AN656: Using NEC BJT(NESG270034 and NESG250134) Power Amplifier with Si446x

AN656
USING NEC BJT(NESG270034
P O W E R A M P L I F I E R W IT H S i 4 4 6 X
AND
NESG250134)
1. Introduction
Silicon Laboratories' Si446x devices are high-performance, low-current transceivers covering the sub-GHz
frequency bands from 142 to 1050 MHz. The Si4464/63 offers exceptional output power of up to +20 dBm with
outstanding TX efficiency. The Si4464/63 can achieve up to +27 dBm output power with built-in ramping control of
a low-cost, external power device (BJT, LDMOS, or even a PA block). The high output power increases link budget
allowing extended ranges and highly robust communication links.
In this application note, the NESG270034 and NESG250134 NPN SiGe type power BJTs from NEC are used as an
external power device. The NESG270034 is the NPN SiGe RF transistor for medium output power (2 W)
amplification with a 6 V power supply. The NESG250134 is the NPN SiGe RF transistor for medium output power
(800 mW) amplification with a 3.3 V power supply.
The purpose of this application note is to provide a description of the PA matching and filter circuit when using NEC
BJTs with the Si446x family of RFICs at 169, 434, 470, and 868 MHz bands.
Measurements were performed on the Si4463-B0 chip but are applicable to other 20 dBm output members of the
Si446x family of chips.
2. BJT Power Amplifier (PA) and Match Circuit
Figure 1 shows the diagram of the RF circuits when using an external PA with the Si446x. The PA is inserted
between the Si446x match circuit and harmonics filter. GPIO0 and GPIO2 are used to control the RF switch
between the transmitter and receiver. Filters are used to attenuate the harmonics to meet applicable regulatory
standards.
$QWHQQD
*3,2
75;
*3,2
&5
*3,2
&
/5
)LOWHU
5[
/&
6'1
5;3
5;1
7;
1&
&&
&
3$
6L;
16(/
6',
6'2
6&/.
1,54
(3
9''
&5
(3
7[
&
8
&
*3,2B
*3,2B
*1';
;,1
;287
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
8
/5
-
9&7/
*1'
5)&
-
9&7/
)LOWHU
/
7[B5$03
*3,2
Figure 1. BJT PA Working with the Si446x
Rev. 0.2 2/12
Copyright © 2012 by Silicon Laboratories
AN656
AN656
2.1. Match Network Design of NESG270034 (6 V Power Supply)
Figure 2 shows the theoretical diagram of the NESG270034 application circuits.
VCE
VBE
R1
C5
C4
R2
L2
L4
L1
C3
RF OUT
RF IN
C2
C1
L3
Figure 2. NESG270034 Application Circuits
In the circuit, VCE is 6 V, VBE is about 0.7 V. C1 and C3 are used as dc block and RF matching. L3 and L4 are
used as input and output RF matching separately. L1 and L2 are used as RF block and RF matching. R1 and R2
can improve stability.
The practical circuit of the NESG270034 needs to be modified according to the frequency band and input/output
matching requirements.
2
Rev. 0.2
AN656
2.1.1. Match Design for NESG270034 at 169 MHz Band
Figure 3 shows the circuit for the NESG270034 BJT PA part at 169 MHz. In the circuit, LM0 and C1 are used for
RF matching in the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and R8 form
the bias circuit for PA. R9 is used for stability.
The design goals are as follows according to ETSI EN300220-1's requirement on harmonics:
The
2nd harmonics should be below –36 dBm.
The 3rd, 4th, and 5th harmonics should be below –54 dBm.
Other higher harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
5)B,1
Q+
/&
Q+
5
5
&
&
Q)
&
S)
&
Q)
&
/
/0
Q+
Q+
/0
&
4
%
S)
5
.
(
1(6*
5
.
5
X)
9''
93$
6-
Figure 3. PA Match Circuit for NESG270034 at 169 MHz Band
Rev. 0.2
3
AN656
2.1.2. Match Design for NESG270034 at 434 MHz Band
Figure 4 shows the circuit for the NESG270034 BJT PA part at 434 MHz. In the circuit, LM0 and C1 are used for
RF matching in the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and LC4
form the bias circuit for PA. R9 is used for stability.
The design goals are as follows according to ETSI EN300220-1's requirement on harmonics:
The
2nd harmonics should be below –36 dBm.
Other higher harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
&
Q+
&
5
/&
S)
/0
Q+
5
&
5)B,1
S)
/0
&
Q+
4
/&
%
Q+
Q)
&
S)
&
Q)
&
(
1(6*
5
.
5
X)
9''
93$
6-
Figure 4. PA Match Circuit for NESG270034 at 434 MHz Band
4
Rev. 0.2
AN656
2.1.3. Match Design for NESG270034 at 470 MHz Band
Figure 5 shows the circuit for the NESG270034 BJT PA part at 470 MHz. In the circuit, LM0 and C1 are used for
RF matching in the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and LC4
form the bias circuit for PA.
The design goals are as follows similar to ETSI EN300220-1's requirement on harmonics:
The
2nd harmonics should be below –36 dBm.
Other higher harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
&
Q+
Q+
/0
&
Q+
&
4
&
%
S)
(
1(6*
5
Q)
&
/&
Q+
Q)
&
S)
/&
5
&
5)B,1
S)
/0
.
5
X)
9''
93$
6-
Figure 5. PA Match Circuit for NESG270034 at 470 MHz Band
Rev. 0.2
5
AN656
2.1.4. Match Design for NESG270034 at 868 MHz Band
Figure 6 shows the circuit for NESG270034 BJT PA part. In the circuit, C1 and LM0 are used for RF matching in
the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and LC4 form the bias circuit
for PA.
The design goals are as follows according to ETSI EN300220-1's requirement on harmonics:
The
harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
5)B,1
/0
Q+
/0
/&
Q+
Q+
&
5
&
4
S)
&
%
/&
Q+
Q)
&
S)
&
Q)
&
(
1(6*
5
.
5
X)
9''
93$
6-
Figure 6. PA Match Circuit for NESG270034 at 868 MHz Band
6
Rev. 0.2
AN656
2.2. Match Network Design for NESG250134 (3.3 V Power Supply)
NESG250134 is very similar to NESG270034, so the same topology shown in Figure 2 can be used for matching
the NESG250134; however, VCE must be changed to 3.3 V.
The practical circuit of the NESG250134 needs to be modified according to the frequency band and input/output
matching requirements.
2.2.1. Match Design for NESG250134 at 169 MHz Band
Figure 7 shows the circuit for NESG250134 BJT PA part at 169 MHz. In the circuit, LM0, L0, and C1 are used for
RF matching in the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and R8 form
the bias circuit for PA. R9 is used for stability.
The design goals are as follows according to ETSI EN300220-1’s requirement on harmonics:
The
2nd harmonics should be below –36 dBm.
The 3rd, 4th, and 5th harmonics should be below –54 dBm.
Other, higher harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
5)B,1
Q+
/&
Q+
5
5
&
&
Q)
&
S)
&
Q)
&
/
/0
Q+
Q+
/0
&
4
%
S)
5
.
(
1(6*
5
.
5
X)
9''
93$
6-
Figure 7. PA Match Circuit for NESG250134 at 169 MHz Band
Rev. 0.2
7
AN656
2.2.2. Match Design for NESG250134 at 868 MHz Band
Figure 8 shows the circuit for the NESG250134 BJT PA part. In the circuit, C1 and LM0 are used for RF matching
in the input circuit. LM1 and CM1 are used for RF matching in the output circuit. R6, R3, and LC4 form the bias
circuit for PA.
The design goals are as follows according to ETSI EN300220-1’s requirement on harmonics:
The
harmonics should be below –30 dBm.
5)B287
&
S)
&0
S)
5)B,1
/0
Q+
/0
/&
Q+
Q+
5
&
1)
5
&
&
S)
4
/&
%
Q+
Q)
&
S)
&
Q)
&
(
1(6*
5
.
5
X)
9''
93$
6-
Figure 8. PA Match Circuit for NESG250134 at 868 MHz Band
8
Rev. 0.2
AN656
2.3. Filter Design
A low-pass filter network is needed to attenuate the harmonics below the level required to meet applicable
regulatory specs (e.g., FCC or ETSI).
However, the RF switch itself is not a perfectly ideal component; it will re-generate some amount of harmonic
energy, regardless of the cleanliness of the input signal from the TX low-pass filter. Thus, it is necessary to place
some amount of low-pass filtering after the RF switch and prior to the antenna. It is not required to increase the
total order of low-pass filtering (i.e., number of filter poles); instead, it is generally sufficient to split the normal
amount of low-pass filtering into two half-filter sections of approximately equal cutoff frequency. The RF switch is
placed between these two half-filter sections. In this fashion, the final half-filter section cleans up any harmonic
energy re-generated by the RF switch.
The initial design goals for the low-pass filter are as follows:
Minimal
insertion loss at the desired operating frequency
attenuation at the harmonics required by regulatory spec (for example, ETSI)
Lowest filter order possible to still achieve this required harmonics attenuation
A Chebyshev low-pass filters are selected in this application note because of the acceptable filter response.
Enough
2.3.1. Filter Design at 169 MHz Band
Figure 9 shows the circuit for filters part at 169 MHz band. In the circuit, a five-order Chebyshev filter is used at the
output of the RF switch and a three-order Chebyshev filter is used at the input of the RF switch.
*3,2
2KPORDG
*3,2
75;
60$5$
6-
&)
Q+
&)
S)
&
S)
Q+
S)
/)
/)
&
Q+
8
Q+
/)
-
9&7/
*1'
5)&
-
9&7/
/)
/)
6-
&)
Q+
S)
S)
5)B,1
Figure 9. Filter Circuit for 169 MHz Band
Rev. 0.2
9
AN656
2.3.2. Filter Design at 434 MHz Band
Figure 10 shows the circuit for filters part at 434 MHz band. In the circuit, a five-order Chebyshev filter is used at
the output of the RF switch and a three-order Chebyshev filter is used at the input of the RF switch.
2KPORDG
*3,2
*3,2
75;
60$5$
6-
/)
Q+
&)
S)
S)
&)
S)
/)
&) Q+
S)
8
Q+
&)
&
S)
-
9&7/
*1'
5)&
-
9&7/
/)
6-
&
&)
S)
S)
5)B,1
Figure 10. Filter Circuit for 434 MHz Band
2.3.3. Filter Design at 470 MHz Band
Figure 11 shows the circuit for filters part at 470 MHz band. In the circuit, a five-order Chebyshev filter is used at
the output of the RF switch and a three-order Chebyshev filter is used at the input of the RF switch.
*3,2
*3,2
2KPORDG
75;
60$5$
6-
S)
Q+
&)
Q+
S)
6-
&
S)
&)
S)
8
&)
/)
9&7/
-
*1'
5)&
-
9&7/
/)
/)
&
S)
&)
S)
5)B,1
Q+
&)
S)
Figure 11. Filter Circuit for 470 MHz Band
10
Rev. 0.2
AN656
2.3.4. Filter Design at 868 MHz Band
Figure 12 shows the circuit for filters part at 868 MHz band. In the circuit, a three-order Chebyshev filter is used at
the output of the RF switch and a three-order Chebyshev filter is used at the input of the RF switch.
2KPORDG
*3,2
*3,2
75;
60$5$
6-
/)
&
S)
Q+
S)
/)
&
S)
Q+
8
S)
&)
-
9&7/
*1'
5)&
-
9&7/
&)
6-
/)
&)
Q+
S)
5)B,1
Figure 12. Filter Circuit for 868 MHz Band
Rev. 0.2
11
AN656
3. Measurement Results for NESG270034 6 V Power Supply Solution
The measurements are done under the following parameters:
6.0
V power supply for BJT; 3.3 V for Si4463.
data rate is 38.4 Kbps; frequency deviation is 20 kHz.
Operating frequency is 169 MHz, 434 MHz, and 470 MHz separately.
Conducted test, RX sensitivity measured at 1E-3 BER level.
Receiving
3.1. Measurement Results at 169 MHz Band
In the measurement, a four-layer PCB test card (4463-TSQ27F169-6V) is used. The circuits are shown in
Figure 13.
&5
*3,2
;287
*3,2
2KPORDG
S)
75;
60$5$
S)
5
5
.
5
9''
93$
&
&
&
&
X)
Q)
S)
S)
&
1)
&
6L&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
6-
&215
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
-$
-%
4
73
6-
&
1,54
6'2
6'1
6',
16(/
6-
Q)
6-
6-
&
X)
6-
5
*3,2
.
*3,2
5
*3,2
*3,2
1(6*
*1'
1)
5
5
/)
&
6-
5
*3,2
Q)
S)
9
%
(
1)
4
&
Q)
&6
&
&
&
5
.
16(/
6',
6'2
6&/.
1,54
Q+
&
6'1
5;3
5;1
7;
1&
/
/0
Q+
Q+
Q+
/&
S)
&
/0
Q)
5
(3
&0
Q+
S)
6L
(3
S)
8
*3,2
/&
S)
6&/.
/&
Q+
Q+
(%,'B6&.
(%,'B026,
6-
*1'
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
&)
$$&
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
S)
/)
Q+
0+]
7=$
*3,2B
*3,2B
*1';
;,1
;287
/)
&
&
9&&
&6
62 +2/'
:3
6&.
*1'
6,
1)
S)
S)
5
&
S)
S)
Q+
1)
4
&)
9''
&5
S)
8
Q+
&
.
Q+
9&7/
-
*1'
5)&
-
9&7/
&)
/5
6-
9
8
5
&
6-
/)
/)
&
(%,'B0,62
(%,'B16(/
9
/5
Q+
/)
Q+
%RDUG,GHQWLILFDWLRQ((3520
N+]
7=$
&
S)
R
SILICON LABS
SILICON LABORATORIES
7,7/(
764)9
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 13. 4463-TSQ27F169-6V Schematic
The RF measurement results are as follows:
Sensitivity:
–108.5 dBm.
shutdown current consumption: 0.1 µA
Output power (dBm), harmonics (dBm), current consumption (mA) of Si4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
BJT
Fund.
30.1
27.0
P2
–40
–41.5
P3
–58.3
—
P4
–58.7
—
P5
–60
—
P6
—
—
P7
—
—
Note: — means the harmonic is below –60 dBm.
12
Rev. 0.2
P8
—
—
P9
—
—
P10
—
—
ISi4463
90
50
IBJT
420
280
EffBJT
40%
30%
AN656
3.2. Measurement Results at 434 MHz Band
In the measurement, a four-layer PCB test card (4463-TCE27F434-6V) is used. The circuits are shown in
Figure 14.
*3,2
&5
*3,2
S)
75;
60$5$
S)
/0
Q+
Q+
9''
93$
Q)
&
&
&
&
X)
Q)
S)
S)
&
1)
&
&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
&
1,54
6'2
6'1
6',
6-
6-
&215
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
-$
-%
4
73
6-
6-
5
6-
&
X)
5
6-
5
.
/)
&
*3,2
5
*3,2
Q)
1(6*
*3,2
&
*1'
*3,2
*3,2
S)
9
1)
&
(
N
6-
5
/&
%
&
Q)
1)
4
&
&
5
&6
5
5
Q+
(%,'B6&.
(%,'B026,
Q)
16(/
6',
6'2
6&/.
1,54
S)
6'1
5;3
5;1
7;
1&
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
&
5
/&
Q+
S)
Q+
/
&
/0
&0
6&/.
S)
S)
6L
*3,2B
*3,2B
*1';
;,1
;287
8
*3,2
/&
Q+
6-
*1'
&
S)
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
S)
S)
&)
0+]
7=$
/)
&) Q+
1)
S)
&
9&&
&6
62 +2/'
6&.
:3
*1'
6,
$$&
(3
5
&
8
S)
1)
4
16(/
&)
S)
&
9''
&5
Q+
&)
Q+
&
N
S)
-
9&7/
*1'
5)&
-
9&7/
Q+
/5
6-
9
8
5
(3
/)
S)
S)
(%,'B0,62
(%,'B16(/
9
/)
&
%RDUG,GHQWLILFDWLRQ((3520
/5
Q+
6-
&)
;287
2KPORDG
N+]
7=$
&
S)
R
SILICON LABS
SILICON LABORATORIES
7,7/(
7&()9
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 14. 434 MHz 6 V Supply Solution Schematic
The RF measurement results are as follows:
Sensitivity:
–108.5 dBm.
shutdown current consumption: 0.1 µA.
Output power (dBm), harmonics (dBm), current consumption (mA) of Si4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
BJT
Fund.
29.8
27.0
P2
–40.5
–41
P3
–56.7
–58
P4
–60
—
P5
—
—
P6
—
—
P7
—
—
P8
—
—
P9
—
—
P10
—
—
ISi4463
95
80
IBJT
430
290
EffBJT
37%
29%
Note: — means the harmonic is below –60 dBm.
Rev. 0.2
13
AN656
3.3. Measurement Results at 470 MHz Band
In the measurement, a four-layer PCB test card (4463-TCE27F434-6V) is used. The circuits are shown in
Figure 15.
&5
&
S)
/&
/
&
/0
1,54
6'2
6'1
6',
16(/
6&/.
6-
9''
93$
6-
6-
6-
*3,2
*3,2
*3,2
*3,2
6-
&
5
.
5
5
X)
*1'
*3,2
1(6*
/)
&
9
1&
6-
Q)
5
Q+
(
&6
/&
%
Q)
N
16(/
6',
6'2
6&/.
1,54
1&
4
&
&
/0
Q+
5
S)
&
&
S)
6'1
5;3
5;1
7;
1&
&
/&
&
Q+
S)
Q+
Q)
5
(3
&0
S)
*3,2B
*3,2B
*1';
;,1
;287
/&
S)
Q+
S)
6L;
*3,2
&)
8
5
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
6-
*1'
Q+
Q+
Q+
(%,'B6&.
(%,'B026,
$$&
(3
S)
&
/&
/)
&)
9&&
&6
62 +2/'
:3
6&.
*1'
6,
1)
0+]
7=$
S)
Q+
5
&5
S)
S)
&
1)
4
&)
S)
9''
Q+
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
Q+
N
&
&
9
8
5
/5
S)
8
S)
&)
6-
-
9&7/
*1'
5)&
-
9&7/
Q+
Q+
/5
6-
/)
/)
(%,'B0,62
(%,'B16(/
9
75;
60$5$
&)
%RDUG,GHQWLILFDWLRQ((3520
S)
&
*3,2
;287
*3,2
2KPORDG
Q)
&
&
&
&
X)
Q)
S)
S)
6-
&
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
&215
-$
-%
4
73
1)
&
6L&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
S)
N+]
7=$
&
R
SILICON LABS
SILICON LABORATORIES
7,7/(
7&()9
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 15. 470 MHz 6 V Supply Solution Schematic
The RF measurement results are as follows:
Sensitivity:
–109 dBm.
BJT shutdown current consumption: 0.1 µA.
Output power (dBm), harmonics (dBm), current consumption (mA) of Si4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
Fund.
29.8
27.0
P2
–41.5
–43.0
P3
–45.5
–47.5
P4
–46.5
–48.0
P5
—
—
P6
—
—
P7
—
—
Note: — means the harmonic is below –50 dBm.
14
Rev. 0.2
P8
—
—
P9
—
—
P10
—
—
ISi4463
90
80
IBJT
415
280
EffBJT
39%
30%
AN656
3.4. Measurement Results at 868 MHz Band
In the measurement, a four-layer PCB test card (4463-TCE27F868-6V) is used. The circuits are shown in
Figure 16.
*3,2
&5
*3,2
S)
75;
60$5$
S)
Q+
6'1
5;3
5;1
7;
1&
/0
/&
5
&
&
Q+
5
Q)
&
&
&
&
X)
Q)
S)
S)
9''
93$
&
1)
&
&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
6'2
6'1
16(/
6',
1,54
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
&215
-$
-%
4
73
6-
6-
&
X)
6-
&
5
6-
5
.
/)
6-
5
6-
Q)
1(6*
*3,2
&
*3,2
S)
*1'
1)
*3,2
&
(
9
6-
5
*3,2
%
/&
S)
&
Q)
1)
4
*3,2
&
&6
5
16(/
6',
6'2
6&/.
1,54
Q+
Q+
N
(3
Q+
S)
5
(3
/
&
/0
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
&0
S)
*3,2B
*3,2B
*1';
;,1
;287
1)
6L
6&/.
Q+
*3,2
/&
&) Q+
Q)
6-
*1'
/)
&) Q+
(%,'B6&.
(%,'B026,
$$&
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
S)
8
S)
0+]
7=$
&
&
9&&
&6
62 +2/'
:3
6&.
*1'
6,
1)
S)
S)
/)
&
S)
5
&)
S)
1)
4
Q+
&
9''
&5
S)
8
&)
Q+
&
N
&
/)
9
8
5
/5
6-
9&7/
-
*1'
5)&
-
9&7/
1)
(%,'B0,62
(%,'B16(/
9
/)
RKP
%RDUG,GHQWLILFDWLRQ((3520
/5
Q+
6-
&)
;287
2KPORDG
N+]
7=$
&
S)
R
SILICON LABS
SILICON LABORATORIES
7,7/(
7&()9
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 16. 868 MHz 6 V Supply Solution Schematic
The RF measurement results are as follows:
Sensitivity:
–105 dBm.
BJT shutdown current consumption: 0.1 µA.
Output power (dBm), harmonics (dBm), current consumption (mA) of Si4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
Fund.
28.3
26.9
P2
–40
–42.5
P3
–41.8
–45
P4
–45
–47.8
P5
—
—
P6
—
—
P7
—
—
P8
—
—
P9
—
—
P10
—
—
ISi4463
90
75
IBJT
260
220
EffBJT
43%
37%
Note: — means the harmonic is below –50 dBm.
Rev. 0.2
15
AN656
4. Measurement Results for NESG250134 3.3 V Power Supply Solution
The measurements are under the following parameters:
3.3
V power supply for BJT, 3.3 V for Si4463.
data rate is 38.4 Kbps.
Frequency Deviation is 20 kHz.
Operating frequency is 169 MHz and 868 MHz separately.
Conducted test.
RX sensitivity measured at 1E-3 BER.
Receiving
4.1. Measurement Results at 169 MHz Band
In the measurement, a four-layer PCB test card (4463-TSQ27F169) is used. The circuits are shown in Figure 17.
&5
*3,2
;287
*3,2
2KPORDG
S)
75;
60$5$
*1'
S)
Q+
5
/
5
.
5
9''
93$
Q)
&
&
&
&
X)
Q)
S)
S)
&
1)
&
6L&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
&215
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
-$
-%
4
73
6-
&
1,54
6'2
6',
6'1
6-
6-
&
X)
6-
5
6-
.
*3,2
*3,2
5
6-
1(6*
*3,2
*3,2
5
*1'
1)
/)
&
9
*3,2
(
1)
6-
5
S)
&6
%
&
Q)
4
.
16(/
6',
6'2
6&/.
1,54
&
&
&
5
Q)
6'1
5;3
5;1
7;
1&
5
Q+
&
Q+
/0
Q+
/&
S)
&
/0
S)
&0
Q+
(3
S)
Q)
5
(3
S)
6L
8
/&
16(/
*3,2
/&
Q+
Q+
&)
Q+
(%,'B6&.
(%,'B026,
6-
6&/.
/)
$$&
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
S)
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
&
0+]
7=$
*3,2B
*3,2B
*1';
;,1
;287
/)
&
&6
9&&
62 +2/'
:3
6&.
*1'
6,
1)
S)
S)
5
&
S)
S)
Q+
1)
4
&)
9''
&5
S)
8
Q+
&
.
Q+
-
9&7/
*1'
5)&
-
9&7/
&)
/5
6-
9
8
5
&
6-
/)
/)
&
(%,'B0,62
(%,'B16(/
9
/5
Q+
/)
Q+
%RDUG,GHQWLILFDWLRQ((3520
N+]
7=$
&
S)
R
SILICON LABS
SILICON LABORATORIES
7,7/(
764)
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 17. 4463-TSQ27F169 Schematic
The RF measurement results are as follows:
Sensitivity:
–109 dBm.
BJT shutdown current consumption: 0.1 µA.
Output power (dBm), harmonics (dBm), current consumption (mA) of Si4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
Fund.
27
P2
–47.9
P3
–57.7
P4
–59.1
P5
–57.5
P6
–58.7
P7
—
Note: — means the harmonic is below –50 dBm.
16
Rev. 0.2
P8
—
P9
—
P10
—
ISi4463
80
IBJT
360
EffBJT
42%
AN656
4.2. Measurement Results at 868 MHz Band
In the measurement, a four-layer PCB test card (4463-TCE27F868) is used. The circuits are shown in Figure 18.
*3,2
&5
*3,2
S)
75;
60$5$
*3,2B
*3,2B
*1';
;,1
;287
S)
Q+
6'1
5;3
5;1
7;
1&
/0
/&
5
&
S)
5
Q+
9''
93$
Q)
&
&
&
&
X)
Q)
S)
S)
&
1)
&
&ODVV(6ZLWFKHGG%PPDWFKLQJ
)UHTXHQF\0+]
6'2
6'1
16(/
6',
&
1,54
6-
9''
(%,'B026,
(%,'B0,62
(%,'B6&.
(%,'B16(/
9''
&215
-$
-%
4
73
6-
6-
5
6-
&
X)
6-
&
5
6-
5
.
/)
*3,2
5
*3,2
Q)
*3,2
1(6*
*3,2
&
(
*3,2
S)
*1'
1)
Q)
9
/&
%
&
1)
6-
4
&
&6
5
16(/
6',
6'2
6&/.
1,54
&
5
1)
Q+
N
(3
Q+
S)
/0
/
&
9%$7$
7;5$03
9%$7'
*3,2B
*3,2B
S)
Q)
5
(3
1)
&0
6L
Q+
6&/.
*3,2
/&
&) Q+
(%,'B6&.
(%,'B026,
6-
*1'
8
Q+
2SWLRQDOSDUW
LV12702817('
:ULWHSURWHFW5 N
/)
&) Q+
S)
0+]
7=$
S)
/)
&
S)
$$&
1)
S)
S)
4
&
5
&)
1)
9&&
&6
62 +2/'
:3
6&.
*1'
6,
S)
Q+
S)
&
9''
&5
8
&)
&
N
Q+
-
9&7/
*1'
5)&
-
9&7/
RKP
/5
6-
9
8
5
&
/)
1)
&
(%,'B0,62
(%,'B16(/
9
6-
%RDUG,GHQWLILFDWLRQ((3520
/5
Q+
/)
&)
;287
2KPORDG
N+]
7=$
&
S)
R
SILICON LABS
SILICON LABORATORIES
7,7/(
7&()
S)
6L]H
$
'$7(
5(9
9
6+((72)
Figure 18. 4463-TCE27F868 Schematic
The RF measurement results are as follows:
Sensitivity:
–105 dBm
BJT shutdown current consumption: 0. µA
Output power (dBm), harmonics (dBm), current consumption (mA) of SI4463, current consumption (mA) of
BJT and total BJT efficiency at SMA connector:
Fund.
24.6
P2
–40.5
P3
–42
P4
–45
P5
—
P6
—
P7
—
P8
—
P9
—
P10
—
ISi4463
85
IBJT
205
EffBJT
42.6%
Note: — means the harmonic is below –45 dBm.
Rev. 0.2
17
AN656
5. Layout Requirement
To obtain a high level of RF performance and reliability, follow the common RF circuit layout guideline that is used
in the EZRadioPRO layout. In addition, use the following suggestions to achieve optimum performance:
The
TX and RX path layouts are separated and isolated by a GND metal on the top layer as much as
possible to minimize the mutual coupling effects.
The control signals (GPIO0 and GPIO2) for RF switch should be placed in the inner layer of the PCB to
avoid interference from the high power transmitted signal.
All of the circuit lines in the PA matching and filters should be 50  microstrip line.
Exposed pad footprint of the PA BJT should use more vias to connect to GND to achieve optimal grounding
and best thermal coupling.
In the filter layout, the two capacitors should be placed on a different side of the circuit line.
The shield can be used to get good radiation performance.
18
Rev. 0.2
AN656
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.2

Include all 6 V power supply NESG270034 BJT
designs (169 MHz, 434 MHz, 470 MHz, and
868 MHz)
 Add 3.3 V power supply NESG250134 BJT designs
(at 169 MHz and 868 MHz)
 Include detailed test data
 Correct the relative information of the BJTs, NOT
FETs
Rev. 0.2
19
Simplicity Studio
One-click access to MCU tools,
documentation, software, source
code libraries & more. Available
for Windows, Mac and Linux!
www.silabs.com/simplicity
MCU Portfolio
www.silabs.com/mcu
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com