Si5325 µ P - P ROGRAMMABLE P RECISION C L O C K M ULTIPLIER Features Optical modules Wireless basestations Data converter clocking xDSL SONET/SDH + PDH clock synthesis Test and measurement Description CLKOUT1– CLKOUT1+ SONET/SDH OC-48/STM-16 and OC-192/STM-64 line cards GbE/10GbE, 1/2/4/8/10GFC line cards ITU G.709 and custom FEC line cards CMODE Applications NC Pin Assignments GND Ordering Information: See page 56. NC I2C or SPI programmable On-chip voltage regulator for 1.8 ±5%, 2.5 or 3.3 V ±10% operation Small size: 6 x 6 mm 36-lead QFN Pb-free, ROHS compliant VDD Dual clock outputs with selectable signal format (LVPECL, LVDS, CML, CMOS) Support for ITU G.709 and custom FEC ratios (255/238, 255/237, 255/236) LOS, FOS alarm outputs CKOUT2– Not recommended for new designs. For alternatives, see the Si533x family of products. Generates frequencies from 2 kHz to 945 MHz and select frequencies to 1.4 GHz from an input frequency of 10 to 710 MHz Low jitter clock outputs with jitter generation as low as 0.5 ps rms (12 kHz–20 MHz) Integrated loop filter with selectable loop bandwidth (150 kHz to 2 MHz) Dual clock inputs w/manual or automatically controlled switching CKOUT2+ 36 35 34 33 32 31 30 29 28 RST 1 27 SDI NC 2 26 A2_SS INT_C1B 3 25 A1 C2B 4 VDD 5 GND 6 NC 7 GND 8 20 GND NC 9 19 GND 24 A0 GND Pad 23 SDA_SDO 22 SCL 21 CS_CA Rev. 1.0 9/14 Copyright © 2014 by Silicon Laboratories NC CLKIN1– VDD CLKIN1+ NC CLKIN2– CLKIN2+ VDD VDD 10 11 12 13 14 15 16 17 18 The Si5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The two outputs are divided down separately from a common source. The device provides frequency translation combinations across this operating range. The Si5325 input clock frequency and clock multiplication ratio are programmable through an I2C or SPI interface. The Si5325 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5325 is ideal for providing clock multiplication in high performance timing applications. Si5325 Si5325 Functional Block Diagram CKIN1 CKIN2 ÷ N31 ® ÷ N32 DSPLL ÷ NC1_LS CKOUT1 ÷ NC2_LS CKOUT2 N1_HS ÷ N2 Alarms VDD (1.8, 2.5, or 3.3 V) Control Signal Detect GND I2C/SPI Port Clock Select Device Interrupt 2 Rev. 1.0 Si5325 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 5. Pin Descriptions: Si5325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8. Land Pattern: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.1. Si5325 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Rev. 1.0 3 Si5325 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Symbol Ambient Temperature TA Supply Voltage during Normal Operation VDD Test Condition Min Typ Max Unit –40 25 85 C 3.3 V Nominal 2.97 3.3 3.63 V 2.5 V Nominal 2.25 2.5 2.75 V 1.8 V Nominal 1.71 1.8 1.89 V Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated. SIGNAL + Differential I/Os VICM , VOCM V VISE , VOSE SIGNAL – (SIGNAL +) – (SIGNAL –) Differential Peak-to-Peak Voltage VID,VOD VICM, VOCM Single-Ended Peak-to-Peak Voltage t SIGNAL + VID = (SIGNAL+) – (SIGNAL–) SIGNAL – Figure 1. Differential Voltage Characteristics 80% CKIN, CKOUT 20% tF tR Figure 2. Rise/Fall Time Characteristics 4 Rev. 1.0 Si5325 Table 2. DC Characteristics (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit IDD LVPECL Format 622.08 MHz Out Both CKOUTs Enabled — 251 279 mA LVPECL Format 622.08 MHz Out 1 CKOUT Enabled — 217 243 mA CMOS Format 19.44 MHz Out Both CKOUTs Enabled — 204 234 mA CMOS Format 19.44 MHz Out 1 CKOUT Enabled — 194 220 mA Disable Mode — 165 — mA 1.8 V ± 5% 0.9 — 1.4 V 2.5 V ± 10% 1 — 1.7 V 3.3 V ± 10% 1.1 — 1.95 V CKNRIN Single-ended 20 40 60 k Single-Ended Input Voltage Swing (See Absolute Specs) VISE fCKIN < 212.5 MHz See Figure 1. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 1. 0.25 — — VPP Differential Input Voltage Swing (See Absolute Specs) VID fCKIN < 212.5 MHz See Figure 1. 0.2 — — VPP fCKIN > 212.5 MHz See Figure 1. 0.25 — — VPP Supply Current1 CKINn Input Pins2 Input Common Mode Voltage (Input Threshold Voltage) Input Resistance VICM Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. Rev. 1.0 5 Si5325 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit CKOVCM LVPECL 100 load line-to-line VDD –1.42 — VDD –1.25 V Differential Output Swing5 CKOVD LVPECL 100 load lineto-line 1.1 — 1.9 VPP Single-Ended Output Swing5 CKOVSE LVPECL 100 load lineto-line 0.5 — 0.93 VPP Differential Output Voltage CKOVD CML 100 load line-toline 350 425 500 mVPP CKOVCM CML 100 load line-toline — VDD-0.36 — V CKOVD LVDS 100 load line-to-line 500 700 900 mVPP Low Swing LVDS 100 load line-to-line 350 425 500 mVPP CKOVCM LVDS 100 load line-toline 1.125 1.2 1.275 V CKORD CML, LVPECL, LVDS — 200 — Output Voltage Low CKOVOLLH CMOS — — 0.4 V Output Voltage High CKOVOHLH VDD = 1.71 V CMOS 0.8 x VDD — — V Output Clocks (CKOUTn)3 Common Mode Common Mode Output Voltage Differential Output Voltage Common Mode Output Voltage Differential Output Resistance Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 6 Rev. 1.0 Si5325 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Output Drive Current (CMOS driving into CKOVOL for output low or CKOVOH for output high. CKOUT+ and CKOUT– shorted externally) Symbol Test Condition Min Typ Max Unit CKOIO ICMOS[1:0] =11 VDD = 1.8 V — 7.5 — mA ICMOS[1:0] =10 VDD = 1.8 V — 5.5 — mA ICMOS[1:0] =01 VDD = 1.8 V — 3.5 — mA ICMOS[1:0] =00 VDD = 1.8 V — 1.75 — mA ICMOS[1:0] =11 VDD = 3.3 V — 32 — mA ICMOS[1:0] =10 VDD = 3.3 V — 24 — mA ICMOS[1:0] =01 VDD = 3.3 V — 16 — mA ICMOS[1:0] =00 VDD = 3.3 V — 8 — mA VDD = 1.71 V — — 0.5 V VDD = 2.25 V — — 0.7 V VDD = 2.97 V — — 0.8 V VDD = 1.89 V 1.4 — — V VDD = 2.25 V 1.8 — — V VDD = 3.63 V 2.5 — — V 2-Level LVCMOS Input Pins Input Voltage Low Input Voltage High VIL VIH Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. Rev. 1.0 7 Si5325 Table 2. DC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit 3-Level Input Pins4 Input Voltage Low VILL — — 0.15 x VDD V Input Voltage Mid VIMM 0.45 x VDD — 0.55 x VDD V Input Voltage High VIHH 0.85 x VDD — — V Input Low Current IILL See Note 4 –20 — — µA Input Mid Current IIMM See Note 4 –2 — +2 µA Input High Current IIHH See Note 4 — — 20 µA VOL IO = 2 mA VDD = 1.71 V — — 0.4 V IO = 2 mA VDD = 2.97 V — — 0.4 V IO = –2 mA VDD = 1.71 V VDD – 0.4 — — V IO = –2 mA VDD = 2.97 V VDD – 0.4 — — V RSTb = 0 –100 — 100 µA LVCMOS Output Pins Output Voltage Low Output Voltage Low Output Voltage High VOH Output Voltage High Disabled Leakage Current IOZ Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD ≥ 2.5 V. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz. 8 Rev. 1.0 Si5325 Table 3. AC Characteristics (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit 10 — 710 MHz 40 — 60 % 2 — — ns — — 3 pF — — 11 ns N1 6 0.002 — 945 MHz N1 = 5 970 — 1134 MHz N1 = 4 1.213 — 1.4 GHz — — 212.5 MHz CKINn Input Pins Input Frequency CKNF Input Duty Cycle (Minimum Pulse Width) CKNDC Input Capacitance CKNCIN Input Rise/Fall Time CKNTRF Whichever is smaller (i.e., the 40% / 60% limitation applies only to high frequency clocks) 20–80% See Figure 2 CKOUTn Output Pins (See ordering section for speed grade vs frequency limits) Output Frequency (Output not configured for CMOS or Disabled) Maximum Output Frequency in CMOS Format CKOF CKOF Output Rise/Fall (20–80 %) @ 622.08 MHz output CKOTRF Output not configured for CMOS or Disabled See Figure 2 — 230 350 ps Output Rise/Fall (20–80%) @ 212.5 MHz output CKOTRF CMOS Output VDD = 1.71 CLOAD = 5 pF — — 8 ns Output Rise/Fall (20–80%) @ 212.5 MHz output CKOTRF CMOS Output VDD = 2.97 CLOAD = 5 pF — — 2 ns Output Duty Cycle Uncertainty @ 622.08 MHz CKODC 100 Load Line-to-Line Measured at 50% Point (Not for CMOS) — — +/-40 ps Rev. 1.0 9 Si5325 Table 3. AC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit LVCMOS Input Pins Minimum Reset Pulse Width tRSTMN 1 — — µs Reset to Microprocessor Access Ready tREADY — — 10 ms Cin — — 3 pF Input Capacitance LVCMOS Output Pins Rise/Fall Times tRF CLOAD = 20 pF See Figure 2 — 25 — ns LOSn Trigger Window LOSTRIG From last CKINn to Internal detection of LOSn N3 ≠ 1 — — 4.5 x N3 TCKIN Time to Clear LOL after LOS Cleared tCLRLOL LOS to LOL Fold = Fnew Stable Xa/XB reference — 10 — ms Output Clock Skew tSKEW of CKOUTn to of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format PHASEOFFSET = 0 CKOUT_ALWAYS_ON = 1 SQ_ICAL = 1 — — 100 ps Phase Change due to Temperature Variation tTEMP Max phase changes from –40 to +85 °C — 300 500 ps Device Skew 10 Rev. 1.0 Si5325 Table 3. AC Characteristics (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit — 35 1200 ms — 0.05 0.1 dB Jitter Frequency Loop Bandwidth 5000/BW — — ns pk-pk 1 kHz Offset — –90 — dBc/Hz 10 kHz Offset — –113 — dBc/Hz 100 kHz Offset — –118 — dBc/Hz 1 MHz Offset — –132 — dBc/Hz PLL Performance (fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL) Lock Time tLOCKMP Closed Loop Jitter Peaking JPK Jitter Tolerance JTOL Phase Noise fout = 622.08 MHz CKOPN Start of ICAL to of LOL Subharmonic Noise SPSUBH Phase Noise @ 100 kHz Offset — –88 — dBc Spurious Noise SPSPUR Max spur @ n x F3 (n 1, n x F3 < 100 MHz) — –93 — dBc Table 4. Microprocessor Control (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit I2C Bus Lines (SDA, SCL) Input Voltage Low VILI2C — — 0.25 x VDD V Input Voltage High VIHI2C 0.7 x VDD — VDD V VDD = 1.8V 0.1 x VDD — — V VDD = 2.5 or 3.3 V 0.05 x VDD — — V VDD = 1.8 V IO = 3 mA — — 0.2 x VDD V VDD = 2.5 or 3.3 V IO = 3 mA — — 0.4 V Hysteresis of Schmitt trigger inputs Output Voltage Low VHYSI2C VOLI2C Rev. 1.0 11 Si5325 Table 4. Microprocessor Control (Continued) (VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Duty Cycle, SCLK tDC SCLK = 10 MHz 40 — 60 % Cycle Time, SCLK tc 100 — — ns Rise Time, SCLK tr 20–80% — — 25 ns Fall Time, SCLK tf 20–80% — — 25 ns Low Time, SCLK tlsc 20–20% 30 — — ns High Time, SCLK thsc 80–80% 30 — — ns Delay Time, SCLK Fall to SDO Active td1 — — 25 ns Delay Time, SCLK Fall to SDO Transition td2 — — 25 ns Delay Time, SS Rise to SDO Tri-state td3 — — 25 ns Setup Time, SS to SCLK Fall tsu1 25 — — ns Hold Time, SS to SCLK Rise th1 20 — — ns Setup Time, SDI to SCLK Rise tsu2 25 — — ns Hold Time, SDI to SCLK Rise th2 20 — — ns Delay Time between Slave Selects tcs 25 — — ns SPI Specifications 12 Rev. 1.0 Si5325 Table 5. Jitter Generation Symbol Parameter Min Typ Max Unit 0.02–80 MHz — .49 — psrms 4–80 MHz — .23 — psrms 0.05–80 MHz — .47 — ps rms 0.12–20 MHz — .48 — ps rms Test Condition* Measurement Filter Jitter Gen OC-192 JGEN Jitter Gen OC-48 JGEN *Note: Test conditions: 1. fIN = fOUT = 622.08 MHz 2. Clock input: LVPECL 3. Clock output: LVPECL 4. PLL bandwidth: 877 kHz 5. VDD = 2.5 V 6. TA = 85 °C Table 6. Thermal Characteristics (VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Value Unit Thermal Resistance Junction to Ambient JA Still Air 32 C°/W Thermal Resistance Junction to Case JC Still Air 14 C°/W Table 7. Absolute Maximum Ratings Parameter Symbol Value Unit DC Supply Voltage VDD –0.5 to 3.8 V LVCMOS Input Voltage VDIG –0.3 to (VDD + 0.3) V CKINn Voltage Level Limits CKNVIN 0 to VDD V XA/XB Voltage Level Limits XAVIN 0 to 1.2 V Operating Junction Temperature TJCT –55 to 150 C Storage Temperature Range TSTG –55 to 150 C 2 kV ESD MM Tolerance; All pins except CKIN+/CKIN– 150 V ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN– 750 V ESD MM Tolerance; CKIN+/CKIN– 100 V ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except CKIN+/CKIN– Latch-Up Tolerance JESD78 Compliant Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Rev. 1.0 13 Si5325 622 MHz In, 622 MHz Out BW=877 kHz Phase Noise (dBc/H -50 -70 -90 -110 -130 -150 -170 1000 10000 100000 1000000 10000000 Offset Frequency (Hz) Figure 3. Typical Phase Noise Plot Table 8. Typical RMS Jitter Values 14 Jitter Bandwidth RMS Jitter (fs) OC-48, 12 kHz to 20 MHz 374 OC-192, 20 kHz to 80 MHz 388 OC-192, 4 MHz to 80 MHz 181 OC-192, 50 kHz to 80 MHz 377 Broadband, 800 Hz to 80 MHz 420 Rev. 1.0 100000000 Si5325 C4 1 µF System Power Supply C3 0.1 µF Ferrite Bead C2 0.1 µF VDD = 3.3 V VDD 130 CKIN1+ GND 130 C1 0.1 µF CKOUT1+ 0.1 µF + 100 CKOUT1– CKIN1– 82 – Clock Outputs CKOUT2+ Input Clock Sources* 0.1 µF 82 + 100 VDD = 3.3 V 130 0.1 µF CKOUT2– 0.1 µF – 130 CKIN2+ Si5325 CKIN2– 82 INT_C1B 82 Interrupt/CKIN_1 Invalid Indicator C2B CMODE Control Mode (L) A[2:0] RST Reset CKIN_2 Invalid Indicator Serial Port Address SDA Serial Data SCL Serial Clock I2C Interface *Note: Assumes differential LVPECL termination (3.3 V) on clock inputs. Figure 4. Si5325 Typical Application Circuit (I2C Control Mode) C4 1 µF System Power Supply C3 0.1 µF Ferrite Bead C2 0.1 µF VDD = 3.3 V CKIN1+ GND 130 VDD 130 C1 0.1 µF CKOUT1– Reset 0.1 µF + 0.1 µF – 130 CKIN2– Control Mode (H) – 100 CKOUT2– CKIN2+ 82 0.1 µF Clock Outputs VDD = 3.3 V 130 + 82 CKOUT2+ Input Clock Sources* 0.1 µF 100 CKIN1– 82 CKOUT1+ Si5325 INT_C1B C2B Interrupt/CLKIN_1 Invalid Indicator CLKIN_2 Invalid Indicator 82 SS CMODE SDO RST SDI SCLK Slave Select Serial Data Out SPI Interface Serial Data In Serial Clock *Note: Assumes differential LVPECL termination (3.3 V) on clock inputs. Figure 5. Si5325 Typical Application Circuit (SPI Control Mode) Rev. 1.0 15 Si5325 2. Functional Description 2.1. Further Documentation The Si5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides frequency translation across this operating range. Independent dividers are available for each input clock and output clock, so the Si5325 can accept input clocks at different frequencies and it can generate output clocks at different frequencies. The Si5325 input clock frequency and clock multiplication ratio are programmable through an I2C or SPI interface. Silicon Laboratories offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation). Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5325. Additional design support is available from Silicon Laboratories through your distributor. Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing; click on Documentation. The Si5325 is based on Silicon Laboratories' thirdgeneration DSPLL® technology, which provides frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5325 PLL loop bandwidth is digitally programmable and supports a range from 150 kHz to 1.3 MHz. The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio. In the case when the input clocks enter alarm conditions, the PLL will freeze the DCO output frequency near its last value to maintain operation with an internal state close to the last valid operating state. The Si5325 has two differential clock outputs. The electrical format of each clock output is independently programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, the second clock output can be powered down to minimize power consumption. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8, 2.5, or 3.3 V supply. 16 Rev. 1.0 Si5325 3. Register Map All register bits that are not defined in this map should always be written with the specified Reset Values. The writing to these bits of values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to. Register D7 D6 D5 0 D4 D3 D2 D1 CKOUT_ALWAYS_ON BYPASS_REG 1 CK_PRIOR2[1:0] 2 CK_PRIOR[1:0] BWSEL_REG[3:0] 3 CKSEL_REG[1:0] 4 AUTOSEL_REG[1:0] 5 ICMOS[1:0] SQ_ICAL 6 SFOUT2_REG[2:0} SFOUT1_REG[2:0] 7 8 FOSREFSEL[2:0] HLOG_2[1:0] HLOG_1[1:0] 10 DSBL2_ REG DSBL1_ REG 11 19 D0 PD_CK2 FOS_EN FOS_THR[1:0] VALTIME[1:0] 20 CK2_BAD_PIN CK1_ BAD_ PIN 21 INT_PIN CK1_ACTV_PIN 22 CK_ACTV_ POL CK_BAD_ POL LOS2_MSK LOS1_MSK 24 FOS2_MSK FOS1_MSK N1_HS[2:0] 31 NC1_LS[19:16] 32 NC1_LS[15:8] 33 NC1_LS[7:0] 34 NC2_LS[19:16] 35 NC2_LS[15:8] 36 NC2_LS[7:0] 40 N2_LS[19:16] 41 N2_LS[15:8] 42 N2_LS[7:0] 43 N31[18:16] 44 N31[15:8] 45 N31[7:0] 46 N32[18:16] 47 N32[15:8] 48 N32[7:0] 55 CKSEL_PIN INT_POL 23 25 PD_CK1 CLKIN2RATE[2:0] 128 CLKIN1RATE[2:0] CK2_ACTV_REG Rev. 1.0 CK1_ACTV_REG 17 Si5325 Register D7 D6 D5 D4 D2 D1 129 LOS2_INT LOS1_INT 130 FOS2_INT FOS1_INT 131 LOS2_FLG LOS1_FLG 132 D3 FOS2_FLG 134 D0 FOS1_FLG PARTNUM_RO[11:4] 135 PARTNUM_RO[3:0] 136 RST_REG REVID_RO[3:0] ICAL 138 139 LOS2_EN[0:0] LOS1_EN[0:0] 142 INDEPENDENTSKEW1[7:0] 143 INDEPENDENTSKEW2[7:0] 18 Rev. 1.0 LOS2_EN [1:1] LOS1_EN [1:1] FOS2_EN FOS1_EN Si5325 4. Register Descriptions Register 0. Bit D7 D6 D4 D3 D2 CKOUT_ALWAYS_ON Name Type D5 R R R/W D1 D0 BYPASS_REG R R R R/W R Reset value = 0001 0100 Bit Name 7:6 Reserved 5 Function CKOUT_ALWAYS_ON CKOUT Always On. This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on and ICAL is not complete or successful. See Table 9 on page 51. 0: Squelch output until part is calibrated (ICAL). 1: Provide an output. Note: The frequency may be significantly off until the part is calibrated. 4:2 Reserved 1 BYPASS_REG 0 Reserved Bypass Register. This bit enables or disables the PLL bypass mode. Use only when the device is in VCO freeze or before the first ICAL. Bypass mode is not supported for CMOS output clocks. 0: Normal operation 1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL. Bypass mode is not supported for CMOS outputs. Rev. 1.0 19 Si5325 Register 1. Bit D7 D6 D5 D4 D3 Name R Type R R D2 D1 D0 CK_PRIOR2 [1:0] CK_PRIOR1 [1:0] R/W R/W R Reset value = 1110 0100 Bit Name Function 7:4 Reserved 3:2 CK_PRIOR2 [1:0] CK_PRIOR 2. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority. 01: CKIN2 is 2nd priority. 10: Reserved 11: Reserved 1:0 CK_PRIOR1 [1:0] CK_PRIOR 1. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00: CKIN1 is 1st priority. 01: CKIN2 is 1st priority. 10: Reserved 11: Reserved Register 2. Bit D7 D6 D5 Name BWSEL_REG [3:0] Type R/W D4 D3 D2 D1 D0 R R R R Reset value = 0100 0010 Bit 7:4 3:0 20 Name Function BWSEL_REG [3:0] BWSEL_REG. Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After BWSEL_REG is written with a new value, an ICAL is required for the change to take effect. Reserved Rev. 1.0 Si5325 Register 3. Bit D7 D6 D5 Name CKSEL_REG [1:0] Type R/W D4 D3 D2 D1 D0 R R R R SQ_ICAL R R/W Reset value = 0000 0101 Bit 7:6 Name Function CKSEL_REG [1:0] CKSEL_REG. If the device is operating in register-based manual clock selection mode (AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock will be the active input clock. If CKSEL_PIN = 1 and AUTOSEL_REG = 00, the CS_CA input pin continues to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. 10: Reserved 11: Reserved 5 Reserved 4 SQ_ICAL 3:0 Reserved SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. See Table 9 on page 51. 0: Output clocks enabled during ICAL. 1: Output clocks disabled during ICAL. Rev. 1.0 21 Si5325 Register 4. Bit D7 D6 Name AUTOSEL_REG [1:0] Type R/W D5 D4 D3 D2 D1 D0 R R R R R R Reset value = 0001 0010 Bit 7:6 Name Function AUTOSEL_REG [1:0] AUTOSEL_REG [1:0]. Selects method of input clock selection to be used. 00: Manual (either register or pin controlled, see CKSEL_PIN) 01: Automatic Non-Revertive 10: Automatic Revertive 11: Reserved 5:0 Reserved Register 5. Bit D7 D6 Name ICMOS [1:0] Type R/W D5 D4 D3 D2 D1 D0 R R R R R R Reset value = 1110 1101 22 Bit Name Function 7:6 ICMOS [1:0] ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT-. 00: 8 mA/2 mA. 01: 16 mA/4 mA 10: 24 mA/6 mA 11: 32 mA/8 mA 5:0 Reserved Rev. 1.0 Si5325 Register 6. Bit D7 D6 Name Type R R D5 D4 D3 D2 D1 SFOUT2_REG [2:0] SFOUT1_REG [2:0] R/W R/W D0 Reset value = 0010 1101 Bit Name Function 7:6 Reserved 5:3 SFOUT2_REG [2:0] SFOUT2_REG [2:0]. Controls output signal format and disable for CKOUT2 output buffer. Bypass mode is not supported for CMOS output clocks. 000: Reserved 001: Disable 010: CMOS (Bypass mode is not supported for CMOS outputs) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS 2:0 SFOUT1_REG [2:0] SFOUT1_REG [2:0]. Controls output signal format and disable for CKOUT1 output buffer. Bypass mode is not supported for CMOS output clocks. 000: Reserved 001: Disable 010: CMOS (Bypass mode is not supported for CMOS outputs) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS Rev. 1.0 23 Si5325 Register 7. Bit D7 D6 D5 D4 D3 D1 D0 FOSREFSEL [2:0] Name Type D2 R R R R R R/W Reset value = 0010 1010 24 Bit Name 7:3 Reserved 2:0 FOSREFSEL [2:0] Function FOSREFSEL [2:0]. Selects which input clock is used as the reference frequency for Frequency Off-Set (FOS) alarms. 000: XA/XB (External reference) 001: CKIN1 010: CKIN2 011: Reserved 100: Reserved 101: Reserved 110: Reserved 111: Reserved Rev. 1.0 Si5325 Register 8. Bit D7 D6 D5 D4 Name HLOG_2[1:0] HLOG_1[1:0] Type R/W R/W D3 D2 D1 D0 R R R R Reset value = 0000 0000 Bit Name Function 7:6 HLOG_2 [1:0] HLOG_2 [1:0]. 00: Normal operation 01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10:Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved 5:4 HLOG_1 [1:0]. 00: Normal operation 01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved 3:0 Reserved Rev. 1.0 25 Si5325 Register 10. Bit D7 D6 D5 D4 Name R Type R R D3 D2 D1 D0 DSBL2_REG DSBL1_REG Reserved Reserved R/W R/W R R R Reset value = 0000 0000 Bit Name 7:4 Reserved Function 3 DSBL2_REG DSBL2_REG. This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is selected, the NC2 output divider is also powered down. 0: CKOUT2 enabled 1: CKOUT2 disabled 2 DSBL1_REG DSBL1_REG. This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is selected, the NC1 output divider is also powered down. 0: CKOUT1 enabled 1: CKOUT1 disabled 1:0 Reserved Register 11. Bit D7 D6 D5 D4 D3 D2 Name Type R R R R R R Reset value = 0100 0000 26 Bit Name Function 7:2 Reserved 1 PD_CK2 PD_CK2. This bit controls the powerdown of the CKIN2 input buffer. 0: CKIN2 enabled 1: CKIN2 disabled 0 PD_CK1 PD_CK1. This bit controls the powerdown of the CKIN1 input buffer. 0: CKIN1 enabled 1: CKIN1 disabled Rev. 1.0 D1 D0 PD_CK2 PD_CK1 R/W R/W Si5325 Register 19. Bit D7 D6 D5 D4 D3 Name FOS_EN FOS_THR [1:0] VALTIME [1:0] Type R/W R/W R/W D2 D1 D0 R R R Reset value = 0010 1100 Bit Name Function 7:5 FOS_EN 6:5 FOS_THR [1:0] FOS_THR [1:0]. Frequency Offset at which FOS is declared: 00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK 01: ± 48 to 49 ppm (SMC) 10: ± 30 ppm (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK. 11: ± 200 ppm 4:3 VALTIME [1:0] VALTIME [1:0]. Sets amount of time for input clock to be valid before the associated alarm is removed. 00: 2 ms 01: 100 ms 10: 200 ms 11: 13 seconds 2:0 Reserved FOS_EN. Frequency Offset Enable globally disables FOS. See the individual FOS enables (FOSX_EN, register 139). 0: FOS disable 1: FOS enabled by FOSx_EN Rev. 1.0 27 Si5325 Register 20. Bit D7 D6 D5 D4 D2 D1 CK2_BAD_PIN CK1_BAD_PIN Name Type D3 R R R R R/W R/W D0 INT_PIN R R/W Reset value = 0011 1110 28 Bit Name Function 7:4 Reserved 3 CK2_BAD_PIN CK2_BAD_PIN. The CK2_BAD status can be reflected on the C2B output pin. 0: C2B output pin tristated 1: C2B status reflected to output pin 2 CK1_BAD_PIN CK1_BAD_PIN. The CK1_BAD status can be reflected on the C1B output pin. 0: C1B output pin tristated 1: C1B status reflected to output pin 1 Reserved 0 INT_PIN INT_PIN. Reflects the interrupt status on the INT_C1B output pin. 0: Interrupt status not displayed on INT_C1B output pin. If CK1_BAD_PIN = 0, INT_C1B output pin is tristated. 1: Interrupt status reflected to output pin. Instead, the INT_C1B pin indicates when CKIN1 is bad. Rev. 1.0 Si5325 Register 21. Bit D7 D6 D5 D4 D3 D2 Name Type R Force 1 R R R R D1 D0 CK1_ACTV_PIN CKSEL_ PIN R/W R/W Reset value = 1111 1111 Bit Name 7:2 Reserved 1 0 Function CK1_ACTV_PIN CK1_ACTV_PIN. The CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin controlled clock selection is not being used. 0: CS_CA output pin tristated. 1: Clock Active status reflected to output pin. CKSEL_PIN CKSEL_PIN. If manual clock selection is being used, clock selection can be controlled via the CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when AUTOSEL_REG = Manual. 0: CS_CA pin is ignored. CKSEL_REG[1:0] register bits control clock selection. 1: CS_CA input pin controls clock selection. Rev. 1.0 29 Si5325 Register 22. Bit D7 D6 D5 D4 Name Type R R R R D3 D2 CK_ACTV_POL CK_BAD_ POL R/W R/W D1 D0 INT_POL R R/W Reset value = 1101 1111 Bit Name 7:4 Reserved 3 30 Function CK_ACTV_ POL CK_ACTV_POL. Sets the active polarity for the CS_CA signals when reflected on an output pin. 0: Active low 1: Active high 2 CK_BAD_ POL 1 Reserved 0 INT_POL CK_BAD_POL. Sets the active polarity for the INT_C1B and C2B signals when reflected on output pins. 0: Active low 1: Active high INT_POL. Sets the active polarity for the interrupt status when reflected on the INT_C1B output pin. 0: Active low 1: Active high Rev. 1.0 Si5325 Register 23. Bit D7 D6 D5 D4 D3 Name Type R R R R D2 D1 D0 LOS2_ MSK LOS1_ MSK Reserved R/W R/W R R Reset value = 0001 1111 Bit Name Function 7:3 Reserved 2 LOS2_MSK LOS2_MSK. Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS2_FLG register. 0: LOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: LOS2_FLG ignored in generating interrupt output. 1 LOS1_MSK LOS1_MSK. Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS1_FLG register. 0: LOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: LOS1_FLG ignored in generating interrupt output. 0 Reserved Rev. 1.0 31 Si5325 Register 24. Bit D7 D6 D5 D4 D3 Name Type R R R R D2 D1 FOS2_MSK FOS1_MSK R/W R/W R D0 R Reset value = 0011 1111 32 Bit Name Function 7:3 Reserved 2 FOS2_MSK FOS2_MSK. Determines if the FOS2_FLG is used to in the generation of an interrupt. Writes to this register do not change the value held in the FOS2_FLG register. 0: FOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: FOS2_FLG ignored in generating interrupt output. 1 FOS1_MSK FOS1_MSK. Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS1_FLG register. 0: FOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1). 1: FOS1_FLG ignored in generating interrupt output. 0 Reserved Rev. 1.0 Si5325 Register 25. Bit D7 D6 Name N1_HS [2:0] Type R/W D5 D4 D3 D2 D1 D0 R R R R R Reset value = 0010 0000 Bit Name Function 7:5 N1_HS [2:0] N1_HS [2:0]. Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 2) low-speed divider. 000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value. 001: N1 = 5 010: N1 = 6 011: N1 = 7 100: N1 = 8 101: N1 = 9 110: N1 = 10 111: N1 = 11 4:0 Reserved Register 31. Bit D7 D6 D5 D4 D3 D1 D0 NC1_LS [19:16] Name Type D2 R R R R R/W Reset value = 0000 0000 Bit Name 7:4 Reserved 3:0 NC1_LS [19:16] Function NC1_LS [19:16]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Rev. 1.0 33 Si5325 Register 32. Bit D7 D6 D5 D4 D3 Name NC1_LS [15:8] Type R/W D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC1_LS [15:8] Function NC1_LS [15:8]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Register 33. Bit D7 D6 D5 D4 D3 Name NC1_LS [7:0] Type R/W D2 D1 D0 Reset value = 0011 0001 34 Bit Name Function 7:0 NC1_LS [19:0] NC1_LS [7:0]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Rev. 1.0 Si5325 Register 34. Bit D7 D6 D5 D4 D3 D2 D1 D0 NC2_LS [19:16] Name R Type R R R R/W Reset value = 0000 0000 Bit Name 7:4 Reserved 3:0 NC2_LS [19:16] Function NC2_LS [19:16]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Register 35. Bit D7 D6 D5 D4 D3 Name NC2_LS [15:8] Type R/W D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 NC2_LS [15:8] Function NC2_LS [15:8]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Rev. 1.0 35 Si5325 Register 36. Bit D7 D6 D5 D4 D3 Name NC2_LS [7:0] Type R/W D2 D1 D0 Reset value = 0011 0001 Bit 7:0 Name Function NC2_LS [7:0] NC2_LS [7:0]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. 00000000000000000000 = 1 00000000000000000001 = 2 00000000000000000011 = 4 00000000000000000101 = 6 ... 11111111111111111111 = 220 Valid divider values = [1, 2, 4, 6, ..., 220] Register 40. Bit D7 D6 D5 D4 D3 D1 N2_LS [19:16] Name Type D2 R R/W Reset value = 1100 0000 Bit Name 7:4 Reserved 3:0 Function N2_LS [19:16] N2_LS [19:16]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive). 00000000000000100000 = 32 00000000000000100010 = 34 00000000000000100100 = 36 ... 00000000001000000000 = 512 Valid divider values = [32, 34, 36...512] 36 Rev. 1.0 D0 Si5325 Register 41. Bit D7 D6 D5 D4 D3 Name N2_LS [15:8] Type R/W D2 D1 D0 Reset value = 0000 0000 Bit 7:0 Name Function N2_LS [15:8] N2_LS [15:8]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive). 00000000000000100000 = 32 00000000000000100010 = 34 00000000000000100100 = 36 ... 00000000001000000000 = 512 Valid divider values = [32, 34, 36...512] Register 42. Bit D7 D6 D5 D4 D3 Name N2_LS [7:0] Type R/W D2 D1 D0 Reset value = 1111 1001 Bit Name 7:0 N2_LS [7:0] Function N2_LS [7:0]. Sets the value for the N2 low-speed divider, which drives the phase detector. Must be an even number ranging from 32 to 512 (inclusive). 00000000000000100000 = 32 00000000000000100010 = 34 00000000000000100100 = 36 ... 00000000001000000000 = 512 Valid divider values = [32, 34, 36...512] Rev. 1.0 37 Si5325 Register 43. Bit D7 D6 D5 D4 D3 D2 D1 D0 N31 [18:16] Name R Type R R R R R/W Reset value = 0000 0000 Bit Name 7:3 Reserved 2:0 N31 [18:16] Function N31 [18:16]. Sets value for input divider for CKIN1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219] Register 44. Bit D7 D6 D5 D4 D3 Name N31_[15:8] Type R/W Reset value = 0000 0000 38 Bit Name 7:0 N31_[15:8] Function N31_[15:8]. Sets value for input divider for CKIN1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219] Rev. 1.0 D2 D1 D0 Si5325 Register 45. Bit D7 D6 D5 D4 D3 Name N31_[7:0] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 1001 Bit Name 7:0 N31_[7:0 Function N31_[7:0]. Sets value for input divider for CKIN1. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values=[1, 2, 3, ..., 219] Register 46. Bit D7 D6 D5 D4 D3 N32_[18:16] Name Type R R R R R R/W Reset value = 0000 0000 Bit Name 7:3 Reserved 2:0 N32_[18:16] Function N32_[18:16]. Sets value for input divider for CKIN2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219] Rev. 1.0 39 Si5325 Register 47. Bit D7 D6 D5 D4 D3 Name N32_[15:8] Type R/W D2 D1 D0 D2 D1 D0 Reset value = 0000 0000 Bit Name 7:0 N32_[15:8] Function N32_[15:8]. Sets value for input divider for CKIN2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values=[1, 2, 3, ..., 219] Register 48. Bit D7 D6 D5 D4 D3 Name N32_[7:0] Type R/W Reset value = 0000 1001 40 Bit Name 7:0 N32_[7:0] Function N32_[7:0]. Sets value for input divider for CKIN2. 0000000000000000000 = 1 0000000000000000001 = 2 0000000000000000010 = 3 ... 1111111111111111111 = 219 Valid divider values = [1, 2, 3, ..., 219] Rev. 1.0 Si5325 Register 55h. Bit D7 D6 Name Type R R D5 D4 D3 D2 D1 CLKIN2RATE_[2:0] CLKIN1RATE[2:0] R/W R/W D0 Reset value = 0000 0000 Bit Name Function 7:6 Reserved 5:3 CLKIN2RATE[2:0] CLKIN2RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved 2:0 CLKIN1RATE [2:0] CLKIN1RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10–27 MHz 001: 25–54 MHz 002: 50–105 MHz 003: 95–215 MHz 004: 190–435 MHz 005: 375–710 MHz 006: Reserved 007: Reserved Rev. 1.0 41 Si5325 Register 128. Bit D7 D6 D5 D4 D3 D2 D0 CK2_ACTV_REG CK1_ACTV_REG Name Type D1 R R R R R R R R Reset value = 0010 0000 Bit Name Function 7:2 Reserved 1 CK2_ACTV_REG CK2_ACTV_REG. Indicates if CKIN2 is currently the active clock for the PLL input. 0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1. 1: CKIN2 is the active input clock. 0 CK1_ACTV_REG CK1_ACTV_REG. Indicates if CKIN1 is currently the active clock for the PLL input. 0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1. 1: CKIN1 is the active input clock. Register 129. Bit D7 D6 D5 D4 D3 Name Type R R R R R Reset value = 0000 0110 42 Bit Name Function 7:3 Reserved 2 LOS2_INT LOS2_INT. Indicates the LOS status on CKIN2. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN2 input. 1 LOS1_INT LOS1_INT. Indicates the LOS status on CKIN1. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN1 input. 0 Reserved Rev. 1.0 D2 D1 LOS2_INT LOS1_INT R R D0 R Si5325 Register 130. Bit D7 D6 D5 D4 D3 D1 D0 FOS2_INT FOS1_INT Name Type D2 R R R R R R R R Reset value = 0000 0001 Bit Name Function 7:3 Reserved 2 FOS2_INT CKIN2 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN2 input. 1 FOS1_INT CKIN1 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN1 input. 0 Reserved Rev. 1.0 43 Si5325 Register 131. Bit D7 D6 D5 D4 D3 D1 D0 LOS2_FLG LOS1_FLG Name Type D2 R R R R R R/W R/W R Reset value = 0001 1111 44 Bit Name Function 7:3 Reserved 2 LOS2_FLG CKIN2 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to this bit. 1 LOS1_FLG CKIN1 Loss-of-Signal Flag. 0: Normal operation 1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to this bit. 0 Reserved Rev. 1.0 Si5325 Register 132. Bit D7 D6 D5 D4 D2 D1 D0 R R FOS2_FLG FOS1_FLG Name Type D3 R R R R R/W R/W Reset value = 0000 0010 Bit Name Function 7:4, 0 Reserved 3 FOS2_FLG CLKIN_2 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to this bit. 2 FOS1_FLG CLKIN_1 Frequency Offset Flag. 0: Normal operation 1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to this bit. 1 Reserved Rev. 1.0 45 Si5325 Register 134. Bit D7 D6 D5 D4 D3 Name PARTNUM_RO [11:4] Type R D2 D1 D0 D2 D1 D0 Reset value = 0000 0001 Bit 7:0 Name Function PARTNUM_RO [11:0] Device ID (1 of 2). 0000 0001 1001: Si5325 Register 135. Bit D7 D6 D5 D4 D3 Name PARTNUM_RO [3:0] REVID_RO [3:0] Type R R Reset value = 1010 0010 Bit 7:4 3:0 46 Name Function PARTNUM_RO [11:0] Device ID (2 of 2). 0000 0001 1001: Si5325 REVID_RO [3:0] Indicates Revision Number of Device. 0000: Revision A 0001: Revision B 0010: Revision C Others: Reserved Rev. 1.0 Si5325 Register 136. Bit D7 D6 Name RST_REG ICAL Type R/W R/W D5 D4 D3 D2 D1 D0 R R R R R R Reset value = 0000 0000 Bit Name 7 RST_REG Function Internal Reset (Same as Pin Reset). Note: The I2C (or SPI) port may not be accessed until 10 ms after RST_REG is asserted. 0: Normal operation. 1: Reset of all internal logic. Outputs disabled or tristated during reset. 6 ICAL 5:0 Reserved Start an Internal Calibration Sequence. For proper operation, the device must go through an internal calibration sequence. ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be present to begin ICAL. Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect. 0: Normal operation. 1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-calibration, LOL will go low. Rev. 1.0 47 Si5325 Register 138. Bit D7 D6 D5 D4 D3 D2 D0 LOS2_EN [1:1] LOS1_EN [1:1] Name Type D1 R R R R R R R/W R/W Reset value = 0000 1111 Bit Name Function 7:2 Reserved 1 LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. SEe the Family Reference Manual for details. 0 LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual for details. 48 Rev. 1.0 Si5325 Register 139. Bit D7 D6 D4 D3 D2 LOS2_EN [0:0] LOS1_EN [0:0] Name Type D5 R R R/W R/W R R D1 D0 FOS2_EN FOS1_EN R/W R/W Reset value = 1111 1111 Bit Name 7:6, 3:2 Reserved 5 LOS2_EN [1:0] Function Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2). Note: LOS2_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details 4 LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details. 1 FOS2_EN Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. 0 FOS1_EN Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring. Rev. 1.0 49 Si5325 Register 142. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW1 [7:0] Type R/W D1 D0 Reset value = 0000 0000 Bit 7:0 Name Function INDEPENDENTSKEW1 [7:0] INDEPENDENTSKEW1. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Default = 0. Register 143. Bit D7 D6 D5 D4 D3 D2 Name INDEPENDENTSKEW2 [7:0] Type R/W D1 D0 Reset value = 0000 0000 50 Bit Name 7:0 INDEPEND-ENTSKEW2 [7:0] Function INDEPENDENTSKEW2. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider. Default = 0. Rev. 1.0 Si5325 Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table CKOUT_ALWAYS_ON SQICAL Results Output to Output Skew Preserved? 0 0 CKOUT OFF until after the first ICAL N 0 1 CKOUT OFF until after the first successful ICAL (i.e., when LOL is low) Y 1 0 CKOUT always ON, including during an ICAL N 1 1 CKOUT always ON, including during an ICAL Y Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed. Table 10. Register Locations Requiring ICAL Addr Register 0 BYPASS_REG 0 CKOUT_ALWAYS_ON 1 CK_PRIOR2 1 CK_PRIOR1 2 BWSEL_REG 4 HIST_DEL 5 ICMOS 7 FOSREFSEL 9 HIST_AVG 10 DSBL2_REG 10 DSBL1_REG 11 PD_CK2 11 PD_CK1 19 FOS_EN 19 FOS_THR 19 VALTIME 19 LOCKT 25 N1_HS 31 NC1_LS 34 NC2_LS 40 N2_HS 40 N2_LS 43 N31 46 N32 55 CLKIN2RATE 55 CLKIN1RATE Rev. 1.0 51 Si5325 CLKOUT1+ CLKOUT1– NC GND NC VDD CKOUT2– CKOUT2+ CMODE 5. Pin Descriptions: Si5325 36 35 34 33 32 31 30 29 28 RST 1 27 SDI NC 2 26 A2_SS INT_C1B 3 25 A1 C2B 4 VDD 5 GND 6 NC 7 GND 8 20 GND NC 9 19 GND 24 A0 GND Pad 23 SDA_SDO 22 SCL 21 CS_CA NC CLKIN1– CLKIN1+ VDD NC CLKIN2– CLKIN2+ VDD VDD 10 11 12 13 14 15 16 17 18 Table 11. Si5325 Pin Descriptions Pin # Pin Name I/O Signal Level Description 1 RST I LVCMOS External Reset. Active low input that performs external hardware reset of device. Resets all internal logic to a known state and forces the device registers to their default value. Clock outputs are tristated during reset. The part must be programmed after a reset or power-on to get a clock output. See Family Reference Manual for details. This pin has a weak pull-up. 2, 7, 9, 14, 18, 30, 33 NC 3 INT_C1B No Connect. This pin must be left unconnected for normal operation. O LVCMOS Interrupt/CKIN1 Invalid Indicator. This pin functions as a device interrupt output or an alarm output for CKIN1. If used as an interrupt output, INT_PIN must be set to 1. The pin functions as a maskable interrupt output with active polarity controlled by the INT_POL register bit. If used as an alarm output, the pin functions as a LOS (and optionally FOS) alarm indicator for CKIN1. Set CK1_BAD_PIN = 1 and INT_PIN = 0. 0 = CKIN1 present. 1 = LOS (FOS) on CKIN1. The active polarity is controlled by CK_BAD_POL. If no function is selected, the pin tristates. Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map. 52 Rev. 1.0 Si5325 Table 11. Si5325 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 4 C2B O LVCMOS CKIN2 Invalid Indicator. This pin functions as a LOS (and optionally FOS) alarm indicator for CKIN2 if CK2_BAD_PIN = 1. 0 = CKIN2 present. 1 = LOS (FOS) on CKIN2. The active polarity can be changed by CK_BAD_POL. If CK2_BAD_PIN = 0, the pin tristates. 5, 10, 11, 15, 32 VDD VDD Supply Supply. The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins: 5 0.1 µF 10 0.1 µF 32 0.1 µF A 1.0 µF should also be placed as close to device as is practical. 6, 8, 19, 20 31 GND GND Supply Ground. Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device. 12 13 CKIN2+ CKIN2– I Multi Clock Input 2. Differential input clock. This input can also be driven with a single-ended signal. Input frequency range is 10 to 710 MHz. 16 17 CKIN1+ CKIN1– I Multi Clock Input 1. Differential input clock. This input can also be driven with a single-ended signal. Input frequency range is 10 to 710 MHz. Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map. Rev. 1.0 53 Si5325 Table 11. Si5325 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 21 CS_CA I/O LVCMOS Input Clock Select/Active Clock Indicator. Input: In manual clock selection mode, this pin functions as the manual input clock selector if the CKSEL_PIN is set to 1. 0 = Select CKIN1. 1 = Select CKIN2. If CKSEL_PIN = 0, the CKSEL_REG register bit controls this function. If configured as input, must be set high or low. Output: In automatic clock selection mode, this pin indicates which of the two input clocks is currently the active clock. If alarms exist on both clocks, CA will indicate the last active clock that was used before entering the VCO freeze state. The CK_ACTV_PIN register bit must be set to 1 to reflect the active clock status to the CA output pin. 0 = CKIN1 active input clock. 1 = CKIN2 active input clock. If CK_ACTV_PIN = 0, this pin will tristate. The CA status will always be reflected in the CK_ACTV_REG read only register bit. 22 SCL I LVCMOS Serial Clock/Serial Clock. This pin functions as the serial clock input for both SPI and I2C modes. This pin has a weak pulldown. 23 SDA_SDO I/O LVCMOS Serial Data. In I2C control mode (CMODE = 0), this pin functions as the bidirectional serial data port. In SPI control mode (CMODE = 1), this pin functions as the serial data output. 25 24 A1 A0 I LVCMOS Serial Port Address. In I2C control mode (CMODE = 0), these pins function as hardware controlled address bits. The I2C address is 1101 [A2] [A1] [A0]. In SPI control mode (CMODE = 1), these pins are ignored. This pin has a weak pulldown. 26 A2_SS I LVCMOS Serial Port Address/Slave Select. In I2C control mode (CMODE = 0), this pin functions as a hardware controlled address bit [A2]. In SPI control mode (CMODE = 1), this pin functions as the slave select input. This pin has a weak pulldown. Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map. 54 Rev. 1.0 Si5325 Table 11. Si5325 Pin Descriptions (Continued) Pin # Pin Name I/O Signal Level Description 27 SDI I LVCMOS 29 28 CKOUT1– CKOUT1+ O Multi Output Clock 1. Differential output clock with a frequency range of 10 MHz to 1.4175 GHz. Output signal format is selected by SFOUT1_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. 34 35 CKOUT2– CKOUT2+ O Multi Output Clock 2. Differential output clock with a frequency range of 10 MHz to 1.4175 GHz. Output signal format is selected by SFOUT2_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. 36 CMODE I LVCMOS GND PAD GND GND Supply Serial Data In. In I2C control mode (CMODE = 0), this pin is ignored. In SPI control mode (CMODE = 1), this pin functions as the serial data input. This pin has a weak pulldown. Control Mode. Selects I2C or SPI control mode for the Si5325. 0 = I2C Control Mode. 1 = SPI Control Mode. Must not float. Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane. Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5325 Register Map. Rev. 1.0 55 Si5325 6. Ordering Guide Ordering Part Number Output Clock Frequency Range Package ROHS6, Pb-Free Temperature Range Si5325A-C-GM* .002–945 MHz 970–1134 MHz 1.213–1.4 GHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5325B-C-GM* .002–808 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C Si5325C-C-GM* .002–346 MHz 36-Lead 6 x 6 mm QFN Yes –40 to 85 °C *Note: Not recommended for new designs. For alternatives, see the Si533x family. 56 Rev. 1.0 Si5325 7. Package Outline: 36-Pin QFN Figure 6 illustrates the package details for the Si5325. Table 12 lists the values for the dimensions shown in the illustration. Figure 6. 36-Pin Quad Flat No-lead (QFN) Table 12. Package Dimensions Symbol Millimeters Symbol Millimeters Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 — — 12º b 0.18 0.25 0.30 aaa — — 0.10 bbb — — 0.10 ccc — — 0.08 D D2 L 6.00 BSC 3.95 4.10 4.25 Min Nom Max 0.50 0.60 0.70 e 0.50 BSC ddd — — 0.10 E 6.00 BSC eee — — 0.05 E2 3.95 4.10 4.25 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC outline MO-220, variation VJJD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.0 57 Si5325 8. Land Pattern: 36-Pin QFN Figure 7. 36-Pin QFN Land Pattern 58 Rev. 1.0 Si5325 Table 13. PCB Land Pattern Dimensions Dimension MIN MAX e 0.50 BSC. E 5.42 REF. D 5.42 REF. E2 4.00 4.20 D2 4.00 4.20 GE 4.53 — GD 4.53 — X — 0.28 Y 0.89 REF. ZE — 6.31 ZD — 6.31 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on IPC-SM-782 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad. Card Assembly 10. A No-Clean, Type-3 solder paste is recommended. 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.0 59 Si5325 9. Top Marking 9.1. Si5325 Top Marking (QFN) 9.2. Top Marking Explanation Mark Method: Laser Font Size: 0.80 mm Right-Justified Line 1 Marking: Si5325Q Customer Part Number Q = Speed Code: A, B, C See Ordering Guide for options. Line 2 Marking: C-GM C = Product Revision G = Temperature Range –40 to 85 °C (RoHS6) M = QFN Package Line 3 Marking: YYWWRF YY = Year WW = Work Week R = Die Revision F = Internal code Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Line 4 Marking: Pin 1 Identifier Circle = 0.75 mm Diameter Lower-Left Justified XXXX Internal Code 60 Rev. 1.0 Si5325 DOCUMENT CHANGE LIST Revision 0.4 to Revision 0.5 Clarified that the two outputs have a common, higher frequency source on page 1. Changed LVTTL to LVCMOS in Table 2, “Absolute Maximum Ratings,” on page 5. Added Figure 1, “Typical Phase Noise Plot,” on page 4. Updated “5. Pin Descriptions: Si5325”. Removed Changed references to latency control, INC, and DEC. font for register names to underlined italics. Updated "6. Ordering Guide" on page 56. Added “8. Land Pattern: 36-Pin QFN”. Added “not recommended for new designs” language. Updated Table 5 on page 52. Updated "6. Ordering Guide" on page 56. Removed note from "5. Pin Descriptions: Si5325" on page 52. Revision 0.5 to Revision 1.0 Updated logo. Transitioned to full production. Revision 0.24 to Revision 0.25 Expanded electrical specification tables 1 through 7. Removed support for CMOS outputs in Bypass mode. Corrected minor errors in register map section. Updated " Features" on page 1“. Revision 0.23 to Revision 0.24 Updated Section "5. Pin Descriptions: Si5325" on page 52. Revision 0.25 to Revision 0.26 Removed Figure 1. “Typical Phase Noise Plot.” Changed pins 11 and 15 from NC to VDD in “5. Pin Descriptions: Si5325”. Revision 0.26 to Revision 0.3 Changed 1.8 V operating range to ±5%. Updated Table 1 on page 4. Updated Table 2 on page 5. Added page 14. Updated "2. Functional Description" on page 16. Clarified "5. Pin Descriptions: Si5325" on page 52 including pull-up/pull-down. Revision 0.3 to Revision 0.4 Added register map Lowered minimum CKOUT frequency Updated spec tables ESD tolerance, Table 2 on page 5 input and output clock frequencies, Table 1 on page 4 Absolute maximum VDD voltage, Table 2 on page 5 Minimum Added to spec table CKIN voltage limits, Table 2 on page 5 jitter and phase noise values, Table 1 on page 4 Typical No bypass mode with CMOS outputs Rev. 1.0 61 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com