MAX1818EUAT Rev. A RELIABILITY REPORT FOR MAX1818EUAT PLASTIC ENCAPSULATED DEVICES November 12, 2002 MAXIM INTEGRATED PRODUCTS 120 SAN GABRIEL DR. SUNNYVALE, CA 94086 Written by Reviewed by Jim Pedicord Quality Assurance Reliability Lab Manager Bryan J. Preeshl Quality Assurance Executive Director Conclusion The MAX1818 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards. Table of Contents I. ........Device Description II. ........Manufacturing Information III. .......Packaging Information IV. .......Die Information V. ........Quality Assurance Information VI. .......Reliability Evaluation ......Attachments I. Device Description A. General The MAX1818 low-dropout linear regulator operates from a +2.5V to +5.5V supply and delivers a guaranteed 500mA load current with low 120mV dropout. The high-accuracy (±1%) output voltage is preset at an internally trimmed voltage (see Selector Guide) or can be adjusted from 1.25V to 5.0V with an external resistive divider. An internal PMOS pass transistor allows the low 125µA supply current to remain independent of load, making this device ideal for portable battery-operated equipment such as personal digital assistants (PDAs), cellular phones, cordless phones, base stations, and notebook computers. Other features include an active-low open-drain reset output that indicates when the output is out of regulation, a 0.1µA shutdown, short-circuit protection, and thermal shutdown protection. The device is available in a miniature 800mW 6-pin SOT23 package. B. Absolute Maximum Ratings Item IN, SHDN , POK, SET to GND -0.3V to +6V OUT to GND Output Short-Circuit Duration Continuous Power Dissipation (TA = +70°C) (Note 1) 6-Pin SOT23 (derate 10mW/°C above +70°C)800mW Operating Temperature Range Junction Temperature Storage Temperature Range Lead Temperature (soldering, 10s) (Note 2) Continuous Power Dissipation (TA = +70°C) 10-Pin uMAX Derates above +70°C 10-Pin uMAX Rating -0.3V to (VIN + 0.3V) 1min -40°C to +85°C +150°C -65°C to +150°C +300°C 444mW 5.6mW/°C Note 1: Thermal properties are specified with product mounted on PC board with one square-inch of copper area and still air. With minimal copper, the SOT23 package dissipates 712mW at +70°C. With a quarter square inch of copper, it will dissipate 790mW at +70°C. Copper should be equally shared between the IN, OUT, and GND pins. Note 2: This device is constructed using a unique set of packaging techniques that imposes a limit on the thermal profile to which the device can be exposed during board-level solder attach and rework. The limit permits only the use of the solder profiles recommended in the industry standard specification, IPC JEDECJ-STD-020A, paragraph 7.6, Table 3 for the IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed. II. Manufacturing Information A. Description/Function: 500mA Low-Dropout Linear Regulator in SOT23 B. Process: S8 - Standard 8 micron silicon gate CMOS C. Number of Device Transistors: 845 D. Fabrication Location: California, USA E. Assembly Location: Malaysia or USA F. Date of Initial Production: October, 2000 III. Packaging Information A. Package Type: 6-Lead SOT Flip-Chip B. Lead Frame: Copper C. Lead Finish: Solder Plate D. Die Attach: None E. Bondwire: 6 mil dia. ball F. Mold Material: Epoxy with silica filler G. Assembly Diagram: Buildsheet # 05-2301-0052 H. Flammability Rating: Class UL94-V0 I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1 IV. Die Information A. Dimensions: 90 X 45 mils B. Passivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide) C. Interconnect: TiW/ AlCu/ TiWN D. Backside Metallization: None E. Minimum Metal Width: .8 microns (as drawn) F. Minimum Metal Spacing: .8 microns (as drawn) G. Bondpad Dimensions: 2.7 mil. Sq. H. Isolation Dielectric: SiO2 I. Die Separation Method: Wafer Saw V. Quality Assurance Information A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager) Bryan Preeshl ( Executive Director of QA) Kenneth Huening (Vice President) B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects. C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D VI. Reliability Evaluation A. Accelerated Life Test The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows: λ= 1 = MTTF 1.83 (Chi square value for MTTF upper limit) 192 x 4389 x 317 x 2 Temperature Acceleration factor assuming an activation energy of 0.8eV λ = 3.43 x 10-9 λ = 3.43 F.I.T. (60% confidence level @ 25°C) This low failure rate represents data collected from Maxim’s reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The Burn-In Schematic (Spec.# 06-5597) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1M) located on the Maxim website at http://www.maxim-ic.com . B. Moisture Resistance Tests Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family. C. E.S.D. and Latch-Up Testing The PY69 die type has been found to have all pins able to withstand a transient pulse of ±2000V, per MilStd-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA. Table 1 Reliability Evaluation Test Results MAX1818EUAT TEST ITEM TEST CONDITION Static Life Test (Note 1) Ta = 135°C Biased Time = 192 hrs. FAILURE IDENTIFICATION SAMPLE SIZE NUMBER OF FAILURES DC Parameters & functionality 317 0 Moisture Testing (Note 2) Pressure Pot Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs. DC Parameters & functionality 77 0 85/85 Ta = 85°C RH = 85% Biased Time = 1000hrs. DC Parameters & functionality 77 0 DC Parameters 77 Mechanical Stress (Note 2) Temperature Cycle -65°C/150°C 1000 Cycles Method 1010 Note 1: Life Test Data may represent plastic D.I.P. qualification lots. Note 2: Generic process/package data 0 Attachment #1 TABLE II. Pin combination to be tested. 1/ 2/ Terminal A (Each pin individually connected to terminal A with the other floating) Terminal B (The common combination of all like-named pins connected to terminal B) 1. All pins except VPS1 3/ All VPS1 pins 2. All input and output pins All other input-output pins 1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where VPS1 is VDD, VCC, VSS, VBB, GND, +VS, -VS, VREF, etc). 3.4 Pin combinations to be tested. a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., VSS1, or VSS2 or VSS3 or VCC1, or VCC2) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open. c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open. TERMINAL C R1 R2 S1 TERMINAL A REGULATED HIGH VOLTAGE SUPPLY S2 C1 DUT SOCKET SHORT TERMINAL B TERMINAL D Mil Std 883D Method 3015.7 Notice 8 R = 1.5kΩ C = 100pf CURRENT PROBE (NOTE 6)