S i53 1 7 P I N -C O N T R O L L E D 1–711 MH Z J I T T E R C L E A N I N G C L O C K Features Provides jitter attenuation for any clock frequency One clock input / two clock outputs Input/output frequency range: 1–711 MHz Ultra low jitter: 300 fs (12 kHz–20 MHz) typical Simple pin control interface Selectable loop bandwidth for jitter attenuation: 60 Hz–8.4 kHz Meets OC-192 GR-253-CORE jitter specifications Selectable output clock signal format: LVPECL, LVDS, CML or CMOS Single supply: 1.8, 2.5, or 3.3 V Loss of lock and loss of signal alarms VCO freeze during LOS/LOL On-chip voltage regulator with high PSRR Small size: 6 x 6 mm, 36-QFN Wide temperature range: –40 to +85 ºC Applications Data converter clocking Wireless infrastructure Networking, SONET/SDH Ordering Information: See page 40. Switches and routers Medical instrumentation Test and measurement Pin Assignments Description The Si5317 is a flexible 1:1 jitter cleaning clock for high-performance applications that require jitter attenuation without clock multiplication. The Si5317 accepts a single clock input ranging from 1 to 711 MHz and generates two low jitter clock outputs at the same frequency. The clock frequency range and loop bandwidth are selectable from a simple look-up table. The Si5317 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides jitter attenuation on any frequency in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is user selectable, providing jitter performance optimization at the application level. Functional Block Diagram Rev. 1.1 4/11 Copyright © 2011 by Silicon Laboratories Si5317 Si5 317 2 Rev. 1.1 Si5317 TA B L E O F C O N T E N T S Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . .9 1.2. Three-Level Input Pins (Example with External Resistors) . . . . . . . . . . . . . . . . . . . . .9 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1. Frequency Range Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.2. Output Skew Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.3. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 3.4. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.5. VCO Freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.6. PLL Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 4. High-Speed I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 4.1. Input Clock Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 4.2. Output Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 5. Crystal/Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 5.1. Crystal/Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 6. Power Supply Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 7. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 7.1. Example: SONET OC-192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 8. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 9. Pin Descriptions: Si5317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 11. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 12. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 13. Si5317 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Rev. 1.1 3 Si5 317 1. Electrical Specifications Table 1. Recommended Operating Conditions (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Temperature Range Supply Voltage Symbol Test Condition Min Typ Max Unit –40 25 85 ºC 3.3 V nominal 2.97 3.3 3.63 V 2.5 V nominal 2.25 2.5 2.75 V 1.8 V nominal 1.71 1.8 1.89 V TA VDD Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted. Table 2. DC Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Supply Current (Supply current is independent of VDD) Symbol Test Condition Min Typ Max Units IDD LVPECL Format 622.08 MHz Out All CKOUTs Enabled1 LVPECL Format 622.08 MHz Out Only 1 CKOUT Enabled1 CMOS Format 19.44 MHz Out All CKOUTs Enabled2 CMOS Format 19.44 MHz Out Only CKOUT1 Enabled2 — 251 279 mA — 217 243 mA — 204 234 mA — 194 220 mA 1.8 V ± 5% 0.9 — 1.4 V 2.5 V ± 10% 1.0 — 1.7 V 3.3 V ± 10% 1.1 — 1.95 V Single-ended 20 40 60 k 0 — VDD V fCKIN < 212.5 MHz See Figure 2. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 2. 0.25 — — VPP CKIN Input Pin Input Common Mode Voltage (Input Threshold Voltage) Input Resistance Input Voltage Level Limits Single-ended Input Voltage Swing VICM CKNRIN CKNVIN VISE See note 3 Notes: 1. LVPECL outputs require VDD > 2.25 V. 2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 3. No overshoot or undershoot. 4 Rev. 1.1 Si5317 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units VID fCKIN < 212.5 MHz See Figure 2. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 2. 0.25 — — VPP VOCM LVPECL 100 load line-to-line VDD – 1.42 — VDD – 1.25 V Differential Output Swing VOD LVPECL 100 load line-to-line 1.1 — 1.9 VPP Single-ended Output Swing VSE LVPECL 100 load line-to-line 0.5 — 0.93 VPP Differential Output Voltage CKOVD CML 100 load line-to-line 350 425 500 mVPP Common Mode Output Voltage CKOVCM CML 100 load line-to-line — VDD – 0.36 — V Differential Output Voltage CKOVD LVDS 100 load line-to-line 500 700 900 mVPP Low swing LVDS 100 load line-to-line 350 425 500 mVPP CKOVCM LVDS 100 load line-to-line 1.125 1.2 1.275 V Output Voltage Low CKOVOLLH CMOS — — 0.4 V Output Voltage High CKOVOHLH VDD = 1.71 V CMOS 0.8 x VDD — — V Output Drive Current CKOIO CMOS Driving into CKOVOL for output low or CKOVOH for output high. CKOUT+ and CKOUT– shorted externally. VDD = 1.8 V — 7.5 — mA VDD = 3.3 V — 32 — mA VDD = 1.71 V — — 0.5 V VDD = 2.25 V — — 0.7 V VDD = 2.97 V — — 0.8 V Differential Input Voltage Swing CKOUT Output Clock1 Common Mode Common Mode Output Voltage 2-Level LVCMOS Input Pins Input Voltage Low VIL Notes: 1. LVPECL outputs require VDD > 2.25 V. 2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 3. No overshoot or undershoot. Rev. 1.1 5 Si5 317 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Input Voltage High Symbol Test Condition Min Typ Max Units VIH VDD = 1.89 V 1.4 — — V VDD = 2.25 V 1.8 — — V VDD = 3.63 V 2.5 — — V Input Low Current IIL — — 50 μA Input High Current IIH — — 50 μA Weak Internal Input Pull-up Resistor RPUP — 75 — k Weak Internal Input Pull-down Resistor RPDN — 75 — k Input Voltage Low VILL — — 0.15 x VDD V Input Voltage Mid VIMM 0.45 x VDD — 0.55 x VDD V Input Voltage High VIHH 0.85 x VDD — — V Input Low Current IILL 2 –20 — — μA Input Mid Current IIMM2 –2 — 2 μA 2 — — 20 μA 3-Level Input Pins Input High Current IIHH Notes: 1. LVPECL outputs require VDD > 2.25 V. 2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 3. No overshoot or undershoot. 6 Rev. 1.1 Si5317 Table 2. DC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units VOL IO = 2 mA VDD = 1.62 V — — 0.4 V IO = 2 mA VDD = 2.97 V — — 0.4 V IO = –2 mA VDD = 1.62 V VDD – 0.4 — — V IO = –2 mA VDD = 2.97 V VDD – 0.4 — — V — 12 — k 0 — 1.2 V 0.5 — 1.2 VPP — 12 — k 0 — 1.2 V 0.5 — 2.4 VPP LVCMOS Output Pins Output Voltage Low Output Voltage High VOH Single-Ended Reference Clock Input Pin XA (XB with cap to gnd) Input Resistance XARIN Input Voltage Level Limits XAVIN Input Voltage Swing XAVPP XTAL/RefCLK RATE[1:0] = LM, ML, MH, or HM Differential Reference Clock Input Pins (XA/XB) Input Resistance XA/XBRIN Differential Input Voltage Level Limits XA/XBVIN Input Voltage Swing XTAL/RefCLK RATE[1:0] = LM, ML, MH, or HM XAVPP/XBVPP Notes: 1. LVPECL outputs require VDD > 2.25 V. 2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended. 3. No overshoot or undershoot. Rev. 1.1 7 Si5 317 Figure 1. Voltage Characteristics Figure 2. Rise/Fall Time Characteristics 8 Rev. 1.1 Si5317 1.1. Three-Level (3L) Input Pins (No External Resistors) Figure 3. Three-Level Input Pins 1.2. Three-Level Input Pins (Example with External Resistors) Figure 4. Three-Level Input Pins Rev. 1.1 9 Si5 317 Table 3. Three-Level Input Pins1,2,3,4 Parameter Min Max Input Low Current –30 μA — Input Mid Current –11 μA –11 μA Input High Current — –30 μA Notes: 1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external driver using the external resistor values indicated in this example. In most designs, an external resistor voltage divider is recommended. 2. Resistor packs are only needed if the leakage current of the external driver exceeds the current specified in Table 2, Iimm. Any resistor pack may be used (e.g. Panasonic EXBD10C183J). PCB layout is not critical. 3. If a pin is tied to ground or VDD, no resistors are needed. 4. If a pin is left open (no connect), no resistors are needed. 10 Rev. 1.1 Si5317 Table 4. AC Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Input Frequency Symbol Test Condition Min Typ Max Units 1 — 711 MHz 40 — 60 % 2 — — ns — — 3 pF — — 11 ns 1 — 711 MHz 1 — 212.5 MHz CMOS Output VDD = 1.62 Cload = 5 pF — — 8 ns CMOS Output VDD = 2.97 Cload = 5 pF — — 2 ns CKNF CKIN Input Pins Input Duty Cycle (Minimum Pulse Width) CKNDC Input Capacitance CKNCIN Input Rise/Fall Time CKNTRF Whichever is smaller 20–80% See Figure 2 CKOUT Output Pins Output Frequency (Output not configured for CMOS or disable) Maximum Output Frequency in CMOS Format CKOF CKOFMC Single-ended Output Rise/Fall (20–80%) CKOTRF Differential Output Rise/Fall Time CKOTRF 20 to 80 %, fOUT = 622.08 — 230 350 ps Output Duty Cycle Differential Uncertainty CKODC 100 Load Line to Line Measured at 50% Point (not for CMOS) — — ±40 ps — — 3 pF LVCMOS Pins Input Capacitance CIN Rev. 1.1 11 Si5 317 Table 4. AC Characteristics (Continued) (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Units tRF CLOAD = 20 pf See Figure 2 — 25 — ns — 750 μs 10 — ms 1.2 sec LVCMOS Output Pins Rise/Fall Times LOSTRIG LOSn Trigger Window Time to Clear LOL after LOS Cleared tCLRLOL From last CKIN to LOS fin unchanged and XA/XB stable. LOS to LOL — Whenever RST, FRQTBL, RATE, BWSEL, or FRQSEL are changed, with valid CKIN to LOL; BW = 100 Hz — PLL Performance Lock Time tLOCKHW Closed Loop Jitter Peaking JPK Jitter Tolerance — 0.05 0.1 dB BW determined by BWSEL[1:0] 5000/ BW — — ns pkpk 1 — — μs SPSPUR Max spur @ n x f3 (n > 1, n x f3 < 100 MHz) — –93 –70 dBc tTEMP Max phase changes from –40 to +85 ºC — 300 500 ps JTOL Minimum Reset Pulse Width Spurious Noise Phase Change due to Temperature Variation tRSTMIN Table 5. Performance Specifications1, 2, 3, 4, 5 (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Jitter Generation fIN = fOUT = 622.08 MHz, LVPECL output format BW = 120 Hz JGEN Phase Noise fIN = fOUT = 622.08 MHz LVPECL output format CKOPN Test Condition Min Typ Max Unit — 0.32 0.42 ps rms 12 kHz–20 MHz — 0.31 0.41 ps rms 800 Hz–80 MHz — 0.4 0.45 ps rms 1 kHz offset — –106 –87 dBc/Hz 10 kHz offset — –121 –100 dBc/Hz 100 kHz offset — –132 –104 dBc/Hz 1 MHz offset — –132 –119 dBc/Hz 50 kHz–80 MHz Notes: 1. BWSEL [1:0] loop bandwidth settings provided in Table 9 on page 22. 2. 114.285 MHz 3rd OT crystal used as XA/XB input. 3. VDD = 2.5 V 4. TA = 85 °C 5. Test condition: fIN = 622.08 MHz, fOUT = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-80%), LVPECL clock output. 12 Rev. 1.1 Si5317 Table 6. Thermal Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC) Parameter Symbol Test Condition Min Typ Max Unit Thermal Resistance Junction to Ambient JA Still Air — 32 — ºC/W Thermal Resistance Junction to Case JC — 14 — ºC/W Table 7. Absolute Maximum Limits Parameter Symbol Value Unit DC Supply Voltage VDD –0.5 to 3.8 V LVCMOS Input Voltage VDIG –0.3 to (VDD + 0.3) V CKINn Voltage Level Limits CKNVIN 0 to VDD V XA/XB Voltage Level Limits XAVIN 0 to 1.2 V Operating Junction Temperature TJCT –55 to 150 C Storage Temperature Range TSTG –55 to 150 C 2 kV ESD MM Tolerance; All pins except CKIN+/CKIN– 150 V ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN– 750 V ESD MM Tolerance; CKIN+/CKIN– 100 V ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except CKIN+/CKIN– Latch-Up Tolerance JESD78 Compliant Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Rev. 1.1 13 Si5 317 2. Functional Description Figure 5. Detailed Block Diagram 2.1. Overview The Si5317 is a 1:1 jitter-attenuating precision clock for applications requiring sub 1 ps jitter performance. The Si5317 accepts one clock input ranging from 1 to 711 MHz and generates two clock outputs at the same frequency ranging from 1 to 711 MHz. The Si5317 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides jitter attenuation on any frequency in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The nominal operating frequency is selectable from a look-up table. The Si5317 PLL loop bandwidth (BW) is selectable via the BWSEL[1:0] pins and supports a range from 60 Hz to 8.4 kHz. The Si5317 monitors the input clock for loss-of-signal (LOS) and provides a LOS alarm when it detects missing pulses on the input clock. The device monitors the lock status of the DSPLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. The Si5317 provides a VCO freeze capability that allows the device to continue generation of a stable output clock when the selected input clock is lost. During VCO freeze, the DSPLL latches its VCO settings and uses its XA/XB clock as its frequency reference. The Si5317 has two output clock drivers and can be configured as four single-ended or two differential outputs. The signal format of the clock output is selectable to support LVPECL, LVDS, CML, or CMOS loads. The device operates from a single 1.8, 2.5, or 3.3 V supply. The use of LVPECL requires a VDD > 2.25 V. 14 Rev. 1.1 Si5317 3. Frequency Plan Tables For ease of use, the Si5317 is pin-controlled to enable simple device configuration of the frequency range plan and PLL loop bandwidth via a predefined look-up table. The DSPLL has been optimized for jitter performance and tunability for each frequency range and PLL loop bandwidth provided in Table 9 on page 22. Many of the control inputs are three levels: High, Low, and Medium. High and Low are standard voltage levels determined by the supply pins: VDD and Ground. If the input pin is left floating, it is driven to nominally half of VDD. Effectively, this creates three logic levels for these controls. See section 6. "Power Supply Filtering" on page 33 and section 1.2. "Three-Level Input Pins (Example with External Resistors)" on page 9 for additional information. 3.1. Frequency Range Plan The input to output clock frequency range is set by the 3-level FRQSEL[3:0] and FRQTBL pins. The CKIN and CKOUT is the same frequency range as specified in Table 8. Due to the wide tunability of the Si5317, each frequency plan provides overlap between adjacent settings. To select a frequency plan, the desired frequency should be selected as close to the defined center frequency. In certain cases where the desired frequency is exactly between two overlapping plans, either FRQTBL and FRQSEL setting can be used. 3.1.1. PLL Loop Bandwidth Plan The Si5317's loop bandwidth ranges from 60 Hz to 8.4 kHz. For each frequency range, the corresponding loop bandwidth is provided in a simple look-up table (see Table 9 on page 22). The loop bandwidth is digitally programmable using the three-level BWSEL [1:0] input pins. 3.2. Output Skew Adjustment The overall device skew (CKIN to CKOUTn phase delay) is adjustable via the INC and DEC input pins. A positive edge triggered pulse applied to the INC pin increases the device skew defined by Table 8, INC/DEC step size, for each given frequency plan. The identical operation on the DEC pin decreases the skew by the same amount. Using the INC and DEC pins, there is no limit to the range of skew adjustment that can be made. Following a powerup or reset, the overall device skew will revert to the reset value, although the input-to-output skew is effectively random. The rate of change for each INC/DEC operation is defined by the selected loop bandwidth, BWSEL[1:0]. Rev. 1.1 15 Si5 317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] BWSEL [1:0] (BW in Hz) Min Center Max LH ML MM MH HL 0 L LLLL .95 1.00 1.05 — 3814 927 230 114 57 0.21 1 L LLLM 1.00 1.05 1.10 — 3814 927 230 114 57 0.21 2 L LLLH 1.05 1.10 1.15 — 3834 931 231 115 57 0.21 3 L LLML 1.10 1.15 1.20 — 4052 983 244 121 60 0.21 4 L LLMM 1.15 1.20 1.25 — 4251 1030 255 127 63 0.21 5 L LLMH 1.20 1.25 1.30 — 4451 1078 267 133 66 0.21 6 L LLHL 1.25 1.30 1.35 — 4652 1125 279 139 69 0.21 7 L LLHM 1.30 1.35 1.40 — 4852 1172 290 145 72 0.21 8 L LLHH 1.35 1.40 1.45 — 5054 1219 302 150 75 0.21 9 L LMLL 1.40 1.45 1.50 — 5256 1267 314 156 78 0.21 10 L LMLM 1.45 1.50 1.55 — 5256 1267 314 156 78 0.21 11 L LMLH 1.50 1.55 1.60 — 5459 1314 325 162 81 0.21 12 L LMML 1.55 1.60 1.65 — 5866 1409 349 174 87 0.21 13 L LMMM 1.60 1.65 1.70 — 5866 1409 349 174 87 0.21 14 L LMMH 1.65 1.70 1.75 — 6071 1457 360 180 89 0.21 15 L LMHL 1.70 1.75 1.80 — 6276 1504 372 185 92 0.21 16 L LMHM 1.75 1.80 1.85 — 6483 1552 384 191 95 0.21 17 L LMHH 1.80 1.85 1.90 — 6688 1599 395 197 98 0.21 18 L LHLL 1.85 1.90 1.95 — 6895 1647 407 203 101 0.21 19 L LHLM 1.90 1.95 2.00 4696 2285 560 139 69 — 0.21 20 L LHLH 1.95 2.00 2.10 4832 2350 575 143 71 — 0.21 21 L LHML 2.00 2.10 2.20 4967 2415 591 147 73 — 0.21 22 L LHMM 2.10 2.20 2.30 5239 2544 622 154 77 — 0.21 23 L LHMH 2.20 2.30 2.40 — 4052 983 244 121 60 0.21 24 L LHHL 2.30 2.40 2.50 — 4251 1030 255 127 63 0.21 25 L LHHM 2.40 2.50 2.60 — 4451 1078 267 133 66 0.21 26 L LHHH 2.50 2.60 2.70 — 4651 1125 279 139 69 0.21 27 L MLLL 2.60 2.70 2.80 — 4852 1172 290 145 72 0.20 28 L MLLM 2.70 2.80 2.90 — 5054 1219 302 150 75 0.21 29 L MLLH 2.80 2.90 3.00 — 5255 1267 314 156 78 0.20 30 L MLML 2.90 3.00 3.10 — 5458 1314 325 162 81 0.20 31 L MLMM 3.00 3.10 3.20 — 5859 1409 349 174 87 0.20 32 L MLMH 3.10 3.20 3.30 — 5859 1409 349 174 87 0.20 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. 16 INC/DEC Phase Change HM (ns) Rev. 1.1 Si5317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings (Continued) Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] BWSEL [1:0] (BW in Hz) Min Center Max LH ML MM MH HL INC/DEC Phase Change HM (ns) 33 L MLHL 3.20 3.30 3.40 — 6071 1457 360 180 89 0.21 34 L MLHM 3.30 3.40 3.50 — 6071 1457 360 180 89 0.21 35 L MLHH 3.40 3.50 3.60 — 6276 1504 372 185 92 0.21 36 L MMLL 3.50 3.60 3.70 — 6483 1552 384 191 95 0.21 37 L MMLM 3.60 3.70 3.80 — 6895 1647 407 203 101 0.21 38 L MMLH 3.70 3.80 3.90 — 6895 1647 407 203 101 0.21 39 L MMML 3.80 3.90 4.00 — 4650 1125 279 139 69 0.20 40 L MMMM 3.90 4.00 4.20 — 4786 1156 286 143 71 0.21 41 L MMMH 4.00 4.20 4.40 — 4919 1188 294 147 73 0.21 42 L MMHL 4.20 4.40 4.60 — 5457 1314 325 162 81 0.20 43 L MMHM 4.40 4.60 4.80 — 5457 1314 325 162 81 0.20 44 L MMHH 4.60 4.80 5.00 — 5730 1378 341 170 85 0.21 45 L MHLL 4.80 5.00 5.20 — 6268 1504 372 185 92 0.20 46 L MHLM 5.00 5.20 5.40 — 6273 1504 372 185 92 0.20 47 L MHLH 5.20 5.40 5.60 — 6550 1568 387 193 96 0.20 48 L MHML 5.40 5.60 5.80 — 6823 1631 403 201 100 0.20 49 L MHMM 5.60 5.80 6.00 — 6823 1631 403 201 100 0.20 50 L MHMH 5.80 6.00 6.20 — 6333 3064 748 185 92 0.20 51 L MHHL 6.00 6.20 6.40 — 6571 3176 774 192 96 0.20 52 L MHHM 6.20 6.40 6.60 — 6811 3289 801 199 99 0.20 53 L MHHH 6.40 6.60 6.80 — 6071 1457 360 180 89 0.21 54 L HLLL 6.60 6.80 7.00 — 6534 1567 387 193 96 0.20 55 L HLLM 6.80 7.00 7.20 — 6534 1567 387 193 96 0.20 56 L HLLH 7.00 7.20 7.40 — 6483 1552 384 191 95 0.21 57 L HLML 7.20 7.40 7.60 — 6686 1599 395 197 98 0.20 58 L HLMM 7.40 7.60 7.80 — 6891 1647 407 203 101 0.20 59 L HLMH 7.60 7.80 8.00 — 4648 1125 279 139 69 0.20 60 L HLHL 7.80 8.00 8.40 — 4786 1156 286 143 71 0.21 61 L HLHM 8.00 8.40 8.80 — 4919 1188 294 147 73 0.21 62 L HLHH 8.40 8.80 9.00 — 6599 1580 391 195 97 0.20 63 L HMLL 8.80 9.00 9.20 — 7080 1693 418 209 104 0.19 64 L HMLM 9.00 9.20 9.60 — 7080 1693 418 209 104 0.19 65 L HMLH 9.20 9.60 10.00 — 5727 1377 341 170 85 0.20 66 L HMML 9.60 10.00 10.50 — 6003 1441 356 178 88 0.21 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. Rev. 1.1 17 Si5 317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings (Continued) Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] BWSEL [1:0] (BW in Hz) Min Center Max LH ML MM MH HL 67 L HMMM 10.00 10.50 11.00 — 6273 1504 372 185 92 0.20 68 L HMMH 10.50 11.00 11.50 — 6992 1672 413 206 103 0.20 69 L HMHL 11.00 11.50 12.00 — 5866 1409 349 174 87 0.21 70 L HMHM 11.50 12.00 12.50 — 6155 1477 365 182 91 0.20 71 L HMHH 12.00 12.50 13.00 — 6446 1545 382 190 95 0.20 72 L HHLL 12.50 13.00 13.50 — 7034 1680 415 207 103 0.20 73 L HHLM 13.00 13.50 14.00 — 5408 1303 323 161 80 0.20 74 L HHLH 13.50 14.00 14.50 — 5633 1356 336 167 83 0.20 75 L HHML 14.00 14.50 15.00 — 5861 1409 349 174 87 0.20 76 L HHMM 14.50 15.00 15.50 — 7383 1764 436 217 108 0.19 77 L HHMH 15.00 15.50 16.00 — 6321 1515 374 187 93 0.21 78 L HHHL 15.50 16.00 16.50 — 6321 1515 374 187 93 0.21 79 L HHHM 16.00 16.50 17.00 — 6774 1620 400 200 99 0.20 80 L HHHH 16.50 17.00 17.50 — 7230 1726 426 213 106 0.20 81 M LLLL 17.00 17.50 18.00 — 4422 1071 265 132 66 0.21 82 M LLLM 17.50 18.00 18.50 — 7342 1756 434 216 108 0.19 83 M LLLH 18.00 18.50 19.00 — 7342 1756 434 216 108 0.19 84 M LLML 18.50 19.00 19.50 — 7298 1742 430 214 107 0.20 85 M LLMM 19.00 19.50 20.00 — 4995 1206 299 149 74 0.20 86 M LLMH 19.50 20.00 21.00 — 7518 1796 444 221 110 0.19 87 M LLHL 20.00 21.00 22.00 — 6208 1488 368 183 91 0.21 88 M LLHM 21.00 22.00 23.00 — 7429 1777 439 219 109 0.18 89 M LLHH 22.00 23.00 24.00 — 6155 1477 365 182 91 0.20 90 M LMLL 23.00 24.00 25.00 — 6155 1477 365 182 91 0.20 91 M LMLM 24.00 25.00 26.00 — 6739 1612 399 199 99 0.20 92 M LMLH 25.26 26.00 27.00 — 7613 1816 449 224 111 0.19 93 M LMML 26.00 27.00 28.00 — 6817 1631 403 201 100 0.20 94 M LMMM 27.00 28.00 29.00 — 6817 1631 403 201 100 0.20 95 M LMMH 28.00 29.00 30.00 — 7640 1821 450 224 112 0.20 96 M LMHL 29.00 30.00 31.00 — 4941 1194 296 147 73 0.20 97 M LMHM 30.31 31.00 32.00 — 7658 1827 451 225 112 0.19 98 M LMHH 31.00 32.00 33.00 — 7658 1827 451 225 112 0.19 99 M LHLL 32.00 33.00 34.00 — 6774 1620 400 200 99 0.20 100 M LHLM 33.00 34.00 35.00 — 6774 1620 400 200 99 0.20 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. 18 INC/DEC Phase Change HM (ns) Rev. 1.1 Si5317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings (Continued) Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] BWSEL [1:0] (BW in Hz) Min Center Max LH ML MM MH HL INC/DEC Phase Change HM (ns) 101 M LHLH 34.00 35.00 36.00 — 7692 1832 452 225 112 0.20 102 M LHML 35.00 36.00 37.00 — 7680 1833 453 226 113 0.19 103 M LHMM 36.00 37.00 38.00 — 7539 1803 446 222 111 0.18 104 M LHMH 37.00 38.00 39.00 — 7658 1827 451 225 112 0.19 105 M LHHL 38.00 39.00 40.00 — 7607 1818 449 224 112 0.18 106 M LHHM 39.00 40.00 42.00 — 7607 1818 449 224 112 0.18 107 M LHHH 40.00 42.00 44.00 — 5709 1373 340 169 84 0.21 108 M MLLL 43.30 44.00 46.00 — 7653 1828 452 225 112 0.18 109 M MLLM 44.00 46.00 48.00 — 7653 1828 452 225 112 0.18 110 M MLLH 46.00 48.00 50.00 — 6155 1477 365 182 91 0.20 111 M MLML 48.00 50.00 52.00 — 7630 1823 450 225 112 0.18 112 M MLMM 50.52 52.00 54.00 — 7692 1832 452 225 112 0.20 113 M MLMH 52.00 54.00 56.00 — 7880 1882 465 232 116 0.18 114 M MLHL 54.00 56.00 58.00 — 6169 1481 366 183 91 0.20 115 M MLHM 56.00 58.00 60.00 — 7664 1826 451 225 112 0.20 116 M MLHH 58.00 60.00 60.00 — 7664 1826 451 225 112 0.20 117 M MMLL 60.00 62.00 64.00 — 7882 1882 465 232 116 0.18 118 M MMLM 62.00 64.00 66.00 — 7890 1883 465 232 116 0.18 119 M MMLH 64.00 66.00 68.00 — 7878 1882 465 232 116 0.18 120 M MMML 66.00 68.00 70.00 — 7878 1882 465 232 116 0.18 121 M MMMM 68.00 70.00 70.88 — 6228 1494 369 184 92 0.20 122 M MMMH 70.00 72.00 74.00 — 7888 1883 465 232 116 0.18 123 M MMHL 72.00 74.00 76.00 — 7889 1883 465 232 116 0.18 124 M MMHM 75.78 76.00 78.00 — 7917 1884 465 232 116 0.20 125 M MMHH 76.00 78.00 80.00 — 7895 1883 465 232 116 0.19 126 M MHLL 78.00 80.00 84.00 — 7895 1883 465 232 116 0.19 127 M MHLM 80.00 84.00 88.00 — 6010 1445 357 178 89 0.20 128 M MHLH 84.00 88.00 88.59 — 6010 1445 357 178 89 0.20 129 M MHML 88.00 90.00 92.00 — 6329 1518 375 187 93 0.20 130 M MHMM 90.00 92.00 96.00 — 7878 1882 465 232 116 0.18 131 M MHMH 92.00 96.00 100.00 — 7795 1864 461 230 114 0.18 132 M MHHL 96.00 100.00 105.00 — 7795 1864 461 230 114 0.18 133 M MHHM 101.04 105.00 110.00 — 7903 1884 465 232 116 0.19 134 M MHHH — 7812 1866 461 230 115 0.18 105.00 110.00 115.00 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. Rev. 1.1 19 Si5 317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings (Continued) Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] Min Center Max BWSEL [1:0] (BW in Hz) LH ML MM MH HL 135 M HLLL 110.00 115.00 118.13 — 6329 1518 375 187 93 0.20 136 M HLLM 115.00 120.00 125.00 — 7820 1867 461 230 115 0.18 137 M HLLH 120.00 125.00 130.00 — 7812 1868 462 230 115 0.18 138 M HLML 125.00 130.00 135.00 — 7878 1882 465 232 116 0.18 139 M HLMM 130.00 135.00 140.00 — 6873 1648 408 203 101 0.19 140 M HLMH 135.00 140.00 145.00 — 7851 1871 462 230 115 0.19 141 M HLHL 140.00 145.00 150.00 — 7826 1870 462 230 115 0.18 142 M HLHM 145.00 150.00 155.00 — 7240 1735 429 214 107 0.18 143 M HLHH 151.56 155.00 160.00 — 7853 1872 462 230 115 0.19 144 M HMLL 155.00 160.00 165.00 — 7890 1883 465 232 116 0.18 145 M HMLM 160.00 165.00 170.00 — 7831 1871 462 231 115 0.18 146 M HMLH 165.00 170.00 175.00 — 7831 1871 462 231 115 0.18 147 M HMML 170.00 175.00 177.19 — 6912 1654 409 204 102 0.20 148 M HMMM 175.00 180.00 185.00 — 7140 1710 423 211 105 0.19 149 M HMMH 180.00 185.00 190.00 — 7846 1873 463 231 115 0.18 150 M HMHL 185.00 190.00 195.00 — 7878 1882 465 232 116 0.18 151 M HMHM 190.00 195.00 200.00 — 7878 1882 465 232 116 0.18 152 M HMHH 195.00 200.00 202.50 — 6993 1673 414 206 103 0.19 153 M HHLL 202.08 210.00 220.00 — 7903 1884 465 232 116 0.19 154 M HHLM 210.00 220.00 230.00 — 7069 1689 417 208 104 0.20 155 M HHLH 220.45 230.00 240.00 — 7903 1884 465 232 116 0.19 156 M HHML 230.00 240.00 250.00 — 7507 1793 443 221 110 0.19 157 M HHMM 242.50 250.00 260.00 — 7910 1884 465 232 116 0.19 158 M HHMH 250.00 260.00 270.00 — 7878 1882 465 232 116 0.18 159 M HHHL 260.00 270.00 280.00 — 7429 1776 439 219 109 0.19 160 M HHHM 270.00 280.00 290.00 — 7908 1884 465 232 116 0.19 161 M HHHH 280.00 290.00 300.00 — 7879 1882 465 232 116 0.18 162 H LLLL 290.00 300.00 310.00 — 7571 1811 448 223 111 0.18 163 H LLLM 303.13 310.00 320.00 — 7903 1884 465 232 116 0.19 164 H LLLH 310.00 320.00 330.00 — 7890 1883 465 232 116 0.18 165 H LLML 320.00 330.00 340.00 — 7878 1882 465 232 116 0.18 166 H LLMM 330.00 340.00 350.00 — 7878 1882 465 232 116 0.18 167 H LLMH 340.00 350.00 354.38 — 7344 1757 434 217 108 0.18 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. 20 INC/DEC Phase Change HM (ns) Rev. 1.1 Si5317 Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings (Continued) Frequency Range (MHz) Plan FRQTBL FRQSEL No [3:0] Min Center Max BWSEL [1:0] (BW in Hz) LH ML MM MH HL INC/DEC Phase Change HM (ns) 168 H LLHL 350.00 360.00 370.00 — 7900 1883 465 232 116 0.19 169 H LLHM 360.00 370.00 380.00 — 7889 1883 465 232 116 0.18 170 H LLHH 370.00 380.00 390.00 — 7878 1882 465 232 116 0.18 171 H LMLL 380.00 390.00 400.00 — 7878 1882 465 232 116 0.18 172 H LMLM 390.00 400.00 405.00 — 7755 1854 458 228 114 0.18 173 H LMLH 404.17 420.00 440.00 — 7903 1884 465 232 116 0.19 174 H LMML 420.00 440.00 460.00 — 7848 1874 463 231 115 0.18 175 H LMMM 440.91 460.00 480.00 — 7903 1884 465 232 116 0.19 176 H LMMH 460.00 480.00 500.00 — 7507 1793 443 221 110 0.19 177 H LMHL 485.00 500.00 520.00 — 7910 1884 465 232 116 0.19 178 H LMHM 500.00 520.00 540.00 — 7878 1882 465 232 116 0.18 179 H LMHH 520.00 540.00 560.00 — 7704 1842 455 227 113 0.18 180 H LHLL 540.00 560.00 580.00 — 7908 1884 465 232 116 0.19 181 H LHLM 560.00 580.00 600.00 — 7879 1882 465 232 116 0.18 182 H LHLH 580.00 600.00 620.00 — 7571 1811 448 223 111 0.18 183 H LHML 606.25 620.00 640.00 — 7903 1884 465 232 116 0.19 184 H LHMM 620.00 640.00 660.00 — 7890 1883 465 232 116 0.18 185 H LHMH 640.00 660.00 680.00 — 7878 1882 465 232 116 0.18 186 H LHHL 660.00 680.00 700.00 — 7878 1882 465 232 116 0.18 187 H LHHM 680.00 700.00 704.00 — 7831 1871 462 231 115 0.18 188 H LHHH 700.00 — 7908 1880 464 231 115 0.20 7.05 711.00 Note: For BWSEL[1:0] settings LL, LM, HH are reserved. Rev. 1.1 21 Si5 317 3.3. PLL Self-Calibration An internal self-calibration (ICAL) is performed before operation to optimize loop parameters and jitter performance. While the self-calibration is being performed, the DSPLL is being internally controlled by the selfcalibration state machine. The LOL alarm will be active during ICAL. The self-calibration time tLOCKHW is given in Table 4, “AC Characteristics”. Any of the following events will trigger a self-calibration: Power-on-reset (POR) Release of the external reset pin RST (transition of RST from 0 to 1) Change in FRQSEL, FRQTBL, BWSEL, or RATE[1:0] pins Internal DSPLL registers out-of-range, indicating the need to relock the DSPLL In any of the above cases, an ICAL will be initiated if a valid input clock exists with no input alarm. The external crystal or reference clock must also be present for the self-calibration to begin. If no valid input clock is present, the self-calibration state machine will wait until it appears, at which time the calibration will start. After a successful ICAL has been performed with a valid input clock, no subsequent self-calibrations are performed unless one of the above conditions are met. If the input clock is lost following self-calibration, the device enters VCO freeze mode. When the input clock returns, the device relocks to the input clock without performing a selfcalibration. 3.3.1. Input Clock Stability during Internal Self-Calibration An exit from reset must occur when the selected CKIN clock is stable in frequency with a frequency value that is within the device operating range. 3.3.2. Self-Calibration caused by Changes in Input Frequency If the selected CKIN frequency varies by 500 ppm or more within the frequency range defined by FRQSEL and FRQTBL since the last calibration, the device may initiate a self-calibration. 3.3.3. Device Reset Upon powerup, the device internally executes a power-on-reset (POR) which resets the internal device logic. The pin RST can also be used to initiate a reset. The device stays in this state until a valid CKINn is present, when it then performs a PLL self-calibration (refer to section 3.3. "PLL Self-Calibration”). 3.3.4. Recommended Reset Guidelines Follow the recommended RESET guidelines in Table 9 that describe when reset should be applied to a device. Table 9. Si5317 Pins and Reset 22 Pin # Si5317 Pin Name Must Reset after Changing 2 FRQTBL Yes 11 RATE0 Yes 15 RATE1 Yes 22 BWSEL0 Yes 23 BWSEL1 Yes 24 FRQSEL0 Yes 25 FRQSEL1 Yes 26 FRQSEL2 Yes 27 FRQSEL3 Yes Rev. 1.1 Si5317 3.4. Alarms Summary alarms are available to indicate the overall status of the input signals. Alarm outputs stay high until all the alarm conditions for that alarm output are cleared. 3.4.1. Loss-of-Signal The device has loss-of-signal circuitry that continuously monitors CKIN for missing pulses. An LOS condition on CKIN causes the LOS alarm to become active. Once a LOS alarm is asserted, it remains asserted until the input clock is validated over a designated time period. The time to clear LOS after a valid input clock appears is listed in Table 4, “AC Characteristics”. If another error condition on the same input clock is detected during the validation time, then the alarm remains asserted and the validation time starts over. 3.4.1.1. LOS Algorithm The LOS circuitry divides down each input clock to produce an 8 kHz to 2 MHz signal. The LOS circuitry oversamples this divided down input clock using a 40 MHz clock to search for extended periods of time without input clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, a LOS alarm is declared. Table 4, “AC Characteristics” gives the minimum and maximum amount of time for the LOS monitor to trigger. 3.4.1.2. Lock Detect The PLL lock detection algorithm indicates the lock status on the LOL output pin. The algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. If the time between two consecutive phase cycle slips is greater than the retrigger time, the PLL is in lock. The LOL output has a guaranteed minimum pulse width as shown in Table 4, “AC Characteristics”. The LOL pin is also held in the active state during an internal PLL calibration. The retrigger time is automatically set based on the PLL closed loop bandwidth (see Table 10). Table 10. Lock Detect Retrigger Time PLL Bandwidth Setting (BW) Retrigger Time (ms) 60–120 Hz 53 120–240 Hz 26.5 240–480 Hz 13.3 480–960 Hz 6.6 960–1920 Hz 3.3 1920–3840 Hz 1.66 3840–7680 Hz 0.833 3.5. VCO Freeze The Si5317 device features a VCO freeze mode whereby the DSPLL is locked to a frequency value. If an LOS condition exists on the selected input clock, the device freezes the VCO. In this mode, the device provides a stable output frequency until the input clock returns and is validated. When the device enters VCO freeze, the internal oscillator is initially held to its last frequency value. 3.5.1. Recovery from VCO Freeze When the input clock signal returns, the device transitions from VCO freeze to the selected input clock. Rev. 1.1 23 Si5 317 3.6. PLL Bypass Mode The Si5317 supports a PLL bypass mode in which the selected input clock is fed directly to both enabled output buffers, bypassing the DSPLL. Internally, the bypass path is implemented with high-speed signaling; however, this path is not a low jitter path and will result in significantly higher jitter on CKOUT. In PLL bypass mode, the input and output clocks will be at the same frequency. PLL bypass mode is useful as a debug tool. The DSBL2_BY pin is used to select the PLL Bypass Mode according to Table 11. Bypass mode is not supported for CMOS clock outputs. Table 11. DSBL2/BYPASS Pin Settings DSBL2/BYPASS Function L CKOUT2 Enabled M CKOUT2 Disabled H PLL Bypass Mode w/ CKOUT2 Enabled Figure 6. Bypass Signal 24 Rev. 1.1 Si5317 4. High-Speed I/O 4.1. Input Clock Buffer The Si5317 provides differential inputs for the CKIN clock input. This input is internally biased to a common mode voltage (see Table 2, “DC Characteristics”) and can be driven by either a single-ended or differential source. No additional external bias is required. Figure 7 through Figure 10 show typical interface circuits for LVPECL, CML, LVDS, or CMOS input clocks. Note that the jitter generation improves for higher levels on CKINn within the limits in Table 4, “AC Characteristics”. AC coupling the input clocks is recommended because it removes any issue with common mode input voltages. DC coupling is acceptable if the device driving the Si5317 meets all of the input clock requirements, including the input common mode range and the peak-to-peak swing specifications. Figure 7 and Figure 8 shows various examples of different input termination arrangements. Unused inputs can be left unconnected. Figure 7. Differential LVPECL Termination Figure 8. Single-ended LVPECL Termination Rev. 1.1 25 Si5 317 Figure 9. CML/LVDS Termination (1.8, 2.5, 3.3 V) Figure 10. CMOS Termination with Attenuation and AC-Coupling (1.8, 2.5, 3.3 V) 26 Rev. 1.1 Si5317 4.2. Output Clock Driver The Si5317 has a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML, and CMOS formats. The signal format is selected for CKOUT output using the SFOUT [1:0] pins. This modifies the output common mode and differential signal swing. See Table 2, “DC Characteristics” for output driver specifications. The SFOUT [1:0] pins are three-level input pins with the states designated as L (ground), M (VDD/2), and H (VDD). Table 12 shows the signal formats based on the supply voltage and the type of load being driven. When SFOUT = LH for CMOS, bypass mode is not supported. Table 12. Output Signal Format Selection (SFOUT) SFOUT[1:0] Signal Format HL CML HM LVDS LH CMOS LM Disabled MH LVPECL ML Low-swing LVDS All Others Reserved Figure 11. Typical Differential Output Circuit Figure 12. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn– Together) For the CMOS setting (SFOUT = LH), both output pins drive single-ended in-phase signals and should be externally shorted together to obtain the drive strength specified in Table 2, “DC Characteristics”. Rev. 1.1 27 Si5 317 Figure 13. Disable CKOUT Structure The SFOUT [1:0] pins can also be used to disable both outputs. Disabling the output puts the CKOUT+ and CKOUT– pins in a high-impedance state relative to VDD (common mode tri-state) while the two outputs remain connected to each other through a 200 on-chip resistance (differential impedance of 200 ). The maximum amount of internal circuitry is powered down, minimizing power consumption and noise generation (see Figure 13). Recovery from the disable mode requires additional time as specified in Table 4, “AC Characteristics”. 28 Rev. 1.1 Si5317 5. Crystal/Reference Clock Input The device can use an external crystal or external clock as a reference. If an external clock is used, it must be ac coupled. With appropriate buffers, the same external reference clock can be applied to CKIN. Although the reference clock input can be driven single ended (See Figure 14), the best performance is with a crystal or differential clock source. Figure 14. CMOS External Reference Circuit Figure 15. Sinewave External Reference Clock Input Example Figure 16. Differential External Reference Clock Input Example Rev. 1.1 29 Si5 317 5.1. Crystal/Reference Clock Selection An external low-jitter clock or a low-cost crystal is used as part of a fixed-frequency oscillator within the DSPLL. This external clock is required for the device to perform jitter attenuation. Silicon Laboratories recommends using a high-quality crystal. In VCO freeze, the DSPLL remains locked to this external clock. Any changes in the frequency of this clock when the DSPLL is in VCO freeze will be tracked by the output of the device. Note that crystals can have temperature sensitivities. See “AN591: Crystal Selection for the Si5315 and Si5317“ for a list of approved crystals for the Si5317 and guidance in their selection. AN591 can be downloaded from the Silicon Labs web site: www.silabs.com. Table 13. XA/XB Reference Sources and Frequencies RATE[1:0] Type Recommended Lower limit Upper limit HH Reserved — — — HM Reserved — — — HL Reserved — — — MH External clock 114.285 MHz 109 MHz 125.5 MHz MM 3rd overtone crystal* 114.285 MHz — — ML Reserved — — — LH Reserved — — — LM External clock 38.88 MHz 37 MHz 41 MHz LL Fundamental mode crystal* — — — *Note: See “AN591: Crystal Selection for the Si5315 and Si5317.” Because the crystal is used as a jitter reference, rapid changes of the crystal temperature can temporarily disturb the output phase and frequency. For example, it is recommended that the crystal not be placed close to a fan that is being turned off and on. If a situation such as this is unavoidable, the crystal should be thermally isolated with an insulating cover. 5.1.1. XA/XB Clock Drift During VCO freeze, long-term and temperature-related drift of the XA/XB clock input results in a one-to-one drift of the output frequency. The stability of the any frequency output is identical to the drift of the XA/XB frequency. This means that for the most demanding applications where the drift of a crystal is not acceptable, an external temperature-compensated or ovenized oscillator will be required. Drift is not an issue unless the part is in VCO freeze. Also, the initial accuracy of the XA/XB oscillator (or crystal) is not relevant. 5.1.2. XA/XB Jitter Jitter on the XA/XB input has a roughly one-to-one transfer function to the output jitter over the bandwidth ranging from 100 Hz up to 30 kHz. If a crystal is used on the XA/XB pins, this will have low jitter if a suitable crystal is in use. If the XA/XB pins are connected to an external oscillator, the jitter of the external oscillator may contribute significantly to the output jitter. 30 Rev. 1.1 Si5317 5.1.3. Jitter Attenuation Performance The internal VCO uses the XA/XB clock on the XA/XB pins as its reference for jitter attenuation. The XA/XB pins support either a crystal input or an input buffer single-ended or differential clock input, such that an external oscillator can become the reference source. In either case, the device accepts a wide margin in absolute frequency of the XA/XB input (refer to section 3.5.1. "Recovery from VCO Freeze" on page 23). In VCO freeze, the Si5317's output clock stability matches the clock supplied on the XA/XB pins. The external crystal or clock must be selected based on the stability requirements of the application if VCO freeze is a key requirement. However, care must be exercised in certain areas for optimum performance. For examples of connections to the XA/XB pins, refer to section 5. Figure 22, “Si5317 Typical Application Circuit,” on page 35. Jitter Transfer (dB) Jitter Transfer XA/XB Reference to CKOUT 38.88 MHz Clock on XA/XB, RATE[1:0]=LM Jitter Frequency (Hz) Figure 17. Typical XA-XB Jitter Transfer Function Rev. 1.1 31 Si5 317 5.1.4. Reference Clock Frequency Based on the application and desired output frequency, care should be exercised in selecting the frequency on the reference used for XA/XB. When the CKOUT operating frequency is close to having a simple integer relationship, significant spurs can occur. For example, compare the spurs when the CKOUT operating frequency is 622.08 MHz with a reference of 114.285 MHz (see Figure 21) versus a reference frequency of 38.88 MHz, which is 16 times the XA/XB reference (see Figure 18). Figure 18. Effect of Reference Frequency on Spurs 32 Rev. 1.1 Si5317 6. Power Supply Filtering This device incorporates an on-chip voltage regulator to power the device from supply voltages of 1.8, 2.5, or 3.3 V. Internal core circuitry is driven from the output of this regulator while I/O circuitry uses the external supply voltage directly. Table 4, “AC Characteristics” gives the sensitivity of the on-chip oscillator to changes in the supply voltage. The center ground pad under the device must be electrically and thermally connected to the ground plane. See Figure 25, “Ground Pad Recommended Layout,” on page 42. Figure 19. Typical Power Supply Bypass Network Power Supply Noise Rejection Ratio (dB) Power Supply Noise to Output Transfer Function Frequency of Power Supply Noise (kHz) Figure 20. Fin = Fout = 155 MHz with 120 Hz Loop Bandwidth, 100 mV, pk-pk Supply Noise Rev. 1.1 33 Si5 317 7. Typical Phase Noise Plots The following is a typical phase noise plot. The clock input source was a Rohde and Schwarz model SML03 RF Generator. The phase noise analyzer was an Agilent model E5052B. The Si5317 operates at 3.3 V with an ac coupled differential PECL output and an ac coupled differential sine wave input from the RF generator at 0 dBm. Note that, as with any PLL, the output jitter that is below the loop BW is caused by the jitter at the input clock. The loop BW was 120 Hz. 7.1. Example: SONET OC-192 Figure 21. Typical Phase Noise Plot Jitter Band Jitter, RMS SONET_OC48, 12 kHz to 20 MHz 250 fs SONET_OC192_A, 20 kHz to 80 MHz 274 fs SONET_OC192_B, 4 to 80 MHz 166 fs SONET_OC192_C, 50 kHz to 80 MHz 267 fs Brick Wall, 800 Hz to 80 MHz 274 fs Note: SONET jitter bands include the SONET skirts. The phase noise plot is brick wall integration. 34 Rev. 1.1 Si5317 8. Typical Application Circuit Figure 22. Si5317 Typical Application Circuit Rev. 1.1 35 Si5 317 9. Pin Descriptions: Si5317 Note: Pin assignments are preliminary and subject to change. Table 14. Si5317 Pin Descriptions Pin # Pin Name I/O Signal Level Description 1 RST I LVCMOS 2 FRQTBL I 3-level 3 LOS O LVCMOS 5, 10, 32 VDD VDD Supply External Reset. Active low input that performs external hardware reset of device. Resets all internal logic to a known state. Clock outputs are tristated during reset. After rising edge of RST signal, the Si5317 will perform an internal self-calibration when a valid input signal is present. This pin has a weak pull-up. Frequency Table. Selects frequency table. This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. CKIN Loss of Signal. Active high loss-of-signal indicator for CKIN. Once triggered, the alarm will remain active until CKIN is validated. 0 = CKIN present 1 = LOS on CKIN Supply. The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins: 5 0.1 μF 10 0.1 μF 32 0.1 μF A 1.0 μF should also be placed as close to device as is practical. 36 Rev. 1.1 Si5317 Table 14. Si5317 Pin Descriptions (Continued) Pin # 7 6 Pin Name XB XA 8,31 GND 11 15 14 RATE0 RATE1 DBL2_BY 16 17 I/O I Signal Level Description Analog External Crystal or Reference Clock. External crystal should be connected to these pins to use internal oscillator-based reference. Crystal or reference clock selection is set by the XTAL/CLOCK pin. See “AN591: Crystal Selection for the Si5315 and Si5317.” GND Supply Ground. Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device. I 3-Level External Crystal or Reference Clock Rate. Note: See Table 13 for settings. I 3-Level CKIN+ CKIN– I Multi 18 LOL O LVCMOS 19 DEC I LVCMOS 20 INC I LVCMOS Output 2 Disable/Bypass Mode Control. Controls enable of CKOUT2 divider/output buffer path and PLL bypass mode. L = CKOUT2 enabled M = CKOUT2 disabled H = Bypass mode with CKOUT2 enabled This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Bypass mode is not supported for CMOS clock outputs. Clock Input. Differential input clock. This input can also be driven with a single-ended signal. Input frequency selected from Table 9 on page 22. PLL Loss of Lock Indicator. This pin functions as the active high PLL loss of lock indicator. 0 = PLL locked 1 = PLL unlocked Skew Decrement. This edge-triggered pin decreases the input to output device skew. There is no limit on the range of skew adjustment by this method. Detailed operations and timing characteristics for this pin are found in Section 3.2, Table 8. This pin has a weak pull-down. Skew Increment. This edge-triggered pin increases the input to output device skew. There is no limit on the range of skew adjustment by this method. Detailed operations and timing characteristics for this pin are found in Section 3.2, Table 8. This pin has a weak pull-down. Rev. 1.1 37 Si5 317 Table 14. Si5317 Pin Descriptions (Continued) Pin # 23 22 Pin Name BWSEL1 BWSEL0 I/O I 27 26 25 24 FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0 29 28 CKOUT1– CKOUT1+ O 33 30 SFOUT0 SFOUT1 I Signal Level Description 3-Level Loop Bandwidth Select. Three level inputs that select the DSPLL closed loop bandwidth. See Table 9 on page 22 for available settings. These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Frequency Select. Three level inputs that select the input clock and clock range. See Table 9 on page 22. These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state. Multi Clock Output 1. Output signal format is selected by SFOUT pins. Differential formats supported for LVPECL, LVDS, and CML compatible modes. For single-ended CMOS format, both output pins drive identical, in-phase clock outputs. 3-Level Signal Format Select. Three-level inputs that select the output signal format (common mode voltage and differential swing) for both CKOUT1 and CKOUT2. SFOUT[1:0] 34 35 38 CKOUT2– CKOUT2+ O Multi Signal Format HH Reserved HM LVDS HL CML MH LVPECL MM Reserved ML LVDS—Low Swing LH CMOS LM Disable LL Reserved These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.* CMOS outputs do not support bypass mode. Clock Output 2. Output signal format is selected by SFOUT pins. Differential formats supported for LVPECL, LVDS, and CML compatible modes. For single-ended CMOS format, both output pins drive identical, in-phase clock outputs. Rev. 1.1 Si5317 Table 14. Si5317 Pin Descriptions (Continued) Pin # 4,9,12,13, 21,36 Pin Name NC GND PAD GND I/O — Signal Level Description — No Connect. Leave floating. Make no external connections to this pin for normal operation. GND Supply Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane. *Note: LVPECL requires VDD > 2.25 V Table 15. Si5317 Pull-Up/-Down Pin # Si5317 Pull? 1 RST U 2 FRQTBL U, D 11 RATE0 U, D 15 RATE1 U, D 19 DEC D 20 INC D 22 BWSEL0 U, D 23 BWSEL1 U, D 24 FRQSEL0 U, D 25 FRQSEL1 U, D 26 FRQSEL2 U, D 27 FRQSEL3 U, D 30 SFOUT1 U, D 33 SFOUT0 U, D Rev. 1.1 39 Si5 317 10. Ordering Guide Ordering Part Number Output Clock Freq Range Device Pkg ROHS6, Pb-Free Temp Range Si5317A-C-GM 1–711 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5317B-C-GM 1–350 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5317C-C-GM 1–200 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5317D-C-GM 1–100 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5317-EVB 1–711 MHz Evaluation Board Note: Add an “R” at the end of the device to denote tape and reel options (i.e., Si5317A-C-GMR). 40 Rev. 1.1 Si5317 11. Package Outline: 36-Pin QFN Figure 23 illustrates the package details for the Si5317. Table 16 lists the values for the dimensions shown in the illustration. Figure 23. 36-Pin Quad Flat No-Lead (QFN) Table 16. Package Dimensions Symbol A A1 b D D2 e E E2 Millimeters Min 0.80 0.00 0.18 3.95 3.95 Nom 0.85 0.02 0.25 6.00 BSC 4.10 0.50 BSC 6.00 BSC 4.10 Symbol Max 0.90 0.05 0.30 L aaa bbb ccc ddd eee 4.25 Millimeters Min 0.50 — — — — — — Nom 0.60 — — — — — — Max 0.70 12º 0.10 0.10 0.08 0.10 0.05 4.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC outline MO-220, variation VJJD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.1 41 Si5 317 12. Recommended PCB Layout Figure 24. PCB Land Pattern Diagram Figure 25. Ground Pad Recommended Layout 42 Rev. 1.1 Si5317 Table 17. PCB Land Pattern Dimensions Dimension MIN MAX e 0.50 BSC. E 5.42 REF. D 5.42 REF. E2 4.00 4.20 D2 4.00 4.20 GE 4.53 — GD 4.53 — X — 0.28 Y 0.89 REF. ZE — 6.31 ZD — 6.31 Notes (General): 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-SM-782 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Notes (Solder Mask Design): 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. Notes (Stencil Design): 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad. Notes (Card Assembly): 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.1 43 Si5 317 13. Si5317 Device Top Mark Mark Method: Laser Font Size: 0.80 mm Right-Justified Line 1 Marking: Si5317Q Customer Part Number Q = Speed Code: A, B, C, D See Ordering Guide for options. Line 2 Marking: C-GM C = Product Revision G = Temperature Range –40 to 85 °C (RoHS6) M = QFN Package Line 3 Marking: YYWWRF YY = Year WW = Work Week R = Die Revision F = Internal code Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Line 4 Marking: Pin 1 Identifier Circle = 0.75 mm Diameter Lower-Left Justified XXXX Internal Code 44 Rev. 1.1 Si5317 DOCUMENT CHANGE LIST Revision 0.1 to Revision 0.15 Updated corresponding sections and pinouts to add CKOUT2, INC/DEC, and DBL2_BY functionality. Updated functional block diagram on page 1. Updated Table 2 IDD (DD is subscript). Added Differential Rise/Fall Time spec to Table 2. Updated pin assignment symbol and pin description on page 1 and in section 9 to add CKOUT2, INC/DEC, and DBL2_BY. Added section 3.6. "PLL Bypass Mode”. Updated section 8 diagram to add CKOUT2 and DBL2_BY. Added additional CMOS Termination with attenuation figure. Corrected pin name assignment (pin28) diagram on page 1 and section 9, page 35 to match pin description name. Updated all the frequency plans in Table 8 to provide coverage over the entire frequency range. Revision 0.15 to Revision 0.2 Updated bypass mode, ESD specifications and absolute max VDD. Corrected INC/DEC pinout. Revision 0.2 to Revision 1.0 Removed Output Short to GNDon page 5. Removed duplicate lock time specification on page 11. Removed Time to Clear LOS alarm on page 11. Revised spurious noise values. Revised phase noise values. Revision 1.0 to Revision 1.1 Increased the maximum input/output frequency to 711 MHz Added reference to “AN591: Crystal Selection for the Si5315 and Si5317” Material Material Rev. 1.1 45 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com