STHV748 Quad ± 90 V, ± 2 A, 3/5 levels, high speed ultrasound pulser Datasheet — production data – Thermal protection – Standby function Latch-up free due to HV SOI technology Very few external passive components needed QFN64 9 x 9 x1.0 mm Applications Features Medical ultrasound imaging 0 to ±90 V output voltage Pulse waveform generators NDT ultrasound transmission Up to 20 MHz operating frequency Embedded low-power, floating high-voltage drivers (external voltage rails can be also used) Mode operations: – 3/5-levels output waveform – ±2 A source and sink current – Down 20 ps jitter – Anti-cross conduction function – Low 2nd harmonic distortion Fully integrated clamping-to-ground function – 8 synchronous active clamp – Anti-leakage on output node Dedicated half bridge for continuous wave (CW) operations – 0.1 W power consumption – ±0.6 A source and sink current – 205 fs RMS jitter [100 Hz-20 kHz] Fully integrated T/R switch – 13.5 on resistance – HV MOS topology to minimize current consumption – Up to 300 MHz BW – Receiver multiplexing function Piezoelectric transducer drivers Description This monolithic, high-voltage, high-speed pulser generator features four independent channels. It is designed for medical ultrasound imaging applications, but it can also be used for driving other piezoelectric, capacitive or MEMS based transducers. The STHV748 comprises a controller logic interface circuit, level translators, MOSFET gate drivers, noise blocking diodes, and high-power P-channel and N-channel MOSFETs as the output stage for each channel, clampingto-ground circuitry, anti-leakage, anti-memory effect block, thermal sensor, and a T/R switch which guarantees an effective decoupling during the transmission phase. Moreover, the STHV748 includes self-biasing and thermal shutdown blocks. Each channel can support up to five active output levels with two half bridges. The output stage of each channel is able to provide ±2 A peak output current. In order to reduce power dissipation during continuous wave mode, a dedicated half bridge is available and the peak current is limited to 0.6 A. 2.4 V to 3.6 V CMOS logic interface Auxiliary integrated circuits – Noise blocking diodes – Fully self-biasing architecture – Anti-memory effect for all internal HV nodes January 2016 This is information on a product in full production. Table 1. Device summary Order code Package Packaging STHV748QTR QFN64 Tape and reel DocID15450 Rev 5 1/29 www.st.com Contents STHV748 Contents 1 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Additional pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Truth table and single channel block description . . . . . . . . . . . . . . . . . 8 4 Power-up / Power-down voltage sequence . . . . . . . . . . . . . . . . . . . . . . 9 5 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 6 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Operating supply voltages and average currents . . . . . . . . . . . . . . . . 11 6.1 Digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 6.2 Output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 9 Oscilloscope acquisitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9.1 Output phase noise measurement in CW mode . . . . . . . . . . . . . . . . . . . 24 9.1.1 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 10.1 11 2/29 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 package information . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID15450 Rev 5 DocID15450 Rev 5 'B&75 '*1' 9WR9 GLJLWDOLQSXWV ,1 ,1 ,1 ,1 '9'' 9 ORJLF 1BGUY 3BGUY +90 &: +93 WR9 9 9''0 1BGUY 3BGUY 9''3 9 $*1' 7; WR9 +90 1BGUY 3BGUY 7; +93 WR9 *1'B3:5 DQWL PHPRU\ +909 +909 +939 +939 ,17B%,$6 9 +956: &Q Q) /9287 5()B+90 &Q Q) 67+9 7KHUPDO3URWHFWLRQ ;'&5 7+6' +9287 5()B+93 6HOI9ROWDJH5HIHUHQFH 5()B+90 &K' &K& &K% &K$ 5()B+93 &S Q) &S Q) /1$ ; 9 1 DQWLOHDNDJH WR9 STHV748 Typical application circuit Typical application circuit Figure 1. Typical application circuit 53 .ё $09 3/29 29 FODPS Pin settings STHV748 2 Pin settings 2.1 Connection '9'' ,1B' ,1B' 9''3 ,1B' *1'B3:5 /9287B' ;'&5B' ;'&5B$ ,1B$ /9287B$ ,1B$ 9''0 ,1B$ *1'B3:5 ,17B%,$6 Figure 2. Pin connection (top view) '*1' $*1' 5()B+90 5()B+90 +90B$ +90B' 67+9 +90B$ +90B' +9287B$ +9287B' +93B' +93B$ 5()B+93 5()B+93 +93B$ +93B' +93B% +93B& 5()B+93 5()B+93 +93B& +93B% +9287B% +9287B& +90B% +90B& +90B% +90B& 5()B+90 5()B+90 $*1' ,1B& ,1B& ,1B& 7+6' 9''0 *1'B3:5 *1'B3:5 9''3 ;'&5B& /9287B& ;'&5B% /9287B% ,1B% ,1 ,1B% ,1B% 'B&75 +99 2.2 Description Table 2. Pin description (P = power, A = analog, D = digital) 4/29 Pin N Name 1 AGND 2 REF_HVM1 3 Function IN/OUT Type Signal ground I A Supply for low side 1 gate driver I P HVM1_A Negative high-voltage supply 1 channel A I P 4 HVM0_A Negative high-voltage supply 0 channel A I P 5 HVOUT_A Channel A, high-voltage output before noise blocking diodes O P 6 HVP0_A Positive high-voltage supply 0 channel A I P 7 REF_HVP1 Supply for high side 1 gate driver I P 8 HVP1_A Positive high-voltage supply 1 channel A I P 9 HVP1_B Positive high-voltage supply 1 channel B I P 10 REF_HVP0 Supply for high side 0 gate driver I P 11 HVP0_B Positive high-voltage supply 0 channel B I P DocID15450 Rev 5 STHV748 Pin settings Table 2. Pin description (P = power, A = analog, D = digital) (continued) Pin N Name 12 HVOUT_B 13 Function IN/OUT Type Channel B, high-voltage output before noise blocking diodes O P HVM0_B Negative high-voltage supply 0 channel B I P 14 HVM1_B Negative high-voltage supply 1 channel B I P 15 REF_HVM0 Supply for low side 0 gate driver I P 16 D_CTR Delay control I A 17 IN4 Input signal shared I D 18 IN1_B Input signal channel B I D 19 IN2_B Input signal channel B I D 20 IN3_B Input signal channel B I D 21 VDDP Positive low-voltage supply I A 22 GND_PWR Power ground I P 23 XDCR_B Channel B, high-voltage output O P 24 LVOUT_B Channel B, low-voltage output O A 25 LVOUT_C Channel C, low-voltage output O A 26 XDCR_C Channel C, high-voltage output O P 27 GND_PWR Power ground I P 28 VDDM Negative low-voltage supply I A 29 IN3_C Input signal channel C I D 30 IN2_C Input signal channel C I D 31 IN1_C Input signal channel C I D 32 THSD Thermal shutdown pin I/O D 33 AGND Signal ground I A 34 REF_HVM1 Supply for low side 1 gate driver I P 35 HVM1_C Negative high-voltage supply 1 channel C I P 36 HVM0_C Negative high-voltage supply 0 channel C I P 37 HVOUT_C Channel C, high-voltage output before noise blocking diodes O P 38 HVP0_C Positive high-voltage supply 0 channel C I P 39 REF_HVP1 Supply for high side 1 gate driver I P 40 HVP1_C Positive high-voltage supply 1 channel C I P 41 HVP1_D Positive high-voltage supply 1 channel D I P 42 REF_HVP0 Supply for high side 0 gate driver I P 43 HVP0_D Positive high-voltage supply 0 channel D I P 44 HVOUT_D Channel D, high-voltage output before noise blocking diodes O P DocID15450 Rev 5 5/29 29 Pin settings STHV748 Table 2. Pin description (P = power, A = analog, D = digital) (continued) Pin N Name 45 HVM0_D 46 HVM1_D 47 REF_HVM0 48 IN/OUT Type Negative high-voltage supply 0 channel D I P Negative high-voltage supply 1 channel D I P Supply for low side 0 gate driver I P DGND Logic ground I A 49 DVDD Positive logic supply I A 50 IN1_D Input signal channel D I D 51 IN2_D Input signal channel D I D 52 IN3_D Input signal channel D I D 53 VDDP Positive low-voltage supply I A 54 GND_PWR Power ground I P 55 XDCR_D Channel D, high-voltage output O P 56 LVOUT_D Channel D, low-voltage output O A 57 LVOUT_A Channel A, low-voltage output O A 58 XDCR_A Channel A, high-voltage output O P 59 GND_PWR Power ground I P 60 VDDM Negative low-voltage supply I A 61 IN3_A Input signal channel A I D 62 IN2_A Input signal channel A I D 63 IN1_A Input signal channel A I D 64 INT_BIAS Enable internal supply generators I D Substrate I P Exposed-Pad 2.3 Function Additional pin description The INT_BIAS pin enables the internal reference generators. With INT_BIAS=DVDD, the STHV748 internally generates the reference voltages on REF_HVP1/0 (pin - 7, 10, 39, 42) and REF_HVM1/0 (pin - 2, 15, 34, 47). These voltages are set at VDDP below HVP and respectively at: REF_HVM# = HVM# + VDDP REF_HVP# = HVP# - VDDP After enabling INT_BIAS, a period of time is needed to charge the external reference capacitors (about 30 µs in a typical application). Should INT_BIAS=DGND, it is necessary to apply an external voltage reference to the REF_HVM# and REF_HVP# pins. THSD is a thermal flag. Being the output stage of the THSD a Nch-MOS open-drain, an external pull-up resist or (Rp10 k) connected to a positive low-voltage supply (see Figure 1) is required. If the internal temperature surpasses 153 °C, THSD goes down and all STHV748 channels are in HZ state. The thermal protection can be disabled, by connecting 6/29 DocID15450 Rev 5 STHV748 Pin settings the THSD pin to a positive low voltage supply. THSD can be also shared among several STHV748 on the same PCB. D_CTR can be used to optimize 2nd HD performances by tuning the fall propagation delay (tdf - see Table 9). If D_CTR is equal to ground, tdf has the nominal value. If D_CTR is varied from 2 V to 4.2 V, tdf can be changed from -1 ns to +600 ps with respect to the nominal value. The exposed-pad is internally connected to the substrate of the package. It can be either left floating or connected to a ground via 100 V capacitance toward ground, in order to reduce the noise during the receiving phase. 5()B+90 /1$ &Q 67+9 7KHUPDO3URWHFWLRQ 9H[WHUQDOYROWDJHUHIHUHQFH WR9 9H[WHUQDOYROWDJHUHIHUHQFH +90 1BGUY 3BGUY &Q 5()B+90 *1'B3:5 +956: DQWL PHPRU\ +909 +909 +939 +939 7; +93 WR9 FODPS 9''0 1BGUY WR9 9 +90 1BGUY 3BGUY &: 3BGUY 9''3 9 +93 7; $*1' DQWLOHDNDJH '*1' 'B&75 9WR9 GLJLWDOLQSXWV ,1 ,1 ,1 ,1 '9'' 9 ORJLF WR9 /9287 ;'&5 7+6' 6HOI9ROWDJH5HIHUHQFH &K' &K& &K% &K$ ,17B%,$6 &S 5()B+93 &S 9H[WHUQDOYROWDJHUHIHUHQFH 9H[WHUQDOYROWDJHUHIHUHQFH 5()B+93 +9287 9 ; 53 Figure 3. Typical application with INT_BIAS shorted to ground $09 DocID15450 Rev 5 7/29 29 Truth table and single channel block description 3 STHV748 Truth table and single channel block description 3 3 ,1 ,1 7+6' /HYHOVKLIWHUJDWHGULYHU ,1 ,1 +9 3 +93 Figure 4. Single channel block description 3 6 1 3&: 6 3 6 7KHUPDO KHUPDO VHQVRUB HQVRUB 7KHUPDO HUPDO QVRUB VHQVRUB 1 +9 287 3&: 1&: &/$03 1 1 1&: 6 6 756: 1RL VH EOR FNLQ J GLRG HV &/$03 &/$ / 03 6 6 75B6,*1$/ 7; 75B6,*1$/ &O DPS &: 6 *1'B3:5 +90 7; +90 7RWKHUPDOSURWHFWLRQ ; '& 5 6 756: 756: /9 287 6 *1'B3 :5 75 VZLWFK $0Y Table 3. Truth table for one channel Global Switches internal state Per channel State THSD IN4 IN3 IN2 IN1 8/29 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 1 x x 0 0 Clamp 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 HVM0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 HVP0 1 0 0 0 0 0 0 0 1 0 1 x 0 1 1 T/R SW 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 HVM1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 HVP1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 HZ 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 T/R SW 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 Max. HVM0 and HVM1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 Max. HVP0 and HVP1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 CW HVM1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 CW HVP1 0 0 0 0 1 0 0 0 1 0 0 x x x x HZ 0 0 0 0 0 0 0 0 1 0 DocID15450 Rev 5 STHV748 4 Power-up / Power-down voltage sequence Power-up / Power-down voltage sequence During the power up/power down phases, the following relationship must be always respected: VDDP >= DVDD HVM0 <= HVM1 HVP0 >= HVP1 It is recommended to power up the low voltage supplies before the high voltage supplies. DocID15450 Rev 5 9/29 29 Electrical data STHV748 5 Electrical data 5.1 Absolute maximum ratings Table 4. Absolute maximum ratings Symbol Parameter Value Unit 0 V AGND Analog ground reference (1) DGND Digital ground -300 to 300 mV GND_PWR Power ground -1.2 to 1.2 V VDDP Positive supply voltage -0.3 to 3.9 V VDDM Negative supply voltage 0.3 to -3.9 V DVDD Positive logic voltage -0.3 to VDDP V HVP0 TX0 high-voltage positive supply 95 V HVP1 TX1 high-voltage positive supply 0 to HVP0 V HVM0 TX0 high-voltage negative supply -95 V HVM1 TX1 high-voltage negative supply 0 to HVM0 V REF_HVP# High-voltage positive gate supply -0.3 < HVP - REF_HVP < 3.6 V REF_HVM# High-voltage negative gate supply -0.3 < REF_HVM - HVM < 3.6 V High-voltage output -95 to 95 V HVOUT High-voltage output before noise blocking diodes -95 to 95 V LVOUT Low-voltage output -1 to 1 V DIG I/O Digital input specified in Table 2 -0.3 to DVDD + 0.3 V D_CTR Delay control -0.3 to 4.6 V Operating temperature range -40 to 125 °C Storage temperature range -65 to 150 °C XDCR TOP TSTG 1. AGND is the ground reference for all the other voltages. Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 5. Thermal data Symbol Parameter Value Unit Rth,JA Thermal resistance junction-ambient 30 (1) °C/W 1. This value is given for a two layer PCB (2S2P) and it’s strongly sensitive to PCB layout. Increasing the number of PCB layers and/or adding heat sinks vias, the thermal resistance value decreases. 10/29 DocID15450 Rev 5 STHV748 6 Operating supply voltages and average currents Operating supply voltages and average currents Operating conditions, unless otherwise specified, only ONE channel on, no load, HV=90 V, TX0 and TX1 on, INT_BIAS=DVDD, DVDD=3 V, VDDP=3 V and VDDM=-3 V Table 6. Supply voltages and average currents Symbol VDDP IVDDP Parameter Conditions IVDDM I_DVD Standby mode IHVP IHVM 2.7 3 3.6 V 1.5 mA 1.1 -2.7 PW mode -3 mA -3.6 -1.5 V mA Negative supply current Standby mode -800 µA min(3.6,V DDP+0.3) V PW mode 100 µA Standby mode 85 µA 90 V 1 mA 350 µA 0 V Positive logic voltage 2.4 3 Logic supply current High-voltage positive supply 0 PW mode HV positive supply current IHVP_Q HVM Units (2) Negative supply voltage I_DVD_Q HVP Max. PW mode (1) Positive supply current IVDDM_Q DVDD Typ. Positive supply voltage IVDDP_Q VDDM Min. Standby mode High-voltage negative supply -90 PW mode -1 mA -350 µA HV negative supply current IHVM_Q Standby mode HVP-REF_HVP High-voltage positive gate supply 2.7 3 3.6 V REF_HVM-HVM High-voltage negative gate supply 2.7 3 3.6 V 4.2 V Max. Units DVDD V 0.2 DVDD V D_CTR Delay control 0 1. In PW pulse wave mode the average current is measured over T_w time (see Figure 6). 2. In standby mode all channels are in HZ and INT_BIAS= AGND 6.1 Digital inputs Table 7. Digital inputs Symbol Parameter Min. IN1_#, IN2_#, IN3_#, IN4, INT_BIAS, THSD Input logic high-voltage 0.8 DVDD IN1_#, IN2_#, IN3_#, IN4, INT_BIAS, THSD Input logic low-voltage DocID15450 Rev 5 0 11/29 29 Operating supply voltages and average currents 6.2 STHV748 Output signals Table 8. Output signals Symbol Parameter Min. Max. Units -90 90 V High-voltage output -90 90 V LVOUT Low-voltage output -1 1 V THSD 0 3 V HVOUT High-voltage output before noise blocking diodes XDCR 12/29 Thermal shutdown pin DocID15450 Rev 5 STHV748 7 Electrical characteristics Electrical characteristics Table 9. Static electrical characteristics (1) Symbol Parameter Condition Min. Typ. 1.1 1.30 A HVP# =25 V, HVM# =-25 V, HVOUT=0 V 1.70 A HVP# =90 V, HVM# =-90 V, HVOUT=0 V 2 A 1.30 A HVP# =25 V, HVM# =-25 V, HVOUT=0 V 1.70 A HVP# =90 V, HVM# =-90 V, HVOUT=0 V 2 A HVP# =10 V, HVM# =-10 V, HVOUT=0 V IN Saturation current S1 - S3 HVP# =10 V, HVM# =-10 V, HVOUT=0 V IP Saturation current S0 - S2 1 Max. Units INCW Saturation current S5 HVP1=10 V, HVM1=-10 V, HVOUT=0 V 300 350 mA IPCW Saturation current S4 HVP1=10 V, HVM1=-10 V, HVOUT=0 V 390 480 mA ICL Saturation current S6 HVOUT=25 V 1.5 A HVOUT=1 V 8 W HVP# = 90 V, HVM# = -90 V, HVOUT=0 V 1 HVP# = 90 V, HVM# = -90 V, HVOUT=-90 V 1 HVP# = 90 V, HVM# = -90 V, HVOUT=+90 V 1 RON_CLAMP On resistance S6 IL PSB Output leakage current, per channel HVP# = 90 V, HVM# = -90 V, Power dissipation in standby HVOUT=0 V, INT_BIAS=DGND mode HVP# = 90 V, HVM# = -90 V, HVOUT=0 V µA 4 126 µW 150 mW P RX Power dissipation in HVR_SW state HVP# = 30 V, HVM# = -30 V, INT_BIAS =0, all channels in receiving phase V REFP HVP# - REF_HVP# HVP# = 10 V, HVM# = -10 V, HVOUT=0 V 0.8 VDDP 1.2 VDDP V VREFN REF_HVM# - HVM# HVP# = 10 V, HVM# = -10 V, HVOUT=0 V 0.8 VDDP 1.2 VDDP V TOTP(2) Overtemperature threshold HVP# =10 V, HVM# =-10 V 160 °C OTP hysteresis HVP# =10 V, HVM# =-10 V T HYS DocID15450 Rev 5 30 130 153 40 mW °C 13/29 29 Electrical characteristics STHV748 Table 9. Static electrical characteristics (1) (continued) Symbol Parameter CT/R SW T/R SW capacitance LVOUT=0 V T/R SW on resistance HVP# =10 V, HVM# =-10 V, XDCR=0 V, LVOUT=0.2 V T/R SW off resistance HVP# =10 V, HVM# =-10 V, XDCR=1 V, LVOUT=0 V R T/R SW_ON R T/R SW_OFF Condition Min. Typ. Max. 40 Voltage drop between HVP1 HVP# =10V, HVM# =-10V, ISINK_XDCR=50 mA VDROP_C and XDCR W Voltage drop between XDCR HVP# =10V, HVM# =-10V, and HVM1 ISOURCE_XDCR=50 mA Units pF 13.5 15.5 1 W G 2.58 2.79 2.9 V 2.58 2.86 2.9 V 1. Operating conditions, unless otherwise specified, INT_BIAS=DVDD, HVP# = 90 V, HVM# = -90 V, VDDP = 3 V, VDDM = 3 V, DVDD = 3 V, TROOM = 25 °C. 2. Guaranteed by bench characterization. Table 10. AC electrical characteristics (1) Symbol Parameter Test condition Min. Typ. Max. 16 f MHz 50 pF//200 22 MHz fCW Maximum output frequency CW HVP1 =5 V, HVM1 = -5 V, continuous wave mode 20 MHz fBW Output frequency BW HVP1 = 50 V, HVM1 = -50 V, continuous wave mode, 50 pF//200 10 MHz tj-CW CW output jitter HVP1 =5 V, HVM1 = -5 V, continuous wave mode 205 fs, rms tf Fall time 28 ns tr Rise time 28 ns tdr Rise propagation delay 24 ns tdf Fall propagation delay 24 ns T/R SW turn-on / turn-off time 170 ns 1 pulse f = 1.7 MHz -40 dBc 1 pulse f = 5 MHz -40 dBc 5 pulses f = 1.7 MHz -40 dBc 5 pulses f = 5 MHz -40 dBc f = 1.7 MHz original and inverted pulse -40 dBc f = 5 MHz original and inverted pulse -40 dBc 2 % T/R SW HD2 HD2PC BVD 14/29 Maximum output frequency Units 2nd harmonic distortion Pulse cancellation Burst voltage drop 1st to 128th pulse HVP1 = 10 V, HVM1 = -10 V DocID15450 Rev 5 STHV748 Electrical characteristics Table 10. AC electrical characteristics (1) Symbol Parameter Test condition Min. Typ. Max. Power dissipation, all channels CW mode, f = 5 MHz, HVP1 = 5 V, HVM1 = -5 V, no load 390 Power dissipation, one channel CW mode, f = 5 MHz, HVP1 = 5 V, HVM1 = -5 V PD_CW T/R SWSPIKE XTALK Units mW T/R SW spike on XDCR and LVOUT Cross talk between channels. Ampl(2ch)/Ampl(1ch), 50 pF//200 320 100 mVpp -40 db 1. Operating conditions, unless otherwise specified, HVP# = 90 V, HVM# = -90 V, VDDP = 3 V, VDDM = -3 V, DVDD = 3 V, V, INT_BIAS = DVDD, (HVP-REF_HVP) = 3 V, (REF_HVM-HVM) = 3 V, XDCR load C = 300 pF//R = 100 , LVOUT load C = 20 pF//200 TROOM = 25 °C. DocID15450 Rev 5 15/29 29 Timings 8 STHV748 Timings Figure 5. tr, tf, tdr, and tdf descriptions ,1 ,1 ,1 7GI 7 I ,1 7 GU 7 U +93 +93 ;'&5 +93 ;'&5 +90 +90 +90 $0Y Figure 6. PW example 5 periods, HVP0 = 90 V, HVM0 = -90 V, T=200 ns, T_tx=1.2 µs, T_w=200 µs ,1 ,1 ,1 ,1 +93 ;'&5 +90 WKSHULRG 7 FODPS 7BK 7BW[ WUDQVPLVVLRQSHULRG 7BZ (QWLUHZDIHIRUP $0Y 16/29 DocID15450 Rev 5 STHV748 Timings Figure 7. PW and HD2 example (HVP0=80 V, HVM0=-80 V load 300 pF//100 ) Figure 8. PC example, HVP0 = 90 V HVM0 = -90 V, T=200 ns, T_pos= T_neg=400 ns ,1 ,1 ,1 ,1 +93 7 ;'&5 ;'&5B 3& 7BSRV +90 7BQHJ 7BQHJ ))7ZLQGRZ $0Y DocID15450 Rev 5 17/29 29 Timings STHV748 Figure 9. CW mode example, HVP1 = 5 V, HVM1 = 5 V, T = 200 ns, T_tx>1 ms ,1 ,1 ,1 ,1 7 7BW[ 7BK $0Y Figure 10. T/R SW signal equivalent circuit model XDCR LVOUT Rs/2 Rs/2 Rp Cp Rs=13 Ω Rp=100 KΩ Cp=40 pF AGND AM020067v1 18/29 DocID15450 Rev 5 STHV748 Timings Figure 11. T/R SW bandwidth DocID15450 Rev 5 19/29 29 Timings STHV748 Figure 12. Possible external connection for LVOUT outputs with T/R SW in multiplexing driving configuration Ć 67+9 &+B$ 6LQJOHĆ5;ĆFKDLQĆ ;'&5B$ +95B6: 7; 08;ĆFRPPDQGĆ W &+B% /1$ 7*& 3*$ (&+2Ć6,*1$/W /3 )LOWHU $'& $)( /9287B$ ;'&5B% +95B6: 7; 08;ĆFRPPDQGĆ WẄ (&+2Ć6,*1$/WẄ /9287B% &+B& ;'&5B& +95B6: 7; 08;ĆFRPPDQGĆ W¨W &+B' (&+2Ć6,*1$/WẄ /9287B& ;'&5B' 08;ĆFRPPDQGĆ W¨W +95B6: 7; (&+2Ć6,*1$/WẄ /9287B' $0Y 20/29 DocID15450 Rev 5 STHV748 9 Oscilloscope acquisitions Oscilloscope acquisitions Figure 13. TX0 = ±60 V positive-negative pulses and immediately after TX1 = ±30 V positive-negative pulses, load 300 pF // 100 Figure 14. Five-levels HV output voltage DocID15450 Rev 5 21/29 29 Oscilloscope acquisitions STHV748 Figure 15. CW operations at 6 MHz Figure 16. CW operations at 9 MHz 22/29 DocID15450 Rev 5 STHV748 Oscilloscope acquisitions Figure 17. Two positive and two negative “short pulses” with 10 ns time width for inputs IN#, HVP/N/0/1 = ±90 V, load 300 pF // 100 . DocID15450 Rev 5 23/29 29 Oscilloscope acquisitions STHV748 9.1 Output phase noise measurement in CW mode 9.1.1 Typical performance characteristics Unless otherwise stated, the following conditions apply: VDDP = +3.3 V, VDDM = -3.3 V, DVDD = +3.3 V, Exp-PAD = -5 V, HVP = +5 V, HVM = -5 V, no load, Fin= 5 MHz, TA = 25 °C. Figure 18. Measurement setup - CK1 = 640 MHz; CK2 = 5 MHz Figure 19. Phase noise output plot 56)6836LJQDO6RXUFH$QDO\]HU 6HWWLQJV 6LJQDO)UHTXHQF\ 0+] ,QW3+1NG%F 6LJQDO/HYHO G%P 5HVLGXDO30 3//0RGH +DUPRQLF 5HVLGXDO)0 +] ,QWHUQDO5HI7XQHG ,QWHUQDO3KDVH'HW506-LWWHU 3KDVH1RLVH>G%F+]@ 5)$WWHQ G% 7RSG%F+] /2&.(' 5HVLGXDO1RLVH>7ZRVSXUV@ 3KDVH'HWHFWRUG% SV 0DUNHU>7@ N+] G%F+] 6 P6 $ 6*/ &/5:5 607+ &/5:5 (/ (/ 6352)) 7+G% /RRS%:+] +] N+] )UHTXHQF\2IIVHW N+] N+] Significant results from the output have been extracted(a): – Phase noise @1 kHz: -147 dBc/Hz – RMS jitter [BW 100 Hz - 20 KHz]: 205 fs a. Values measured leave room for improvement. As such, they are affected by a non-optimized setup. 24/29 DocID15450 Rev 5 STHV748 10 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10.1 QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 package information Figure 20. QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 package outline 3FW# DocID15450 Rev 5 25/29 29 Package information STHV748 Table 11. QFN64 9 x 9 x 1.0 mm 64 pitch 0.50 package mechanical data Dim Min. Typ. Max. A 0.8 0.9 1 A1 0.02 0.05 A2 0.65 1 A3 0.2 b 0.18 0.25 0.3 D 8.85 9 9.15 D1 8.75 D2 See exposed pad variation E 8.85 9 E1 9.15 8.75 E2 See exposed pad variation e 0.5 L 0.35 0.4 0.45 P 0.6 K 12 ddd 0.08 Table 12. Exposed-pad variation 6D2 E2 Variation Note: 26/29 Min. Typ. Max. Min. Typ. Max. A 4.1 4.25 4.4 4.1 4.25 4.4 B 4.55 4.7 4.85 4.55 4.7 4.85 C 6.95 7.1 7.25 6.95 7.1 7.25 D 7.15 7.3 7.45 7.15 7.3 7.45 QFN64 used for STHV748 has D variation option. DocID15450 Rev 5 STHV748 Package information Figure 21. QFN64 9 x 9 x 1.0 mm 64 tape and reel information mm. inch DIM. MIN. A TYP . MAX. MIN. 330 MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 13.2 TYP. 0.504 30.4 0.519 1.196 Ao 12.25 12.45 0482 0.490 Bo 12.25 12.45 0482 0.490 Ko 2.1 2.3 0.083 0.091 Po 3.9 4.1 0.153 0.161 P 15.9 16.1 0.626 0.639 DocID15450 Rev 5 27/29 29 Revision history 11 STHV748 Revision history Table 13. Document revision history Date Revision 20-Jan-2010 1 Initial release. 17-Feb-2010 2 Updated typo on coverpage. 3 Updated Table 6: Supply voltages and average currents, Table 9: Static electrical characteristics and Table 10: AC electrical characteristics. Minor text changes. 4 Updated the entire Table 6: Supply voltages and average currents title included. Updated title in Figure 6: PW example 5 periods, HVP0 = 90 V, HVM0 = -90 V, T=200 ns, T_tx=1.2 µs, T_w=200 µs. Minor text changes. 5 – Updated Features on the coverpage and output jitter data in Table 10. – Added Section 9.1: Output phase noise measurement in CW mode. – Reformatted Package information section to current standards. – Minor text changes throughout the document. 09-Nov-2011 11-May-2012 20-Jan-2016 28/29 Changes DocID15450 Rev 5 STHV748 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2016 STMicroelectronics – All rights reserved DocID15450 Rev 5 29/29 29