Si53315 1 : 1 0 L O W J I TT E R U N I V E R S A L B U F F E R /L E V E L T R A N S L A T O R W IT H 2 : 1 I N P U T M U X A N D I N D I V I D U A L O E ( < 1 . 2 5 G H Z ) Features 10 differential or 20 LVCMOS outputs Ultra-low additive jitter: 100 fs rms Wide frequency range: 1 MHz to 1.25 GHz Any-format input with pin selectable output formats: LVPECL, Low Power LVPECL, LVDS, CML, HCSL, LVCMOS 2:1 mux with hot-swappable inputs Asynchronous output enable Individual output enable Low output-output skew: <50 ps Low propagation delay variation: <400 ps Independent VDD and VDDO : 1.8/2.5/3.3 V Excellent power supply noise rejection (PSRR) Selectable LVCMOS drive strength to tailor jitter and EMI performance Small size: 44-QFN (7 mm x 7 mm) RoHS compliant, Pb-free Industrial temperature range: –40 to +85 °C Ordering Information: See page 25. Applications Pin Assignments Storage Telecom Industrial Servers Backplane clock distribution Q6 Q6 VDDOB CLK_SEL Q3 Q3 Q4 Q4 Q5 Q5 VDDOA 34 35 37 38 36 39 40 41 42 OE2 SFOUT[0] 1 33 2 32 OE7 SFOUT[1] OE1 3 31 OE8 Q2 4 30 Q7 Q7 Q2 5 GND 6 Q1 7 29 GND PAD 27 NC Q8 Q8 28 21 22 Q9 GND CLK1 OE6 OE5 CLK1 20 OE9 17 23 19 11 18 Q9 OE0 16 24 15 25 CLK0 OE4 VREF 26 9 12 8 10 13 Q1 Q0 Q0 14 The Si53315 is an ultra low jitter ten output differential buffer with pin-selectable output clock signal format and individual OE. The Si53315 features a 2:1 mux, making it ideal for redundant clocking applications. The Si53315 utilizes Silicon Laboratories' advanced CMOS technology to fanout clocks from 1 MHz to 1.25 GHz with guaranteed low additive jitter, low skew, and low propagation delay variability. The Si53315 features minimal cross-talk and provides superior supply noise rejection, simplifying low jitter clock distribution in noisy environments. Independent core and output bank supply pins provide integrated level translation without the need for external circuitry. 43 Description Si53315 VDD OE3 CLK0 44 High-speed clock distribution Ethernet switch/router Optical Transport Network (OTN) SONET/SDH PCI Express Gen 1/2/3 Patents pending Functional Block Diagram VREF Vref Generator Power Supply Filtering VDDOA OE[0:4] Q0, Q1, Q2, Q3, Q4 CLK0 Q0, Q1, Q2, Q3, Q4 CLK0 SFOUT[1:0] VDDOB CLK1 OE[5:9] CLK1 CLK_SEL Preliminary Rev. 0.4 10/12 Q5, Q6, Q7, Q8, Q9 Switching Logic Q5, Q6, Q7, Q8, Q9 Copyright © 2012 by Silicon Laboratories Si53315 This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Si53315 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3. Universal, Any-Format Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4. Input Mux and Output Enable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Power Supply (VDD and VDDOX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.7. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.9. Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.10. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. Pin Description: 44-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1. 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 6.1. 7x7 mm 44-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.1. Si53315 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 2 Preliminary Rev. 0.4 Si53315 1. Electrical Specifications Table 1. Recommended Operating Conditions Parameter Ambient Operating Temperature Supply Voltage Range* Output Buffer Supply Voltage* Symbol Test Condition Min Typ Max Unit –40 — 85 °C LVDS, CML, HCSL, LVCMOS 1.71 1.8 1.89 V LVPECL, low power LVPECL, LVDS, CML, HCSL, LVCMOS 2.38 2.5 2.63 V 2.97 3.3 3.63 V LVDS, CML, HCSL, LVCMOS 1.71 — 1.89 V LVPECL, low power LVPECL, LVDS, CML, HCSL, LVCMOS 2.38 — 2.63 V 2.97 — 3.63 V TA VDD VDDO *Note: Core supply VDD and output buffer supplies VDDO are independent. Table 2. Input Clock Specifications (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%, TA = –40 to 85 °C) Symbol Test Condition Min Typ Max Unit Differential Input Common Mode Voltage VCM VDD = 2.5 V 5%, 3.3 V 10% 0.05 — — V Input Swing (single-ended, peak-topeak) VIN 0.1 — 1.1 V Input Voltage High VIH VDD x 0.7 — — V Input Voltage Low VIL — — VDD x 0.3 V Input Capacitance CIN — 5 — pF Parameter Preliminary Rev. 0.4 3 Si53315 Table 3. DC Common Characteristics (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Supply Current Output Buffer Supply Current (Per Clock Output) @100 MHz Leakage Current Symbol Test Condition Min Typ Max Unit — TBD 100 mA LVPECL (3.3 V) — 35 — mA Low Power LVPECL (3.3 V) — 30 — mA LVDS (3.3 V) — 20 — mA CML (3.3 V) — 30 — mA HCSL, 100 MHz, 2 pF load (3.3 V) — 35 — mA CMOS (1.8 V, SFOUT = Open/0), per output, CL = 5 pF, 200 MHz — 5 — mA CMOS (2.5 V, SFOUT = Open/0), per output, CL = 5 pF, 200 MHz — 8 — mA CMOS (3.3 V, SFOUT = 0/1), per output, CL = 5 pF, 200 MHz — 15 — mA Input leakage at all inputs except CLKIN, VIN = 0 V — — TBD µA Input leakage at CLKIN VIN = 0 V — — TBD µA IDD IDDOX IL Voltage Reference VREF VREF pin — VDD/2 — V Input High Voltage VIH SFOUTX, DIVX 3-level input pins 0.85 x VDD — — V Input Mid Voltage VIM SFOUTX, DIVX 3-level input pins 0.45 x VDD 0.5 x VDD 0.55 x VDD V Input Low Voltage VIL SFOUTX, DIVXpin 3-level input pins — — 0.15 x VDD V Internal Pull-down Resistor RDOWN CLK_SEL, DIVA, DIVB, SFOUTA[1], SFOUTB[1] — 25 — kΩ RUP SFOUTA[1], SFOUTB[1], DIVA, DIVB, OEX, OEX — 25 — kΩ Internal Pull-up Resistor 4 Preliminary Rev. 0.4 Si53315 Table 4. DC Characteristics—LVPECL and Low Power LVPECL (VDD = 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Symbol Test Condition Min Typ Max Unit Output Voltage High VOH RL = 50 Ω to VDDOX – 2 V VDDOX – 1.145 — VDDOX – 0.895 V Output Voltage Low VOL RL = 50 Ω to VDDOX – 2 V VDDOX – 1.945 — VDDOX – 1.695 V Output DC Common Mode Voltage VCOM VDDOX – 1.895 — VDDOX – 1.425 V 0.25 0.60 0.85 V Single-Ended Output Swing VSE Terminate unused outputs to RL = 50 Ω to VDDOX – 2 V Table 5. DC Characteristics—CML (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Symbol Test Condition Min Typ Max Unit Single-Ended Output Swing VSE Terminated as shown in Figure 6 (CML termination). 300 400 500 mV Table 6. DC Characteristics—LVDS (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Symbol Test Condition Min Typ Max Unit Single-Ended Output Swing VSE RL = 100 Ω across QN and QN 247 — 454 mV Output Common Mode Voltage (VDDO = 2.5 V or 3.3 V) VCOM1 VDDOX = 2.38 to 2.63 V, 2.97 to 3.63 V, RL = 100 Ω across QN and QN 1.10 1.25 1.35 V Output Common Mode Voltage (VDDO = 1.8 V) VCOM2 VDDOX = 1.71 to 1.89 V, RL = 100 Ω across QN and QN 0.85 0.97 1.10 V Preliminary Rev. 0.4 5 Si53315 Table 7. DC Characteristics—LVCMOS (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Symbol Output Voltage High* Output Voltage Low* Test Condition Min Typ Max Unit VOH 0.8 x VDDOX — — V VOL — — 0.2 x VDDOX V *Note: IOH and IOL per the Output Signal Format Table for specific VDDOX and SFOUTX settings. Table 8. DC Characteristics—HCSL (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Symbol Test Condition Min Typ Max Unit Output Voltage High VOH RL = 50 Ω to GND 550 700 850 mV Output Voltage Low VOL RL = 50 Ω to GND –150 0 150 mV Single-Ended Output Swing VSE RL = 50 Ω to GND — 700 — mV Crossing Voltage VC RL = 50 Ω to GND 250 350 550 mV 6 Preliminary Rev. 0.4 Si53315 Table 9. AC Characteristics (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Frequency Duty Cycle Symbol Test Condition Min Typ Max Unit F LVPECL, low power LVPECL, LVDS, CML, HCSL 1 — 1250 MHz LVCMOS 1 — 200 MHz 200 MHz, 50 toVDD/220/80% TR/TF<10% of period (LVCMOS) TBD TBD TBD % 20/80% TR/TF<10% of period (Differential) 48 50 52 % 0.75 — — V/ns 350 ps DC Note: 50% input duty cycle. Minimum Input Clock Slew Rate1 SR Required to meet prop delay and additive jitter specifications (20–80%) Output Rise/Fall Time TR/TF LVPECL, LVDS, CML, HCSL, 20/80% 200 MHz, 50 20/80%, 2 pF load (LVCMOS) Minimum Input Pulse Width TW TBD TBD 750 ps 500 — — ps Additive Jitter (Differential Clock Input) J VDD = 2.5/3.3 V, LVPECL/LVDS, F = 725 MHz, 0.75 V/ns input slew rate — 60 80 fs Propagation Delay TPLH, TPHL Low to high, high to low Single-ended TBD — TBD ns Low to high, high to low Differential TBD — TBD ns F = 1 MHz — 2 — s F = 100 MHz — 60 — ns F = 725 MHz — 50 — ns F = 1 MHz — 2 — s F = 100 MHz — 25 — ns F = 725 MHz — 15 — ns Output Enable Time2 Output Disable Time 2 TEN TDIS Notes: 1. For clock division applications, a minimum input clock slew rate of 30 mV/ns is required. 2. See Figure 4. 3. Defined as skew between outputs on different devices operating at the same supply voltages, temperatures, and equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. 4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (1.8 V = 50 mVPP, 2.5/3.3 V = 100 mVPP) and noise spur amplitude measured. See AN491 for further details. Preliminary Rev. 0.4 7 Si53315 Table 9. AC Characteristics (Continued) (VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C) Parameter Output to Output Skew Part to Part Skew3 Power Supply Noise Rejection4 Symbol Test Condition Min Typ Max Unit TSK Identical Configuration, Single-ended (QN to QM) — — 100 ps Identical Configuration, Differential (QN to QM) — — 50 ps TPS Identical configuration — 50 — ps PSRR 10 kHz sinusoidal noise — –90 — dBc 100 kHz sinusoidal noise — –90 — dBc 500 kHz sinusoidal noise — –80 — dBc 1 MHz sinusoidal noise — –70 — dBc Notes: 1. For clock division applications, a minimum input clock slew rate of 30 mV/ns is required. 2. See Figure 4. 3. Defined as skew between outputs on different devices operating at the same supply voltages, temperatures, and equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. 4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (1.8 V = 50 mVPP, 2.5/3.3 V = 100 mVPP) and noise spur amplitude measured. See AN491 for further details. 8 Preliminary Rev. 0.4 Si53315 Table 10. Thermal Conditions Symbol Test Condition Value Unit Thermal Resistance, Junction to Ambient JA Still air 46.2 °C/W Thermal Resistance, Junction to Case JC Still air 27.1 °C/W Parameter Table 11. Absolute Maximum Ratings Min Typ Max Unit TS –55 — 150 C Supply Voltage VDD –0.5 — 3.8 V Input Voltage VIN –0.5 — VDD+ 0.3 V Output Voltage VOUT — — VDD+ 0.3 V ESD Sensitivity HBM 2000 — — V ESD Sensitivity CDM 500 — — V Peak Soldering Reflow Temperature TPEAK — — 260 C — — 125 C Parameter Storage Temperature Maximum Junction Temperature Symbol Test Condition HBM, 100 pF, 1.5 kΩ Pb-Free; Solder reflow profile per JEDEC J-STD-020 TJ Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability. Preliminary Rev. 0.4 9 Si53315 2. Functional Description The Si53315 is a low jitter, low skew 1:10 differential buffer with an integrated 2:1 input mux and individual OE control. The device has a universal input that accepts most common differential or LVCMOS input signals. A clock select pin is used to select the active input clock. The selected clock input is routed to two independent banks of outputs. Each output bank features control pins to select signal format and LVCMOS drive strength settings. In addition, each clock output has an independent OE pin for individual clock enable/disable. 2.1. Universal, Any-Format Input The Si53315 has a universal input stage that enables simple interfacing to a wide variety of clock formats, including LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 12 and 13 summarize the various input ac- and dc-coupling options supported by the device. Figures 1 and 2 show the recommended input clock termination options. Table 12. LVPECL, LVCMOS, and LVDS LVPECL LVCMOS LVDS AC-Couple DC-Couple AC-Couple DC-Couple AC-Couple DC-Couple 1.8 V N/A N/A No Yes Yes No 2.5/3.3 V Yes Yes No Yes Yes Yes Table 13. HCSL and CML HCSL CML AC-Couple DC-Couple AC-Couple DC-Couple 1.8 V No No Yes No 2.5/3.3 V No Yes (3.3 V) Yes No Si533xx 0.1 uF CLKx 100 /CLKx 0.1 uF Figure 1. Differential LVPECL, LVDS, CML AC-Coupled Input Termination V D D O = 3 .3 V , 2 .5 V , 1 .8 V V DD S i5 3 3 x x CMOS D riv e r Rs CLKx 50 /C L K x 0 .1 u F V REF N o te : V D D O a n d V D D m u s t b e a t th e sa m e vo lta g e le ve l. Figure 2. LVCMOS DC-Coupled Input Termination 10 Preliminary Rev. 0.4 Si53315 VDDO DC Coupled LVPECL Termination Scheme 1 R1 VDD R1 VDDO = 3.3V or 2.5V Si533xx CLKx 50 “Standard” LVPECL Driver /CLKx 50 R2 R2 3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm VTERM = VDDO – 2V R1 // R2 = 50 Ohm 2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm DC Coupled LVPECL Termination Scheme 2 VDD VDDO = 3.3V or 2.5V Si533xx 50 “Standard” LVPECL Driver CLKx /CLKx 50 50 50 VTERM = VDDO – 2V DC Coupled LVDS Termination VDD VDDO = 3.3V or 2.5V Si533xx CLKx 50 Standard LVDS Driver /CLKx 50 100 DC Coupled HCSL Termination Scheme VDDO = 3.3V 33 Si533xx 50 Standard HCSL Driver VDD CLKx /CLKx 33 50 50 50 Note: 33 Ohm series termination is optional depending on the location of the receiver. Figure 3. Differential DC-Coupled Input Terminations Preliminary Rev. 0.4 11 Si53315 2.2. Input Bias Resistors Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected. The noninverting input is biased with a 18.75 k pulldown to GND and a 75 k pullup to VDD. The inverting input is biased with a 75 k pullup to VDD. VDD RPU RPU + RPD CLK0 or CLK1 – RPU = 75 kohm RPD = 18.75 kohm Figure 4. Input Bias Resistors 2.3. Universal, Any-Format Output Buffer The Si53315 has highly flexible output drivers that support a wide range of clock signal formats, including LVPECL, low power LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUT[0] and SFOUT[1] are 3-level inputs that can be pin-strapped to select the clock signal formats for all of the outputs, Q0 through Q9. This feature enables the device to be used for format/level translation in addition to clock distribution, minimizing the number of unique buffer part numbers required in a typical application and simplifying design reuse. For EMI reduction applications, four LVCMOS drive strength options are available for each VDDO setting. Table 14. Output Signal Format Selection SFOUT[1] SFOUT[0] VDDOX = 3.3 V VDDOX = 2.5 V VDDOX = 1.8 V Open* Open* LVPECL LVPECL N/A 0 0 LVDS LVDS LVDS 0 1 LVCMOS, 24 mA drive LVCMOS, 18 mA drive LVCMOS, 12 mA drive 1 0 LVCMOS, 18 mA drive LVCMOS, 12 mA drive LVCMOS, 9 mA drive 1 1 LVCMOS, 12 mA drive LVCMOS, 9 mA drive LVCMOS, 6 mA drive Open* 0 LVCMOS, 6 mA drive LVCMOS, 4 mA drive LVCMOS, 2 mA drive Open* 1 LVPECL Low power LVPECL Low power N/A 0 Open* CML CML CML 1 Open* HCSL HCSL HCSL *Note: SFOUT[1:0] are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin floats to VDD/2. 12 Preliminary Rev. 0.4 Si53315 2.4. Input Mux and Output Enable Logic The Si53315 provides two clock inputs for applications that need to select between one of two clock sources. The CLK_SEL pin selects the active clock input. The table below summarizes the input and output clock based on the input mux and output enable pin settings. Table 15. Input Mux and Output Enable Logic CLK_SEL CLK0 CLK1 OE1 Q2 L L X H L L H X H H H X L H L H X H H H X X X L L3 Notes: 1. Output enable active high 2. On the next negative transition of CLK0 or CLK1. 3. Single-end: Q=low, Q=high Differential: Q=low, Q=high 2.5. Power Supply (VDD and VDDOX) The device includes separate core (VDD) and output driver supplies (VDDOX). This feature allows the core to operate at a lower voltage than VDDO, reducing current consumption in mixed supply applications. The core VDD supports 3.3, 2.5, or 1.8 V. Each output bank has its own VDDOX supply, supporting 3.3, 2.5, or 1.8 V. Preliminary Rev. 0.4 13 Si53315 2.6. Output Clock Termination Options The recommended output clock termination options are shown below. Unused output clocks should be left floating. VDDO DC Coupled LVPECL Termination Scheme 1 R1 R1 VDDO = 3.3V or 2.5V Si533xx VDD = VDDO 50 Q LVPECL Receiver Qn 50 R2 VTERM = VDDO – 2V R1 // R2 = 50 Ohm R2 3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm 2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm DC Coupled LVPECL Termination Scheme 2 VDDO = 3.3V or 2.5V Si533xx VDD = VDDO 50 Q LVPECL Receiver Qn 50 50 50 VTERM = VDDO – 2V VDDO AC Coupled LVPECL Termination Scheme 1 R1 VDDO = 3.3V or 2.5V Si533xx R1 0.1 uF VDD = 3.3V or 2.5V 50 Q LVPECL Receiver Qn 50 0.1 uF Rb R2 Rb R2 VBIAS = VDD – 1.3V R1 // R2 = 50 Ohm 3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm 2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm AC Coupled LVPECL Termination Scheme 2 VDDO = 3.3V or 2.5V Si533xx 0.1 uF VDD = 3.3V or 2.5V 50 Q LVPECL Receiver Qn 50 0.1 uF Rb 50 Rb 50 3.3V LVPECL: Rb = 120 Ohm 2.5V LVPECL: Rb = 90 Ohm Figure 5. LVPECL Output Termination 14 Preliminary Rev. 0.4 Si53315 DC Coupled LVDS and Low-Power LVPECL Termination VDDO= 3.3V or 2.5V or 1.8V Si533xx VDD 50 Q LVDS Receiver Qn 50 100 AC Coupled LVDS Termination VDDO = 3.3V or 2.5V or 1.8V Si533xx 0.1 uF VDD 50 Q LVDS Receiver Qn 50 0.1 uF 50 50 AC Coupled CML Termination VDDO = 3.3V or 2.5V or 1.8V Si533xx 0.1 uF VDD 50 Q CML Receiver 100 Qn 50 0.1 uF DC Coupled HCSL Receiver Termination VDDO = 3.3V Si533xx VDD 50 Q Standard HCSL Receiver Qn 50 50 50 DC Coupled HCSL Source Termination VDDO = 3.3V Si533xx VDD 42.2 50 Q Qn 42.2 50 86.6 Standard HCSL Receiver 86.6 Figure 6. LVDS, CML, and HCSL Output Termination Preliminary Rev. 0.4 15 Si53315 CMOS Receivers Si533xx CMOS Driver Zo Rs Zout 50 CL = 15 pF Figure 7. LVCMOS Output Termination Table 16. Recommended LVCMOS RS Series Termination SFOUT[1] 16 SFOUT[0] RS (ohms) 3.3 V 2.5 V 1.8 V 0 1 33 33 33 1 0 33 33 33 1 1 0 0 0 Open 0 0 0 0 Preliminary Rev. 0.4 Si53315 2.7. AC Timing Waveforms TPHL TSK CLK QN VPP/2 Q VPP/2 QM VPP/2 VPP/2 TPLH TSK Propagation Delay Output-Output Skew TF Q 80% VPP 20% VPP 80% VPP Q 20% VPP TR Rise/Fall Time Figure 8. AC Waveforms Preliminary Rev. 0.4 17 Si53315 2.8. Typical Phase Noise Performance 22.77fs @625MHz 30.26fs @312.5MHz 39.34fs @156.25MHz Source Jitter 55.00fs @625MHz 106.37fs @312.5MHz 191.58fs @156.25MHz Total Jitter Figure 9. Si53315 Phase Noise Note: Measured single-endedly. 18 Preliminary Rev. 0.4 Si53315 Table 17. Si53315 Additive Jitter Frequency (MHz) Source Jitter (fs) Total Jitter (fs) Additive Jitter (fs) 156.25 39.34 191.58 187.50 312.5 30.26 106.37 101.98 625 22.77 55.00 50.07 2.9. Input Mux Noise Isolation LVPECL [email protected]; Selected clk is active Unselected clk is static Mux Isolation = 61dB LVPECL [email protected]; Selected clk is static Unselected clk is active Figure 10. Input Mux Noise Isolation Preliminary Rev. 0.4 19 Si53315 2.10. Power Supply Noise Rejection The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and SoCs and may reduce board-level filtering requirements. For more information, see AN491: Power Supply Rejection for Low Jitter Clocks. Spur A Amplitude (dB Bc) )F 0+] Figure 11. Power Supply Noise Rejection (100 mVpp Sinusoidal Power Supply Noise Applied) 20 Preliminary Rev. 0.4 Si53315 Q5 Q5 Q6 Q6 VDDOB CLK_SEL Q3 Q3 Q4 Q4 34 35 36 37 38 42 39 43 40 44 41 VDDOA 3. Pin Description: 44-Pin QFN OE2 SFOUT[0] 1 33 2 32 OE7 SFOUT[1] OE1 3 31 OE8 Q2 4 30 29 Q7 Q7 Q2 5 GND 6 Q1 7 Q1 GND PAD OE9 22 GND 21 20 CLK1 OE6 19 OE5 CLK1 VDD OE3 18 OE0 23 17 Q9 11 16 24 15 Q9 10 CLK0 OE4 VREF Q0 Q0 14 Q8 25 CLK0 26 9 13 8 12 27 NC Q8 28 Table 18. Pin Description Pin # Name Description 1 OE2 2 SFOUT[0] 3 OE1 4 Q2 Output clock 2 (complement) 5 Q2 Output clock 2 6 GND 7 Q1 Output enable—Output 2 When OE = high, the Q2 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE2 contains an internal pull-up resistor. Output signal format control pin [0] Three-level input control. Internally biased at VDD/2. Can be left floating or tied to ground or VDD. Output enable—Output 1 When OE = high, the Q1 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE1 contains an internal pull-up resistor. Ground Output clock 1 (complement) Preliminary Rev. 0.4 21 Si53315 Table 18. Pin Description (Continued) 22 8 Q1 Output clock 1 9 Q0 Output clock 0 (complement) 10 Q0 Output clock 0 11 OE0 Output enable—Output 0 When OE = high, the Q0 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE0 contains an internal pull-up resistor. 12 VDD Core voltage supply Bypass with 1.0 µF capacitor and place close to the VDD pin as possible 13 OE3 Output Enable 3 When OE = high, the Q3 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE3 contains an internal pull-up resistor. 14 CLK0 Input clock 0 15 CLK0 Input clock 0 (complement) When CLK0 is driven by a single-ended input, connect VREF to CLK0. CLK0 contains an internal pull-up resistor. 16 OE4 Output Enable 4 When OE = high, Q4 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE4 contains an internal pull-up resistor. 17 VREF Input reference voltage When driven by a LVCMOS clock input, connect the unused clock input to VREF and a 0.1 µF cap to ground. When driven by a differential clock, do not connect the VREF pin. 18 OE5 Output Enable 5 When OE = high, Q5 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE5 contains an internal pull-up resistor. 19 CLK1 Input clock 1 Preliminary Rev. 0.4 Si53315 Table 18. Pin Description (Continued) 20 CLK1 Input clock 1 (complement) When CLK1 is driven by a single-ended input, connect VREF to CLK1. CLK1 contains an internal pull-up resistor 21 OE6 Output Enable 6 When OE = high, Q6 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE6 contains an internal pull-up resistor. 22 GND Ground 23 OE9 Output Enable 9 When OE = high, the Output 9 outputs are enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE9 contains an internal pull-up resistor. 24 Q9 Output clock 9 (complement) 25 Q9 Output clock 9 26 Q8 Output clock 8 (complement) 27 Q8 Output clock 8 28 NC No Connect 29 Q7 Output clock 7 (complement) 30 Q7 Output clock 7 31 OE8 32 SFOUT[1] 33 OE7 34 VDDOB 35 Q6 Output Enable 8 When OE = high, Q8 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE8 contains an internal pull-up resistor. Output signal format control pin [1] Three-level input control. Internally biased at VDD/2. Can be left floating or tied to ground or VDD. Output Enable 7 When OE = high, Q7 is enabled. When OE = low, Q is held low, and Q is held high for differential formats. For LVCMOS, both Q and Q are held low when OE is set low. OE7 contains an internal pull-up resistor. Output voltage supply – Bank B (Outputs Q5 through Q9) Bypass with 1.0 µF capacitor and place as close to VDDOB pin as possible. Output clock 6 (complement) Preliminary Rev. 0.4 23 Si53315 Table 18. Pin Description (Continued) 36 Q6 Output clock 6 37 Q5 Output clock 5 (complement) 38 Q5 Output clock 5 39 CLK_SEL 40 Q4 Output clock 4 (complement) 41 Q4 Output clock 4 42 Q3 Output clock 3 (complement) 43 Q3 Output clock 3 44 VDDOA GND Pad GND 24 MUX input select pin (LVCMOS) When CLK_SEL is high, CLK1 is selected When CLK_SEL is low, CLK0 is selected CLK_SEL contains an internal pull-down resistor Output voltage supply – Bank A (Outputs Q0 to Q4) Bypass with 1.0 µF capacitor and place as close to VDDOA pin as possible. Ground Pad Power supply ground and thermal relief Preliminary Rev. 0.4 Si53315 4. Ordering Guide Part Number Package PB-Free, ROHS-6 Temperature Si53315-B-GM 44-QFN Yes –40 to 85 C Preliminary Rev. 0.4 25 Si53315 5. Package Outline 5.1. 7x7 mm 44-QFN Package Diagram Figure 12. Si53315 7x7 mm 44-QFN Package Diagram Table 19. Package Diagram Dimensions Dimension MIN NOM MAX A 0.80 0.85 0.90 A1 0.00 0.02 0.05 b 0.18 0.25 0.30 D D2 7.00 BSC 2.65 e 2.80 2.95 0.50 BSC E 7.00 BSC E2 2.65 2.80 2.95 L 0.30 0.40 0.50 aaa — — 0.10 bbb — — 0.10 ccc — — 0.08 ddd — — 0.10 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 26 Preliminary Rev. 0.4 Si53315 6. PCB Land Pattern 6.1. 7x7 mm 44-QFN Package Land Pattern Figure 13. Si53315 7x7 mm 44-QFN Package Land Pattern Table 20. PCB Land Pattern Dimension Min Max Dimension Min Max C1 6.80 6.90 X2 2.85 2.95 C2 6.80 6.90 Y1 0.75 0.85 Y2 2.85 2.95 E X1 0.50 BSC 0.20 0.30 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 4. A 2x2 array of 1.0 mm square openings on 1.45 mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Preliminary Rev. 0.4 27 Si53315 7. Top Marking 7.1. Si53315 Top Marking 7.2. Top Marking Explanation Mark Method: Laser Font Size: 1.9 Point (26 mils) Right-Justified Line 1 Marking: Device Part Number 53315-B-GM Line 2 Marking: YY = Year WW = Work Week Assigned by Assembly Supplier. Corresponds to the year and work week of the mold date. TTTTTT = Mfg Code Line 3 Marking: Circle = 1.3 mm Diameter Center-Justified Line 4 Marking 28 Manufacturing Code from the Assembly Purchase Order form. “e3” Pb-Free Symbol Country of Origin ISO Code Abbreviation TW Circle = 0.75 mm Diameter Filled Pin 1 Identification Preliminary Rev. 0.4 Si53315 NOTES: Preliminary Rev. 0.4 29 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com