50
12.00
—
5866
1409
349
174
87
0.21
70
L
HMHM
11.50
12.00
12.50
—
6155
1477
365
182
91
0.20
71
L
HMHH
12.00
12.50
13.00
—
6446
1545
382
190
95
0.20
72
L
HHLL
12.50
13.00
13.50
—
7034
1680
415
207 103
0.20
73
L
HHLM
13.00
13.50
14.00
—
5408
1303
323
161
80
0.20
74
L
HHLH
13.50
14.00
14.50
—
5633
1356
336
167
83
0.20
75
L
HHML
14.00
14.50
15.00
—
5861
1409
349
174
87
0.20
76
L
HHMM
14.50
15.00
15.50
—
7383
1764
436
217 108
0.19
77
L
HHMH
15.00
15.50
16.00
—
6321
1515
374
187
93
0.21
78
L
HHHL
15.50
16.00
16.50
—
6321
1515
374
187
93
0.21
79
L
HHHM
16.00
16.50
17.00
—
6774
1620
400
200
99
0.20
80
L
HHHH
16.50
17.00
17.50
—
7230
1726
426
213 106
0.20
81
M
LLLL
17.00
17.50
18.00
—
4422
1071
265
132
66
0.21
82
M
LLLM
17.50
18.00
18.50
—
7342
1756
434
216 108
0.19
83
M
LLLH
18.00
18.50
19.00
—
7342
1756
434
216 108
0.19
84
M
LLML
18.50
19.00
19.50
—
7298
1742
430
214 107
0.20
85
M
LLMM
19.00
19.50
20.00
—
4995
1206
299
149
74
0.20
86
M
LLMH
19.50
20.00
21.00
—
7518
1796
444
221
110
0.19
87
M
LLHL
20.00
21.00
22.00
—
6208
1488
368
183
91
0.21
88
M
LLHM
21.00
22.00
23.00
—
7429
1777
439
219 109
0.18
89
M
LLHH
22.00
23.00
24.00
—
6155
1477
365
182
91
0.20
90
M
LMLL
23.00
24.00
25.00
—
6155
1477
365
182
91
0.20
91
M
LMLM
24.00
25.00
26.00
—
6739
1612
399
199
99
0.20
92
M
LMLH
25.26
26.00
27.00
—
7613
1816
449
224
111
0.19
93
M
LMML
26.00
27.00
28.00
—
6817
1631
403
201 100
0.20
94
M
LMMM
27.00
28.00
29.00
—
6817
1631
403
201 100
0.20
95
M
LMMH
28.00
29.00
30.00
—
7640
1821
450
224
112
0.20
96
M
LMHL
29.00
30.00
31.00
—
4941
1194
296
147
73
0.20
97
M
LMHM
30.31
31.00
32.00
—
7658
1827
451
225
112
0.19
98
M
LMHH
31.00
32.00
33.00
—
7658
1827
451
225
112
0.19
99
M
LHLL
32.00
33.00
34.00
—
6774
1620
400
200
99
0.20
100
M
LHLM
33.00
34.00
35.00
—
6774
1620
400
200
99
0.20
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
18
INC/DEC
Phase
Change
HM
(ns)
Rev. 1.1
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings (Continued)
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
BWSEL [1:0] (BW in Hz)
Min
Center
Max
LH
ML
MM
MH
HL
INC/DEC
Phase
Change
HM
(ns)
101
M
LHLH
34.00
35.00
36.00
—
7692
1832
452
225
112
0.20
102
M
LHML
35.00
36.00
37.00
—
7680
1833
453
226
113
0.19
103
M
LHMM
36.00
37.00
38.00
—
7539
1803
446
222
111
0.18
104
M
LHMH
37.00
38.00
39.00
—
7658
1827
451
225
112
0.19
105
M
LHHL
38.00
39.00
40.00
—
7607
1818
449
224
112
0.18
106
M
LHHM
39.00
40.00
42.00
—
7607
1818
449
224
112
0.18
107
M
LHHH
40.00
42.00
44.00
—
5709
1373
340
169
84
0.21
108
M
MLLL
43.30
44.00
46.00
—
7653
1828
452
225
112
0.18
109
M
MLLM
44.00
46.00
48.00
—
7653
1828
452
225
112
0.18
110
M
MLLH
46.00
48.00
50.00
—
6155
1477
365
182
91
0.20
111
M
MLML
48.00
50.00
52.00
—
7630
1823
450
225
112
0.18
112
M
MLMM
50.52
52.00
54.00
—
7692
1832
452
225
112
0.20
113
M
MLMH
52.00
54.00
56.00
—
7880
1882
465
232
116
0.18
114
M
MLHL
54.00
56.00
58.00
—
6169
1481
366
183
91
0.20
115
M
MLHM
56.00
58.00
60.00
—
7664
1826
451
225
112
0.20
116
M
MLHH
58.00
60.00
60.00
—
7664
1826
451
225
112
0.20
117
M
MMLL
60.00
62.00
64.00
—
7882
1882
465
232
116
0.18
118
M
MMLM
62.00
64.00
66.00
—
7890
1883
465
232
116
0.18
119
M
MMLH
64.00
66.00
68.00
—
7878
1882
465
232
116
0.18
120
M
MMML
66.00
68.00
70.00
—
7878
1882
465
232
116
0.18
121
M
MMMM
68.00
70.00
70.88
—
6228
1494
369
184
92
0.20
122
M
MMMH
70.00
72.00
74.00
—
7888
1883
465
232
116
0.18
123
M
MMHL
72.00
74.00
76.00
—
7889
1883
465
232
116
0.18
124
M
MMHM
75.78
76.00
78.00
—
7917
1884
465
232
116
0.20
125
M
MMHH
76.00
78.00
80.00
—
7895
1883
465
232
116
0.19
126
M
MHLL
78.00
80.00
84.00
—
7895
1883
465
232
116
0.19
127
M
MHLM
80.00
84.00
88.00
—
6010
1445
357
178
89
0.20
128
M
MHLH
84.00
88.00
88.59
—
6010
1445
357
178
89
0.20
129
M
MHML
88.00
90.00
92.00
—
6329
1518
375
187
93
0.20
130
M
MHMM
90.00
92.00
96.00
—
7878
1882
465
232
116
0.18
131
M
MHMH
92.00
96.00 100.00
—
7795
1864
461
230
114
0.18
132
M
MHHL
96.00 100.00 105.00
—
7795
1864
461
230
114
0.18
133
M
MHHM 101.04 105.00 110.00
—
7903
1884
465
232
116
0.19
134
M
MHHH
—
7812
1866
461
230
115
0.18
105.00 110.00 115.00
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
Rev. 1.1
19
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings (Continued)
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
Min
Center
Max
BWSEL [1:0] (BW in Hz)
LH
ML
MM
MH
HL
135
M
HLLL
110.00 115.00 118.13
—
6329
1518
375
187
93
0.20
136
M
HLLM
115.00 120.00 125.00
—
7820
1867
461
230
115
0.18
137
M
HLLH
120.00 125.00 130.00
—
7812
1868
462
230
115
0.18
138
M
HLML
125.00 130.00 135.00
—
7878
1882
465
232
116
0.18
139
M
HLMM
130.00 135.00 140.00
—
6873
1648
408
203 101
0.19
140
M
HLMH
135.00 140.00 145.00
—
7851
1871
462
230
115
0.19
141
M
HLHL
140.00 145.00 150.00
—
7826
1870
462
230
115
0.18
142
M
HLHM
145.00 150.00 155.00
—
7240
1735
429
214 107
0.18
143
M
HLHH
151.56 155.00 160.00
—
7853
1872
462
230
115
0.19
144
M
HMLL
155.00 160.00 165.00
—
7890
1883
465
232
116
0.18
145
M
HMLM
160.00 165.00 170.00
—
7831
1871
462
231
115
0.18
146
M
HMLH
165.00 170.00 175.00
—
7831
1871
462
231
115
0.18
147
M
HMML
170.00 175.00 177.19
—
6912
1654
409
204 102
0.20
148
M
HMMM 175.00 180.00 185.00
—
7140
1710
423
211
105
0.19
149
M
HMMH 180.00 185.00 190.00
—
7846
1873
463
231
115
0.18
150
M
HMHL
185.00 190.00 195.00
—
7878
1882
465
232
116
0.18
151
M
HMHM 190.00 195.00 200.00
—
7878
1882
465
232
116
0.18
152
M
HMHH
195.00 200.00 202.50
—
6993
1673
414
206 103
0.19
153
M
HHLL
202.08 210.00 220.00
—
7903
1884
465
232
116
0.19
154
M
HHLM
210.00 220.00 230.00
—
7069
1689
417
208 104
0.20
155
M
HHLH
220.45 230.00 240.00
—
7903
1884
465
232
116
0.19
156
M
HHML
230.00 240.00 250.00
—
7507
1793
443
221
110
0.19
157
M
HHMM 242.50 250.00 260.00
—
7910
1884
465
232
116
0.19
158
M
HHMH
250.00 260.00 270.00
—
7878
1882
465
232
116
0.18
159
M
HHHL
260.00 270.00 280.00
—
7429
1776
439
219 109
0.19
160
M
HHHM
270.00 280.00 290.00
—
7908
1884
465
232
116
0.19
161
M
HHHH
280.00 290.00 300.00
—
7879
1882
465
232
116
0.18
162
H
LLLL
290.00 300.00 310.00
—
7571
1811
448
223
111
0.18
163
H
LLLM
303.13 310.00 320.00
—
7903
1884
465
232
116
0.19
164
H
LLLH
310.00 320.00 330.00
—
7890
1883
465
232
116
0.18
165
H
LLML
320.00 330.00 340.00
—
7878
1882
465
232
116
0.18
166
H
LLMM
330.00 340.00 350.00
—
7878
1882
465
232
116
0.18
167
H
LLMH
340.00 350.00 354.38
—
7344
1757
434
217 108
0.18
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
20
INC/DEC
Phase
Change
HM
(ns)
Rev. 1.1
Si5317
Table 8. Look-up Tables for Fin = Fout Frequency Range and
Loop Bandwidth Settings (Continued)
Frequency Range
(MHz)
Plan FRQTBL FRQSEL
No
[3:0]
Min
Center
Max
BWSEL [1:0] (BW in Hz)
LH
ML
MM
MH
HL
INC/DEC
Phase
Change
HM
(ns)
168
H
LLHL
350.00 360.00 370.00
—
7900
1883
465
232
116
0.19
169
H
LLHM
360.00 370.00 380.00
—
7889
1883
465
232
116
0.18
170
H
LLHH
370.00 380.00 390.00
—
7878
1882
465
232
116
0.18
171
H
LMLL
380.00 390.00 400.00
—
7878
1882
465
232
116
0.18
172
H
LMLM
390.00 400.00 405.00
—
7755
1854
458
228
114
0.18
173
H
LMLH
404.17 420.00 440.00
—
7903
1884
465
232
116
0.19
174
H
LMML
420.00 440.00 460.00
—
7848
1874
463
231
115
0.18
175
H
LMMM
440.91 460.00 480.00
—
7903
1884
465
232
116
0.19
176
H
LMMH
460.00 480.00 500.00
—
7507
1793
443
221
110
0.19
177
H
LMHL
485.00 500.00 520.00
—
7910
1884
465
232
116
0.19
178
H
LMHM
500.00 520.00 540.00
—
7878
1882
465
232
116
0.18
179
H
LMHH
520.00 540.00 560.00
—
7704
1842
455
227
113
0.18
180
H
LHLL
540.00 560.00 580.00
—
7908
1884
465
232
116
0.19
181
H
LHLM
560.00 580.00 600.00
—
7879
1882
465
232
116
0.18
182
H
LHLH
580.00 600.00 620.00
—
7571
1811
448
223
111
0.18
183
H
LHML
606.25 620.00 640.00
—
7903
1884
465
232
116
0.19
184
H
LHMM
620.00 640.00 660.00
—
7890
1883
465
232
116
0.18
185
H
LHMH
640.00 660.00 680.00
—
7878
1882
465
232
116
0.18
186
H
LHHL
660.00 680.00 700.00
—
7878
1882
465
232
116
0.18
187
H
LHHM
680.00 700.00 704.00
—
7831
1871
462
231
115
0.18
188
H
LHHH
700.00
—
7908
1880
464
231
115
0.20
7.05
711.00
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.
Rev. 1.1
21
Si5317
3.3. PLL Self-Calibration
An internal self-calibration (ICAL) is performed before operation to optimize loop parameters and jitter
performance. While the self-calibration is being performed, the DSPLL is being internally controlled by the selfcalibration state machine. The LOL alarm will be active during ICAL. The self-calibration time tLOCKHW is given in
Table 4, “AC Characteristics”.
Any of the following events will trigger a self-calibration:

Power-on-reset (POR)
 Release of the external reset pin RST (transition of RST from 0 to 1)
 Change in FRQSEL, FRQTBL, BWSEL, or RATE[1:0] pins
 Internal DSPLL registers out-of-range, indicating the need to relock the DSPLL
In any of the above cases, an ICAL will be initiated if a valid input clock exists with no input alarm. The external
crystal or reference clock must also be present for the self-calibration to begin. If no valid input clock is present, the
self-calibration state machine will wait until it appears, at which time the calibration will start.
After a successful ICAL has been performed with a valid input clock, no subsequent self-calibrations are performed
unless one of the above conditions are met. If the input clock is lost following self-calibration, the device enters
VCO freeze mode. When the input clock returns, the device relocks to the input clock without performing a selfcalibration.
3.3.1. Input Clock Stability during Internal Self-Calibration
An exit from reset must occur when the selected CKIN clock is stable in frequency with a frequency value that is
within the device operating range.
3.3.2. Self-Calibration caused by Changes in Input Frequency
If the selected CKIN frequency varies by 500 ppm or more within the frequency range defined by FRQSEL and
FRQTBL since the last calibration, the device may initiate a self-calibration.
3.3.3. Device Reset
Upon powerup, the device internally executes a power-on-reset (POR) which resets the internal device logic. The
pin RST can also be used to initiate a reset. The device stays in this state until a valid CKINn is present, when it
then performs a PLL self-calibration (refer to section 3.3. "PLL Self-Calibration”).
3.3.4. Recommended Reset Guidelines
Follow the recommended RESET guidelines in Table 9 that describe when reset should be applied to a device.
Table 9. Si5317 Pins and Reset
22
Pin #
Si5317 Pin Name
Must Reset after Changing
2
FRQTBL
Yes
11
RATE0
Yes
15
RATE1
Yes
22
BWSEL0
Yes
23
BWSEL1
Yes
24
FRQSEL0
Yes
25
FRQSEL1
Yes
26
FRQSEL2
Yes
27
FRQSEL3
Yes
Rev. 1.1
Si5317
3.4. Alarms
Summary alarms are available to indicate the overall status of the input signals. Alarm outputs stay high until all
the alarm conditions for that alarm output are cleared.
3.4.1. Loss-of-Signal
The device has loss-of-signal circuitry that continuously monitors CKIN for missing pulses.
An LOS condition on CKIN causes the LOS alarm to become active. Once a LOS alarm is asserted, it remains
asserted until the input clock is validated over a designated time period. The time to clear LOS after a valid input
clock appears is listed in Table 4, “AC Characteristics”. If another error condition on the same input clock is
detected during the validation time, then the alarm remains asserted and the validation time starts over.
3.4.1.1. LOS Algorithm
The LOS circuitry divides down each input clock to produce an 8 kHz to 2 MHz signal. The LOS circuitry
oversamples this divided down input clock using a 40 MHz clock to search for extended periods of time without
input clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, a
LOS alarm is declared. Table 4, “AC Characteristics” gives the minimum and maximum amount of time for the
LOS monitor to trigger.
3.4.1.2. Lock Detect
The PLL lock detection algorithm indicates the lock status on the LOL output pin. The algorithm works by
continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. If the time
between two consecutive phase cycle slips is greater than the retrigger time, the PLL is in lock. The LOL output
has a guaranteed minimum pulse width as shown in Table 4, “AC Characteristics”. The LOL pin is also held in the
active state during an internal PLL calibration. The retrigger time is automatically set based on the PLL closed loop
bandwidth (see Table 10).
Table 10. Lock Detect Retrigger Time
PLL Bandwidth Setting (BW)
Retrigger Time (ms)
60–120 Hz
53
120–240 Hz
26.5
240–480 Hz
13.3
480–960 Hz
6.6
960–1920 Hz
3.3
1920–3840 Hz
1.66
3840–7680 Hz
0.833
3.5. VCO Freeze
The Si5317 device features a VCO freeze mode whereby the DSPLL is locked to a frequency value.
If an LOS condition exists on the selected input clock, the device freezes the VCO. In this mode, the device
provides a stable output frequency until the input clock returns and is validated. When the device enters VCO
freeze, the internal oscillator is initially held to its last frequency value.
3.5.1. Recovery from VCO Freeze
When the input clock signal returns, the device transitions from VCO freeze to the selected input clock.
Rev. 1.1
23
Si5317
3.6. PLL Bypass Mode
The Si5317 supports a PLL bypass mode in which the selected input clock is fed directly to both enabled output
buffers, bypassing the DSPLL. Internally, the bypass path is implemented with high-speed signaling; however, this
path is not a low jitter path and will result in significantly higher jitter on CKOUT. In PLL bypass mode, the input and
output clocks will be at the same frequency. PLL bypass mode is useful as a debug tool. The DSBL2_BY pin is
used to select the PLL Bypass Mode according to Table 11. Bypass mode is not supported for CMOS clock
outputs.
Table 11. DSBL2/BYPASS Pin Settings
DSBL2/BYPASS
Function
L
CKOUT2 Enabled
M
CKOUT2 Disabled
H
PLL Bypass Mode w/ CKOUT2 Enabled
External Crystal or
Reference Clock
RATE[1:0]
XA
XB
PLL Bypass
0
2
CKIN+
CKIN–
2
f3
DSPLL®
fOSC
CKOUT+
CKOUT–
1
SFOUT[1:0]
0
2
LOS
LOL
RST
BWSEL[1:0]
FRQSEL[3:0]
FRQTBL
INC
DEC
Alarms
1
Control
Bandwidth
Control
DBL2_BY
Frequency
Control
Voltage
Regulator with
High PSRR
Skew Control
Figure 6. Bypass Signal
24
CKOUT+
CKOUT–
Rev. 1.1
VDD (1.8, 2.5, or 3.3 V)
GND
Si5317
4. High-Speed I/O
4.1. Input Clock Buffer
The Si5317 provides differential inputs for the CKIN clock input. This input is internally biased to a common mode
voltage (see Table 2, “DC Characteristics”) and can be driven by either a single-ended or differential source. No
additional external bias is required. Figure 7 through Figure 10 show typical interface circuits for LVPECL, CML,
LVDS, or CMOS input clocks. Note that the jitter generation improves for higher levels on CKINn within the limits in
Table 4, “AC Characteristics”.
AC coupling the input clocks is recommended because it removes any issue with common mode input voltages.
DC coupling is acceptable if the device driving the Si5317 meets all of the input clock requirements, including the
input common mode range and the peak-to-peak swing specifications. Figure 7 and Figure 8 shows various
examples of different input termination arrangements. Unused inputs can be left unconnected.
3.3 V
Si5317
130 
130 
C
CKIN +
40 k 
LVPECL
Driver
300 
40 k
±
CKIN
82 
82 
VICM
_
C
Figure 7. Differential LVPECL Termination
3.3 V
Si5317
130 
C
CKIN +
Driver
40 k 
300 
±
40 k
VICM
CKIN _
82 
C
Figure 8. Single-ended LVPECL Termination
Rev. 1.1
25
Si5317
Si5317
C
CKIN +
CML/
LVDS
Driver
40 k
300 
100 
±
40 k
VICM
CKIN _
C
Figure 9. CML/LVDS Termination (1.8, 2.5, 3.3 V)
CMOS Driver
VDD
VDD
V DD
Si5317
R3
R1
VICM
150 ohms
50
R2
C1
CKIN+
See Table
33 ohms
R4
150 ohms
VDD
R2
Notes
3.3 V
2.5 V
1.8 V
100 ohm
49.9 ohm
14.7 ohm
Locate R1 near CMOS driver
Locate other components near Si5317
Recalculate resistor values for other drive strengths
R5 40 kohm
100 nF
CKIN–
C2
100 nF
R6 40 kohm
Additional Notes:
1. Attenuation circuit limits overshoot and undershoot.
2. Not to be used with non-square wave input clocks.
Figure 10. CMOS Termination with Attenuation and AC-Coupling (1.8, 2.5, 3.3 V)
26
Rev. 1.1
Si5317
4.2. Output Clock Driver
The Si5317 has a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML,
and CMOS formats. The signal format is selected for CKOUT output using the SFOUT [1:0] pins. This modifies the
output common mode and differential signal swing. See Table 2, “DC Characteristics” for output driver
specifications. The SFOUT [1:0] pins are three-level input pins with the states designated as L (ground), M (VDD/2),
and H (VDD). Table 12 shows the signal formats based on the supply voltage and the type of load being driven.
When SFOUT = LH for CMOS, bypass mode is not supported.
Table 12. Output Signal Format Selection (SFOUT)
Si5317
SFOUT[1:0]
Signal Format
HL
CML
HM
LVDS
LH
CMOS
LM
Disabled
MH
LVPECL
ML
Low-swing LVDS
All Others
Reserved
Z0 = 50 
100 
CKOUTn
Z0 = 50 
Rcvr
Figure 11. Typical Differential Output Circuit
Si5317
CMOS
Logic
CKOUTn
Optionally Tie CKOUTn
Outputs Together for Greater Strength
Figure 12. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn– Together)
For the CMOS setting (SFOUT = LH), both output pins drive single-ended in-phase signals and should be
externally shorted together to obtain the drive strength specified in Table 2, “DC Characteristics”.
Rev. 1.1
27
Si5317
+
SFOUT[1:0] = ML (Output disable)
100 
100 
CKOUT
Output from
DSPLL
Figure 13. Disable CKOUT Structure
The SFOUT [1:0] pins can also be used to disable both outputs. Disabling the output puts the CKOUT+ and
CKOUT– pins in a high-impedance state relative to VDD (common mode tri-state) while the two outputs remain
connected to each other through a 200  on-chip resistance (differential impedance of 200 ). The maximum
amount of internal circuitry is powered down, minimizing power consumption and noise generation (see Figure 13).
Recovery from the disable mode requires additional time as specified in Table 4, “AC Characteristics”.
28
Rev. 1.1
Si5317
5. Crystal/Reference Clock Input
The device can use an external crystal or external clock as a reference. If an external clock is used, it must be ac
coupled. With appropriate buffers, the same external reference clock can be applied to CKIN. Although the
reference clock input can be driven single ended (See Figure 14), the best performance is with a crystal or
differential clock source.
3.3 V
150 
3.3 V
130 
Si5317
0.1 F
10 k
XA
CMOS buffer,
8 mA output current
150 
0.6 V
XB
0.1 F
For 2.5 V operation, change 130  to 82 .
Figure 14. CMOS External Reference Circuit
0 dBm into 50 
0.01 F
0.01 F
External Clock Source
50 
1.2 V
Si5317
XA
10 pF
10 k
XB
0.6 V
0.1 µF
Figure 15. Sinewave External Reference Clock Input Example
0.01 F
Si5317
1.2 V
XA
100 
LVPECL, CML, etc.
0.01 F
XB
10 k
10 k
0.6 V
Figure 16. Differential External Reference Clock Input Example
Rev. 1.1
29
Si5317
5.1. Crystal/Reference Clock Selection
An external low-jitter clock or a low-cost crystal is used as part of a fixed-frequency oscillator within the DSPLL.
This external clock is required for the device to perform jitter attenuation. Silicon Laboratories recommends using a
high-quality crystal.
In VCO freeze, the DSPLL remains locked to this external clock. Any changes in the frequency of this clock when
the DSPLL is in VCO freeze will be tracked by the output of the device. Note that crystals can have temperature
sensitivities. See “AN591: Crystal Selection for the Si5315 and Si5317“ for a list of approved crystals for the Si5317
and guidance in their selection. AN591 can be downloaded from the Silicon Labs web site: www.silabs.com.
Table 13. XA/XB Reference Sources and Frequencies
RATE[1:0]
Type
Recommended
Lower limit
Upper limit
HH
Reserved
—
—
—
HM
Reserved
—
—
—
HL
Reserved
—
—
—
MH
External clock
114.285 MHz
109 MHz
125.5 MHz
MM
3rd overtone crystal*
114.285 MHz
—
—
ML
Reserved
—
—
—
LH
Reserved
—
—
—
LM
External clock
38.88 MHz
37 MHz
41 MHz
LL
Fundamental mode crystal*
—
—
—
*Note: See “AN591: Crystal Selection for the Si5315 and Si5317.”
Because the crystal is used as a jitter reference, rapid changes of the crystal temperature can temporarily disturb
the output phase and frequency. For example, it is recommended that the crystal not be placed close to a fan that
is being turned off and on. If a situation such as this is unavoidable, the crystal should be thermally isolated with an
insulating cover.
5.1.1. XA/XB Clock Drift
During VCO freeze, long-term and temperature-related drift of the XA/XB clock input results in a one-to-one drift of
the output frequency. The stability of the any frequency output is identical to the drift of the XA/XB frequency. This
means that for the most demanding applications where the drift of a crystal is not acceptable, an external
temperature-compensated or ovenized oscillator will be required. Drift is not an issue unless the part is in VCO
freeze. Also, the initial accuracy of the XA/XB oscillator (or crystal) is not relevant.
5.1.2. XA/XB Jitter
Jitter on the XA/XB input has a roughly one-to-one transfer function to the output jitter over the bandwidth ranging
from 100 Hz up to 30 kHz. If a crystal is used on the XA/XB pins, this will have low jitter if a suitable crystal is in
use. If the XA/XB pins are connected to an external oscillator, the jitter of the external oscillator may contribute
significantly to the output jitter.
30
Rev. 1.1
Si5317
5.1.3. Jitter Attenuation Performance
The internal VCO uses the XA/XB clock on the XA/XB pins as its reference for jitter attenuation. The XA/XB pins
support either a crystal input or an input buffer single-ended or differential clock input, such that an external
oscillator can become the reference source. In either case, the device accepts a wide margin in absolute frequency
of the XA/XB input (refer to section 3.5.1. "Recovery from VCO Freeze" on page 23). In VCO freeze, the Si5317's
output clock stability matches the clock supplied on the XA/XB pins. The external crystal or clock must be selected
based on the stability requirements of the application if VCO freeze is a key requirement. However, care must be
exercised in certain areas for optimum performance. For examples of connections to the XA/XB pins, refer to
section 5. Figure 22, “Si5317 Typical Application Circuit,” on page 35.
Jitter Transfer XA/XB Reference to CKOUT
38.88 MHz Clock on XA/XB, RATE[1:0]=LM
5
0
Jitter Transfer (dB)
-5
-10
-15
-20
-25
-30
1
10
100
1000
10000
100000
1000000
Jitter Frequency (Hz)
Figure 17. Typical XA-XB Jitter Transfer Function
Rev. 1.1
31
Si5317
5.1.4. Reference Clock Frequency
Based on the application and desired output frequency, care should be exercised in selecting the frequency on the
reference used for XA/XB. When the CKOUT operating frequency is close to having a simple integer relationship,
significant spurs can occur. For example, compare the spurs when the CKOUT operating frequency is 622.08 MHz
with a reference of 114.285 MHz (see Figure 21) versus a reference frequency of 38.88 MHz, which is 16 times the
XA/XB reference (see Figure 18).
Figure 18. Effect of Reference Frequency on Spurs
32
Rev. 1.1
Si5317
6. Power Supply Filtering
This device incorporates an on-chip voltage regulator to power the device from supply voltages of 1.8, 2.5, or 3.3 V.
Internal core circuitry is driven from the output of this regulator while I/O circuitry uses the external supply voltage
directly. Table 4, “AC Characteristics” gives the sensitivity of the on-chip oscillator to changes in the supply voltage.
The center ground pad under the device must be electrically and thermally connected to the ground plane. See
Figure 25, “Ground Pad Recommended Layout,” on page 42.
System
Power
Supply
(1.8, 2.5, or
3.3 V)
0.1 uF
C1 – C3
Ferrite
Bead
1.0 uF
C4
VDD
GND &
GND Pad
Si5317
Figure 19. Typical Power Supply Bypass Network
Power Supply Noise to Output Transfer Function
Power Supply Noise Rejection Ratio (dB)
-60
-65
-70
-75
-80
-85
-90
-95
-100
-105
1
10
100
1000
Frequency of Power Supply Noise (kHz)
Figure 20. Fin = Fout = 155 MHz with 120 Hz Loop Bandwidth, 100 mV, pk-pk Supply Noise
Rev. 1.1
33
Si5317
7. Typical Phase Noise Plots
The following is a typical phase noise plot. The clock input source was a Rohde and Schwarz model SML03 RF
Generator. The phase noise analyzer was an Agilent model E5052B. The Si5317 operates at 3.3 V with an ac
coupled differential PECL output and an ac coupled differential sine wave input from the RF generator at 0 dBm.
Note that, as with any PLL, the output jitter that is below the loop BW is caused by the jitter at the input clock. The
loop BW was 120 Hz.
7.1. Example: SONET OC-192
Figure 21. Typical Phase Noise Plot
Jitter Band
Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz
250 fs
SONET_OC192_A, 20 kHz to 80 MHz
274 fs
SONET_OC192_B, 4 to 80 MHz
166 fs
SONET_OC192_C, 50 kHz to 80 MHz
267 fs
Brick Wall, 800 Hz to 80 MHz
274 fs
Note: SONET jitter bands include the SONET skirts. The phase noise plot is brick wall integration.
34
Rev. 1.1
Si5317
8. Typical Application Circuit
C4 1 µF
System
Power
Supply
C3 0.1 µF
Ferrite
Bead
C2 0.1 µF
VDD = 3.3 V
GND Pad
GND
VDD
C1 0.1 µF
0.1 µF
CKOUT1+
+
100 
CKOUT1–
Clock Outputs
–
0.1 µF
130 
130 
VDD
CKIN+
SFOUT[1:0]2
Input Clock1
15 k
Signal Format Select
15 k
CKIN–
0.1 µF
82 
82 
CKOUT2+
100 
CKOUT2–
Option 1:
XA
LOS
CKIN Loss of Signal Indicator
LOL
PLL Loss of Lock Indicator
Crystal
XB
Si5317
0.1 µF
Option 2:
Ext. Refclk+
XA
0.1 µF
Ext. Refclk–
XB
VDD
15 k
RATE[1:0]2
Crystal/Ref Clk
15 k
VDD
FRQTBL3
Frequency Table
VDD
15 k
FRQSEL[3:0]2
Frequency Select
VDD
15 k
15 k
BWSEL[1:0]2
Bandwidth Select
15 k
Skew Increment
INC
Skew Decrement
DEC
Clock Output 2 Disable/
Bypass Mode Control
DBL2_BY2
RST
Reset
Notes:
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
3. For schematic and layout examples, refer to Si5317-EVB User Manual.
Figure 22. Si5317 Typical Application Circuit
Rev. 1.1
35
Si5317
CKOUT1–
CKOUT1+
SFOUT1
VDD
GND
CKOUT2-
SFOUT0
CKOUT2+
NC
9. Pin Descriptions: Si5317
36 35 34 33 32 31 30 29 28
RST
1
27 FRQSEL3
FRQTBL
2
26 FRQSEL2
LOS
3
25 FRQSEL1
NC
4
VDD
5
XA
6
XB
7
GND
8
20 INC
NC
9
19 DEC
24 FRQSEL0
GND
Pad
23 BWSEL1
22 BWSEL0
21 NC
LOL
CKIN–
CKIN+
RATE1
DBL2_BY
NC
NC
VDD
RATE0
10 11 12 13 14 15 16 17 18
Note: Pin assignments are preliminary and subject to change.
Table 14. Si5317 Pin Descriptions
Pin #
Pin Name
I/O
Signal Level
Description
1
RST
I
LVCMOS
2
FRQTBL
I
3-level
3
LOS
O
LVCMOS
5, 10, 32
VDD
VDD
Supply
External Reset.
Active low input that performs external hardware reset of
device. Resets all internal logic to a known state. Clock outputs are tristated during reset. After rising edge of RST signal, the Si5317 will perform an internal self-calibration when
a valid input signal is present.
This pin has a weak pull-up.
Frequency Table.
Selects frequency table.
This pin has a weak pull-up and weak pull-down and defaults
to M. Some designs may require an external resistor voltage
divider when driven by an active device that will tri-state.
CKIN Loss of Signal.
Active high loss-of-signal indicator for CKIN. Once triggered,
the alarm will remain active until CKIN is validated.
0 = CKIN present
1 = LOS on CKIN
Supply.
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass
capacitors should be associated with the following VDD pins:
5
0.1 µF
10
0.1 µF
32
0.1 µF
A 1.0 µF should also be placed as close to device as is
practical.
36
Rev. 1.1
Si5317
Table 14. Si5317 Pin Descriptions (Continued)
Pin #
7
6
Pin Name
XB
XA
8,31
GND
11
15
14
RATE0
RATE1
DBL2_BY
16
17
I/O
I
Signal Level
Description
Analog
External Crystal or Reference Clock.
External crystal should be connected to these pins to use
internal oscillator-based reference. Crystal or reference clock
selection is set by the XTAL/CLOCK pin. See “AN591:
Crystal Selection for the Si5315 and Si5317.”
GND
Supply
Ground.
Must be connected to system ground. Minimize the ground
path impedance for optimal performance of this device.
I
3-Level
External Crystal or Reference Clock Rate.
Note: See Table 13 for settings.
I
3-Level
CKIN+
CKIN–
I
Multi
18
LOL
O
LVCMOS
19
DEC
I
LVCMOS
20
INC
I
LVCMOS
Output 2 Disable/Bypass Mode Control.
Controls enable of CKOUT2 divider/output buffer path and
PLL bypass mode.
L = CKOUT2 enabled
M = CKOUT2 disabled
H = Bypass mode with CKOUT2 enabled
This pin has a weak pull-up and weak pull-down and defaults
to M.
Some designs may require an external resistor voltage
divider when driven by an active device that will tri-state.
Bypass mode is not supported for CMOS clock outputs.
Clock Input.
Differential input clock. This input can also be driven with a
single-ended signal. Input frequency selected from Table 9
on page 22.
PLL Loss of Lock Indicator.
This pin functions as the active high PLL loss of lock indicator.
0 = PLL locked
1 = PLL unlocked
Skew Decrement.
This edge-triggered pin decreases the input to output device
skew. There is no limit on the range of skew adjustment by
this method. Detailed operations and timing characteristics
for this pin are found in Section 3.2, Table 8.
This pin has a weak pull-down.
Skew Increment.
This edge-triggered pin increases the input to output device
skew. There is no limit on the range of skew adjustment by
this method. Detailed operations and timing characteristics
for this pin are found in Section 3.2, Table 8.
This pin has a weak pull-down.
Rev. 1.1
37
Si5317
Table 14. Si5317 Pin Descriptions (Continued)
Pin #
23
22
Pin Name
BWSEL1
BWSEL0
I/O
I
27
26
25
24
FRQSEL3
FRQSEL2
FRQSEL1
FRQSEL0
29
28
CKOUT1–
CKOUT1+
O
33
30
SFOUT0
SFOUT1
I
Signal Level
Description
3-Level
Loop Bandwidth Select.
Three level inputs that select the DSPLL closed loop bandwidth. See Table 9 on page 22 for available settings.
These pins have both weak pull-ups and weak pull-downs
and default to M.
Some designs may require an external resistor voltage
divider when driven by an active device that will tri-state.
Frequency Select.
Three level inputs that select the input clock and clock range.
See Table 9 on page 22.
These pins have both weak pull-ups and weak pull-downs
and default to M.
Some designs may require an external resistor voltage
divider when driven by an active device that will tri-state.
Multi
Clock Output 1.
Output signal format is selected by SFOUT pins. Differential
formats supported for LVPECL, LVDS, and CML compatible
modes. For single-ended CMOS format, both output pins
drive identical, in-phase clock outputs.
3-Level
Signal Format Select.
Three-level inputs that select the output signal format (common mode voltage and differential swing) for both CKOUT1
and CKOUT2.
SFOUT[1:0]
34
35
38
CKOUT2–
CKOUT2+
O
Multi
Signal Format
HH
Reserved
HM
LVDS
HL
CML
MH
LVPECL
MM
Reserved
ML
LVDS—Low Swing
LH
CMOS
LM
Disable
LL
Reserved
These pins have both weak pull-ups and weak pull-downs
and default to M.
Some designs may require an external resistor voltage
divider when driven by an active device that will tri-state.*
CMOS outputs do not support bypass mode.
Clock Output 2.
Output signal format is selected by SFOUT pins. Differential
formats supported for LVPECL, LVDS, and CML compatible
modes. For single-ended CMOS format, both output pins
drive identical, in-phase clock outputs.
Rev. 1.1
Si5317
Table 14. Si5317 Pin Descriptions (Continued)
Pin #
4,9,12,13,
21,36
Pin Name
NC
GND PAD
GND
I/O
—
Signal Level
Description
—
No Connect.
Leave floating. Make no external connections to this pin for
normal operation.
GND
Supply
Ground Pad.
The ground pad must provide a low thermal and electrical
impedance to a ground plane.
*Note: LVPECL requires VDD > 2.25 V
Table 15. Si5317 Pull-Up/-Down
Pin #
Si5317
Pull?
1
RST
U
2
FRQTBL
U, D
11
RATE0
U, D
15
RATE1
U, D
19
DEC
D
20
INC
D
22
BWSEL0
U, D
23
BWSEL1
U, D
24
FRQSEL0
U, D
25
FRQSEL1
U, D
26
FRQSEL2
U, D
27
FRQSEL3
U, D
30
SFOUT1
U, D
33
SFOUT0
U, D
Rev. 1.1
39
Si5317
10. Ordering Guide
Ordering Part Number Output Clock Freq Range
Device Pkg
ROHS6, Pb-Free
Temp Range
Si5317A-C-GM
1–711 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5317B-C-GM
1–350 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5317C-C-GM
1–200 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5317D-C-GM
1–100 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5317-EVB
1–711 MHz
Evaluation Board
Note: Add an “R” at the end of the device to denote tape and reel options (i.e., Si5317A-C-GMR).
40
Rev. 1.1
Si5317
11. Package Outline: 36-Pin QFN
Figure 23 illustrates the package details for the Si5317. Table 16 lists the values for the dimensions shown in the
illustration.
Figure 23. 36-Pin Quad Flat No-Lead (QFN)
Table 16. Package Dimensions
Symbol
Millimeters
Symbol
Millimeters
Min
Nom
Max
Min
Nom
Max
A
0.80
0.85
0.90
L
0.50
0.60
0.70
A1
0.00
0.02
0.05

—
—
12º
b
0.18
0.25
0.30
aaa
—
—
0.10
bbb
—
—
0.10
ccc
—
—
0.08
D
D2
6.00 BSC
3.95
4.10
4.25
e
0.50 BSC
ddd
—
—
0.10
E
6.00 BSC
eee
—
—
0.05
E2
3.95
4.10
4.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body
Components.
Rev. 1.1
41
Si5317
12. Recommended PCB Layout
Figure 24. PCB Land Pattern Diagram
Figure 25. Ground Pad Recommended Layout
42
Rev. 1.1
Si5317
Table 17. PCB Land Pattern Dimensions
Dimension
MIN
MAX
e
0.50 BSC.
E
5.42 REF.
D
5.42 REF.
E2
4.00
4.20
D2
4.00
4.20
GE
4.53
—
GD
4.53
—
X
—
0.28
Y
0.89 REF.
ZE
—
6.31
ZD
—
6.31
Notes (General):
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Notes (Solder Mask Design):
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Notes (Stencil Design):
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be
used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the
center ground pad.
Notes (Card Assembly):
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for
Small Body Components.
Rev. 1.1
43
Si5317
13. Si5317 Device Top Mark
Mark Method:
Laser
Font Size:
0.80 mm
Right-Justified
Line 1 Marking:
Si5317Q
Customer Part Number
Q = Speed Code: A, B, C, D
See Ordering Guide for options.
Line 2 Marking:
C-GM
C = Product Revision
G = Temperature Range –40 to 85 °C (RoHS6)
M = QFN Package
Line 3 Marking:
YYWWRF
YY = Year
WW = Work Week
R = Die Revision
F = Internal code
Assigned by the Assembly House. Corresponds to the year
and work week of the mold date.
Line 4 Marking:
Pin 1 Identifier
Circle = 0.75 mm Diameter
Lower-Left Justified
XXXX
Internal Code
44
Rev. 1.1
Si5317
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.15










Updated corresponding sections and pinouts to add
CKOUT2, INC/DEC, and DBL2_BY functionality.
Updated functional block diagram on page 1.
Updated Table 2 IDD (DD is subscript).
Added Differential Rise/Fall Time spec to Table 2.
Updated pin assignment symbol and pin description
on page 1 and in section 9 to add CKOUT2,
INC/DEC, and DBL2_BY.
Added section 3.6. "PLL Bypass Mode”.
Updated section 8 diagram to add CKOUT2 and
DBL2_BY.
Added additional CMOS Termination with
attenuation figure.
Corrected pin name assignment (pin28) diagram on
page 1 and section 9, page 35 to match pin
description name.
Updated all the frequency plans in Table 8 to provide
coverage over the entire frequency range.
Revision 0.15 to Revision 0.2

Updated bypass mode, ESD specifications and
absolute max VDD.

Corrected INC/DEC pinout.
Revision 0.2 to Revision 1.0





Removed Output Short to GNDon page 5.
Removed duplicate lock time specification on page
11.
Removed Time to Clear LOS alarm on page 11.
Revised spurious noise values.
Revised phase noise values.
Revision 1.0 to Revision 1.1

Increased the maximum input/output frequency to
711 MHz
 Added reference to “AN591: Crystal Selection for the
Si5315 and Si5317”
Material
Material
Rev. 1.1
45
Si5317
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
46
Rev. 1.1