AN4471 Application note STEVAL-IME009V1 evaluation board based on the STHV800 high voltage pulser Introduction The STEVAL-IME009V1 is an evaluation board designed around the STHV800 transmission pulser, which is a state-of-the-art product for ultrasound imaging applications. The system permits four transducers to be driven as 8-channel transmitters; the output waveforms can be displayed directly on an oscilloscope by connecting the scope probe on the relative BNCs. 16 preset waveforms are available to test the HV pulser under different conditions. Figure 1. Photo of STEVAL-IME009V1 Warning: October 2014 Before applying any voltage to the STEVAL-IME009V1, please read the instructions in this document carefully. DocID026197 Rev 1 1/39 www.st.com Contents AN4471 Contents 1 Board features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 3.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 SPI Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4.1 Stored patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4.2 Pattern program 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4.3 Pattern Program 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4.4 Pattern Program 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.5 Pattern Program 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.6 Pattern Program 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 STHV800 stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 Operating supply conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 SPI Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2/39 DocID026197 Rev 1 AN4471 1 Board features Board features • Suitable for ultrasound imaging applications • 8 monolithic channels, 3-level high voltage pulser • Integrated T/R switch – On-board equivalent piezoelectric load implemented by means of R/C equivalent network • USB interface to upload customized output waveforms • 4 Mb serial Flash memory for storing customized waveforms • Memory expansion connector to expand the serial Flash size • High voltage and low voltage connectors to power the STHV800 • 25 LEDs to check evaluation board status and proper operation • Human Machine Interface to select, start and stop the stored output waveforms DocID026197 Rev 1 3/39 39 Getting started 2 AN4471 Getting started The STEVAL-IME009V1 is shipped by STMicroelectronics and is ready to use in Normal mode. The user only needs to: 1. Connect the right power supply to the board (see Section 3.1) 2. Connect the BNC to the oscilloscope 3. Check that switch SW1 is set on the FPGA position (see Table 1 in Section 3.1) 4. Check that the LED labeled “DONE” (D23) is on 5. Check that FPGA is in the idle state (LED D4 is on) 6. Select the waveform with the Program button; the corresponding program LED (D6D21) turns on 7. Press the START button to run the selected program; the START LED (D2) turns on 8. The selected waveform is output until the STOP button is pressed and the relative LED (D3) turns on. After the program ends, the FPGA returns to the idle state (LED D4 is on) 9. To run the same program again, restart from step 7; to run another program, restart from step 6 For Programming mode, please refer to UM1083. 4/39 DocID026197 Rev 1 AN4471 3 Hardware layout and configuration Hardware layout and configuration The STEVAL-IME009V1 evaluation board is designed around the STHV800. The hardware block diagram (Figure 2) illustrates the main connection between STHV800, the FPGA, the STM32F103C8T6 and the SPI Flash memory. Figure 3 will help you to locate connectors, LEDs and features on the board. Figure 2. Hardware block diagram Figure 3. STEVAL-IME009V1 board layout DocID026197 Rev 1 5/39 39 Hardware layout and configuration 3.1 AN4471 Power supply The low voltage block of the STEVAL-IME009V1 board is designed to be powered by: • 3.3 V DC connected to J4 to supply the FPGA and SPI Flash memory in Normal mode • 5 V DC through USB mini-B connector to supply the STM32 and SPI memory in Programming mode The power supply is configured by setting SW1 and J41 as described in Table 1. Table 1. Power related jumpers Description For normal operation mode, to power supply FPGA and SPI Flash memory. Default setting LEFT (1) SW1 For update operation mode, to power supply STM32F103 and SPI Flash memory RIGHT (1) J41 (2) FPGA and SPI Flash memory are power supplied by DVDD (J2). Default setting: Not Mounted on PCB 1. Left and right are conceived by looking the board as depicted in Figure 1. 2. The fitting of J41 can create voltage mismatch between J4 and J2 when one of these is not 3.3 V. LED D26, D27 and D28 show the power supply configuration as described in Table 1. Table 2. Power supply LEDs Color Name Description D26 Red USB ON D27 Red MCU Programming mode, to supply power to STM32F103 and SPI Flash memory D28 Red FPGA Normal mode, to supply power to FPGA and SPI Flash memory The USB cable is connected The high voltage block of the STEVAL-IME009V1 is designed to be powered by (see Table 15 for maximum rating): • HVPCW: Continuous wave high voltage positive supply (J1 conn.) • HVP0:TX High voltage positive supply (J1 conn.) • GND: Ground (J1 conn.) • DVDD: Logic voltage, 3.3 V (J2 conn.) • VDDP: Positive supply voltage 3.3 V (J2 conn.) 6/39 DocID026197 Rev 1 AN4471 Hardware layout and configuration • VDDM: Negative supply voltage -3.3 V to 0 (J2 conn.) • GND: Ground (J2 conn.) • HVMCW: Continuous wave high voltage negative supply (J3 conn.) • HVM0: TX high voltage negative supply (J3 conn.) • GND: Ground (J3 conn.) 3.2 MCU The STM32F103C8T6 updates the waveform and the FPGA bit stream on the SPI Flash memory. It is already pre-programmed as a DFU (device firmware upgrade) device and can upgrade internal and external Flash memory. The STM32F103 manages all the DFU operations, such as the authentication of product identifier, vendor identifier, Firmware version as well as the alternate setting number (Target ID). This is used to upgrade the SPI Flash memory hosted on the STEVAL-IME009V1 and render the upgrade more secure. Note: See AN3156, UM0412 and UM1083 for further details about the upgrade through DFU. 3.3 SPI Flash memory The STEVAL-IME009V1 hosts a Micron N25Q032 (U9), it is a 32-Mbit (4 Mb x 8) serial Flash memory with advanced write protection mechanisms. It can be accessed by a high speed SPI-compatible bus and can even work in XIP (eXecution in Place) mode. The N25Q032 also supports the high-performance quad I/O instructions used by the FPGA to quadruple the transfer bandwidth for read and program operations. If extra data memory is needed, the user can connect external Flash memory to the J10 connector. When the external Flash is plugged, LED D29 is on Table 3. Table 3. SPI Flash memory LED Color Name Description D29 Green EXT SPI-FLASH The external SPI-Flash module is connected D30 Red On-board SPI-FLASH The on-board SPI-Flash is used The Flash memory is configured by setting J38 as described in Table 4. Table 4. SPI Flash memory jumper Status Closed Description Fitted (default setting): enable the power supply to the on-board SPI Flash memory (U9). J38 Open Unfitted: disable the power supply to the on-board SPI Flash memory. DocID026197 Rev 1 7/39 39 Hardware layout and configuration 3.4 AN4471 FPGA The STEVAL-IME009V1 includes a Xilinx Spartan®-6 XC6SLX16 FPGA that drives the STHV800 pulser by generating a suitable sequence of digital control signals (called “program”). The board can store 16 individually selectable programs. The main features of the waveforms generated by a program are summarized in Table 5. Table 5. Programmable waveforms main features Feature Min. Default Max. Programmable waveforms number 1 6 16 Pulse time resolution - 5 ns - Pulse pattern duration (1) 40 ns - 20.48 µs Cycle period (PRF) 40 ns - 2621.44 µs 1 - 255 Cycles number Infinite cycle Defined by the program 1. Time period of the pulse sequence pattern. (2) Time period of a pulse repetition cycle. The data required to generate a program is stored in the SPI Flash memory. When the program starts, the data is downloaded from Flash memory and stored in the FPGA internal RAM blocks. The data is then managed in order to generate the high-speed STHV800 digital control signals. The SPI Flash also contains FPGA configuration data (bit stream) which is automatically loaded during start-up or following an FPGA reset (SW5). The FPGA is configured by setting jumpers as described in Table 6. Table 6. FPGA jumper Description J5 J5 controls FPGA I/O pull ups during configuration. It should be fitted to enable I/O pull ups during FPGA configuration. Default setting: Not Mounted. Force FPGA into Suspend mode J12 Allow STM32 to control FPGA Suspend mode (Default setting) J13 8/39 J13 is used to prevent FPGA programming from the configuration source. Fitted: disable FPGA programming. Unfitted: enable FPGA programming. (default setting: unfitted) DocID026197 Rev 1 AN4471 Hardware layout and configuration Table 6. FPGA jumper (continued) Description Configure J35 and J36 to setup outputs idle state as follows: (default setting: Not Mounted) J35 and J36 High Z J35 and J36 unfitted Clamp / TRswitch J35 fitted, J36 unfitted High Z J35 and J36 fitted Clamp J35 unfitted, J36 fitted Configure J37 to connect FPGA outputs to STHV800 (default setting: Not mounted) J37 Fitted: disconnect FPGA outputs (High Z) Unfitted: connect FPGA outputs Once the FPGA has been configured, the LED DONE (D23) turns on and the FPGA state machine enters the idle state (LED D4 turns on). In order to generate a programmed waveform, the user selects the desired waveform (refer to Section 3.4.1) through the Program button. The selected program is given by the illumination of its corresponding LED (D6, D8, … D21 represent Program 0, Program 1, … Program 15, respectively). Program selection loops back to Program 0 after the last installed program. By pressing the START button, the selected program starts running and the START LED (D2) turns on. When the program ends, the FPGA returns to the IDLE state (LED D4 is on). If a continuous wave program has been selected, the STOP button must be pressed to stop program execution. The FPGA returns to the idle state and the STOP LED (D3) turns on. The LEDs associated with FPGA operations are described in Table 7. Table 7. FPGA LED Color Name Description D2 Green START A program is running following activation of the start button SW5. D3 Green STOP The stop button SW4 has been pressed. D4 Green IDLE The FPGA state machine is in the idle state. D5 Red ERROR D23 Green DONE D6-D21 Yellow An error has occurred during FPGA state machine execution. The FPGA has been successfully configured. PROG 0-15 The corresponding program is selected The FPGA state machine can be also controlled by an external digital device through the FPGA USER I/O connector (J7), see Table 24 for the naming and pinout positioning of the DocID026197 Rev 1 9/39 39 Hardware layout and configuration AN4471 FPGA USER I/O connector. The REMOTE_ENABLE pin must be set high to enable remote control of the board. The waveform program can be selected by setting the PROG<3:0> port. If an uninstalled program is selected, the ERROR output signal goes high. Alternatively, the idle state can be selected through the IDLE_SEL<1:0> port. If remote control is enabled, the Program, Start and Stop push buttons are disabled. A waveform program can be started via the REMOTE_START signal (active high), and stopped by setting the REMOTE_STOP signal high. Both the FPGA reset (SW5) and REMOTE_RESET signal can be used to reset the FPGA. Some internal FPGA control signals can be inspected through the FPGA USER I/O connector (regardless of whether remote control is enabled or disabled). Figure 4 and Figure 5 show the expected behavior of these timing control signals. Figure 4. FPGA timing control signals (beginning of cycle n) Figure 5. FPGA timing control signals (ending of cycle n) 3.4.1 Stored patterns The STEVAL-IME009V1 can memorize up to 16 patterns in the on-board Flash memory to show the achievable performance for each pulser output. A default set of five selectable patterns are already stored in the Flash memory and ready to use. A detailed description of the settled programs is listed below. 3.4.2 Pattern program 0 The first pattern stored in the SPI Flash is described in Table 8, where the output pulses are in phase. Its state sequence is indicated in Table 9. In order to appreciate the waveforms shown in Figure 20 the following test conditions have been applied: – HVP0 = HVP1 = + 80 V 10/39 DocID026197 Rev 1 AN4471 Hardware layout and configuration – HVM0 = HVM1 = - 80 V – Load: 300 pF // 100 Ω Table 8. Program “0” Mode Frequency [MHz] Number of pulses Initial pulse PRF H-Bridge XDCR_1 PW 5 10 positive 300 µs HV_TX XDCR_2 PW 5 10 negative 300 µs HV_TX XDCR_3 PW 5 10 positive 300 µs HV_TX XDCR_4 PW 5 10 negative 300 µs HV_TX XDCR_5 PW 5 10 positive 300 µs HV_TX XDCR_6 PW 5 10 negative 300 µs HV_TX XDCR_7 PW 5 10 positive 300 µs HV_TX XDCR_8 PW 5 10 negative 300 µs HV_TX Table 9. State sequence Program “0” XDCR_1, XDRC_3, XDCR_5, XDCR_7 XDCR_2, XDRC_4, XDCR_6, XDCR_8 CLAMP 2 µs CLAMP 2 µs HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns CLAMP 2 µs CLAMP 2 µs RX 295 µs RX 295 µs DocID026197 Rev 1 11/39 39 Hardware layout and configuration AN4471 Figure 6. Acquisition by Program “0”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2, XDCR_3 and XDCR_4, respectively 3.4.3 Pattern Program 1 The second pattern stored in the SPI Flash is described in Table 10, where the output pulses are delayed by 10 ns each. Its state sequence is indicated in Table 11. In order to appreciate the waveforms shown in Table 7 and Table 8, the following test conditions have been applied: – HVP0 = + 80 V – HVM0 = - 80 V – Load: 300 pF // 100 Ω Table 10. Program “1” 12/39 Mode Frequency [MHz] Number of pulses Initial pulse PRF H-Bridge XDCR_1 PW 5 10 positive 300 µs HV_TX XDCR_2 PW 5 10 negative 300 µs HV_TX XDCR_3 PW 5 10 positive 300 µs HV_TX XDCR_4 PW 5 10 negative 300 µs HV_TX XDCR_5 PW 5 10 positive 300 µs HV_TX XDCR_6 PW 5 10 negative 300 µs HV_TX XDCR_7 PW 5 10 positive 300 µs HV_TX XDCR_8 PW 5 10 negative 300 µs HV_TX DocID026197 Rev 1 AN4471 Hardware layout and configuration Table 11. State sequence Program “1” XDCR_1 XDCR_2 XDCR_3 XDCR_4 CLAMP 2 µs CLAMP 2.01 µs CLAMP 2.02 µs CLAMP 2.03 µs HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs RX 295 µs RX 294.99 µs RX 294.98 µs RX 294.97 µs XDCR_5 XDCR_6 XDCR_7 XDCR_8 CLAMP 2.04 µs CLAMP 2.05 µs CLAMP 2.06 µs CLAMP 2.07 µs HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVP 100 ns HVM 100 ns HVP 100 ns HVM 100 ns HVM 100 ns CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs RX 294.96 µs RX 294.95 µs RX 294.94 µs RX 294.93 µs DocID026197 Rev 1 13/39 39 Hardware layout and configuration AN4471 Figure 7. Acquisition by Program “1”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2, XDCR_7 and XDCR_8, respectively Figure 8. Acquisition by Program “1”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2, XDCR_7 and XDCR_8, respectively 14/39 DocID026197 Rev 1 AN4471 3.4.4 Hardware layout and configuration Pattern Program 2 The third pattern stored in the SPI Flash is described in Table 12, where the output pulses are in phase. Its state sequence is indicated in Table 13. In order to appreciate the waveforms shown in Figure 9, the following test conditions have been applied: – HVP_CW = + 10 V – HVM_CW = - 10 V – Load: 300 pF // 100 Ω Table 12. Program “2” Mode Frequency [MHz] Number of pulses Initial pulse H-Bridge XDCR_1 CW 5 continuous wave positive HV-CW XDCR_2 CW 2.5 continuous wave positive HV-CW XDCR_3 CW 5 continuous wave positive HV-CW XDCR_4 CW 2.5 continuous wave positive HV-CW XDCR_5 CW 5 continuous wave positive HV-CW XDCR_6 CW 2.5 continuous wave positive HV-CW XDCR_7 CW 5 continuous wave positive HV-CW XDCR_8 CW 2.5 continuous wave positive HV-CW Table 13. State sequence Program “2” XDCR_1, XDRC_3, XDCR_5, XDCR_7 XDCR_2, XDRC_4, XDCR_6, XDCR_8 HVP_CW 100 ns HVP_CW 200 ns HVM_CW 100 ns HVM_CW 200 ns HVP_CW 100 ns HVP_CW 200 ns HVM_CW 100 ns HVM_CW 200 ns HVP_CW 100 ns HVP_CW 200 ns HVM_CW 100 ns HVM_CW 200 ns HVP_CW 100 ns HVP_CW 200 ns HVM_CW 100 ns HVM_CW 200 ns DocID026197 Rev 1 15/39 39 Hardware layout and configuration AN4471 Figure 9. Acquisition by Program “2”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2, XDCR_3 and XDCR_4, respectively 3.4.5 Pattern Program 3 The fourth pattern stored in the SPI Flash is described in Table 14, where the output pulses are in delayed by 10 ns each. Its state sequence is indicated in Table 15. In order to appreciate the waveforms shown in Figure 10 and Figure 11, the following test conditions have been applied: – HVP_CW = + 10 V – HVM_CW = - 10 V – Load: 300 pF // 100 Ω Table 14. Program “3” 16/39 Mode Frequency [MHz] Number of pulses Initial pulse H-Bridge XDCR_1 CW 5 continuous wave positive HV-CW XDCR_2 CW 5 continuous wave positive HV-CW XDCR_3 CW 5 continuous wave positive HV-CW XDCR_4 CW 5 continuous wave positive HV-CW XDCR_5 CW 5 continuous wave positive HV-CW XDCR_6 CW 5 continuous wave positive HV-CW XDCR_7 CW 5 continuous wave positive HV-CW XDCR_8 CW 5 continuous wave positive HV-CW DocID026197 Rev 1 AN4471 Hardware layout and configuration Table 15. State sequence Program “3” XDCR_1 XDCR_2 XDCR_3 XDCR_4 HVP_CW 20 ns HVP_CW 30 ns HVP_CW 40 ns HVP_CW 50 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 80 ns HVP_CW 70 ns HVP_CW 60 ns HVP_CW 50 ns XDCR_5 XDCR_6 XDCR_7 XDCR_8 HVP_CW 60 ns HVP_CW 70 ns HVP_CW 80 ns HVP_CW 90 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVP_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVM_CW 100 ns HVP_CW 40 ns HVP_CW 30 ns HVP_CW 20 ns HVP_CW 10 ns DocID026197 Rev 1 17/39 39 Hardware layout and configuration AN4471 Figure 10. Acquisition by Program “3”, where C1, C2, C3 and C4 are XDCR_1, XDCR_3, XDCR_6 and XDCR_8, respectively Figure 11. Acquisition by Program “3”, where C1, C2, C3 and C4 are XDCR_1, XDCR_3, XDCR_6 and XDCR_8, respectively 18/39 DocID026197 Rev 1 AN4471 3.4.6 Hardware layout and configuration Pattern Program 4 The fifth pattern stored in the SPI Flash is described in Table 16, where the output pulses are in phase. Its state sequence is indicated in Table 17. In order to appreciate the waveforms shown in Figure 12 and Figure 13, the following test conditions have been applied: – HVP = +80 V – HVM = -80 V – Load: 300pF // 100 Ω Table 16. Program “4” Mode Frequency [MHz] Number of pulses Initial pulse PRF H-Bridge XDCR_1 PC 2.5 3 positive 300 µs HV_TX XDCR_2 PC 2.5 3 negative 300 µs HV_TX XDCR_3 PC 5 3 positive 300 µs HV_TX XDCR_4 PC 5 3 negative 300 µs HV_TX XDCR_5 PC 2.5 2 positive 300 µs HV_TX XDCR_6 PC 2.5 2 negative 300 µs HV_TX XDCR_7 PC 5 2 positive 300 µs HV_TX XDCR_8 PC 5 2 negative 300 µs HV_TX Table 17. State sequence Program “4” XDCR_1 XDCR_2 XDCR_3 XDCR_4 CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs HVP 200 ns HVM 200 ns HVP 100 ns HVM 100 ns HVM 200 ns HVP 200 ns HVM 100 ns HVP 100 ns HVP 200 ns HVM 200 ns HVP 100 ns HVM 100 ns CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs RX 295.4 µs RX 295.4 µs RX 295.7 µs RX 295.7 µs XDCR_5 XDCR_6 XDCR_7 XDCR_8 CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs HVP 200 ns HVM 200 ns HVP 100 ns HVP 100 ns HVM 200 ns HVP 200 ns HVM 100 ns HVM 100 ns CLAMP 2 µs CLAMP 2 µs CLAMP 2 µs HVP 2 µs RX 295.6 µs RX 295.6 µs RX 295.8 µs HVM 295.8 µs DocID026197 Rev 1 19/39 39 Hardware layout and configuration AN4471 Figure 12. Acquisition by Program “4”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2, XDCR_3 and XDCR_4, respectively Figure 13. Acquisition by Program “4”, where C1, C2, C3 and C4 are XDCR_5, XDCR_6, XDCR_7 and XDCR_8, respectively 20/39 DocID026197 Rev 1 AN4471 Hardware layout and configuration Further customized patterns based on test requirements for final applications can be uploaded by the user into the remaining memory slots (through the.dfu file - see user manual UM1083). 3.5 STHV800 stage The STHV800 high-voltage, high-speed pulser generator features eight independent channels. It is designed for medical ultrasound applications, but can also be used for other piezoelectric, capacitive or MEMS transducers. The device contains a controller logic interface circuit, level translators, MOSFET gate drivers, noise blocking diodes and high-power P-channel and N-channel MOSFETs as output stages for each channel. It also includes clamping-to-ground circuitry, anti-leakage, an anti-memory effect block, a thermal sensor and a HV receiver switch (HVR_SW) that ensures strong decoupling during the transmission phase. The STHV800 also features self-biasing and thermal shutdown blocks (see Figure 14). Figure 14. STHV800 single channel block diagram HVP TX INx_1 CW P Input logic & high voltage level shifter INx_0 HVP_CW CW P S0 PCW S2 N Noise blocking diodes PCW NCW XDCR Clamp RX RX S6 N S1 NCW Clamp p S5 LVOUT S4 TRswitch S3 Clamp HVM HVM_CW AGND GND_PWR AM10224V1 Each channel can support up to three active output levels with one half-bridge. Each channel consists of two supplied output stages for pulsed wave (PW) and continuous wave (CW) operations. The PW output stage is able to provide up to ±2 A peak output current while, to reduce power dissipation and jitter during continuous wave mode, the fully optimized CW output stage delivers up to ±0.3 A. Note: For further information, please refer to the STHV800 datasheet. The STEVAL-IME009V1 allows the user to configure the special pins on the STHV800, see Table 18. A brief explanation of the use and functionality of these pins is given below: • THSD is a thermal flag. The output stage of the THSD pin is a NMOS channel open-drain, so it is necessary to connect the external pull-up resistance (R ≥ 10 kΩ) to the positive low-voltage supply (see Figure 11). If the internal temperature exceeds 160 °C, THSD DocID026197 Rev 1 21/39 39 Hardware layout and configuration AN4471 goes down and puts all the channels into the HZ state. By externally forcing THSD to a positive low-voltage supply, the thermal protection is disabled. • EXPOSED-PAD is internally connected to the substrate. It is accessible on the bottom side of the board and it is floating. The user can connect a 100 V capacitance to ground in order to reduce noise during the receiving phase. More information on the THSD pin is described in Table 18. Table 18. STHV800 special pin configuration Special pins on the PCB demo Name THSD (pin 29) Description Thermal shutdown pin Status on board Active (J24 closed between 1 and 2 - forced to 3 V through R58 = 10 kΩ). The user can monitor the THSD status on TP3 (test point). Moreover the user can give the control to FPGA by shorting J24 between 2 and 3 The STHV800 output waveforms for each channel Ch 1/2/3/4/5/6/7/8 can be displayed directly using an oscilloscope by connecting the scope probe to the XDCR_x (with x= 1, … 8) BNC connectors. The user can also select whether or not to connect the on board equivalent load, a 270 pF 200 V capacitor paralleled with a 100 Ω, 2 W resistor (through J19, J21, J20, J18, J27, J31, J28, J32 respectively for Channel 1, ... 8). A coaxial cable can also be used to easily connect the user transducer. Eight low voltage outputs are also available to receive the transduced echo signal arriving from the piezo-element through the TRswitch (see Table 5) on the low voltage output BNC (JlCh1, JlCh2, …). Once the STHV800 performance is appreciated, users can make their own boards. The main issues to be wary of during the PCB design are the capacitance values to ensure good filtering and effective decoupling between the low voltage inputs and the HV switching signals. The best way to ensure this is through layer separation. 3.6 Operating supply conditions Table 19. DC working supply conditions Operating supply voltages Symbol 22/39 Parameter Min. Typ. Max. Unit VDDP Positive supply voltage 2.7 3 3.6 V VDDM Negative supply voltage - 2.7 -3 - 3.6 V VDD Positive logic voltage 1.6 3 3.6 V HVP TX high voltage positive supply 95 V HVP_CW CW high voltage positive supply 95 V HVM TX high voltage negative supply - 95 V HVM_CW CW high voltage negative supply - 95 V DocID026197 Rev 1 AN4471 Hardware layout and configuration Table 20. Current consumption in CW mode, @ 5 MHz, HVP/M_CW = ± 5 V, no-load Operating supply voltages Symbol Parameter Value Unit IVDDP Positive supply current 2 mA IVDDM Negative supply current 6 mA IHVP1 TX1 high voltage positive supply current 14.5 mA IHVM1 TX1 high voltage negative supply current 11 mA DocID026197 Rev 1 23/39 39 Connectors AN4471 4 Connectors 4.1 Power supply The STEVAL-IME009V1 board has to be powered by J4, J1, J2 and J3 connectors as shown in the following figures. Figure 15. Power supply connector J4 Figure 16. Power supply connector J1 Figure 17. Power supply connector J2 24/39 DocID026197 Rev 1 AN4471 Connectors Figure 18. Power supply connector J3 4.2 Power-up sequence The device is fully power-up/power-down sequence free, so there is no recommended sequence to follow in order to power up/down the STHV800. In any case, the relationships HVM_CW ≥ HVM and HVP_CW ≤ HVP must be respected during operation. 4.3 MCU Figure 19. USB mini-B connector (CN1) Table 21. USB mini-B connector pinout Pin number Description 1 Vbus (power) 2 DM (STM32 PA11) 3 DM (STM32 PA11) 4 N.C. 5 Ground Figure 20. SWD (J40) DocID026197 Rev 1 25/39 39 Connectors AN4471 Table 22. JTAG/SWD connector pinout 4.4 Pin number Description 1 MCU_3V3 2 JTMS 3 GND 4 JTCK 5 GND 6 JTDO 7 GND 8 JTDI 9 GND 10 RESET# SPI Flash memory Figure 21. Memory expansion connector (J10) Table 23. Memory expansion connector pinout 26/39 Pin number Description 1 MCU_FPGA_PROG (not used) 2 SPI MISO3 3 SPI MISO2 4 SPI CS 5 SPI MOSI 6 SPI MISO 7 SPI CLK 8 GND 9 3.3V 10 CHECK DocID026197 Rev 1 AN4471 Connectors Note: This memory is mutually exclusive with the on-board Flash memory, disconnect J38 before plugging an expansion memory over J10; relative LED (D29) turns on. 4.5 FPGA FPGA USER I/O connector (J7) connector is used for debugging purposes; it allows the user to directly interface with FPGA I/Os. Table 24. FPGA USER I/O connector pinout Pin number Description Pin number Description Direction 1 GND 2 CW OUTPUT 3 GND 4 TRIGGER_OUT OUTPUT 5 GND 6 CLKOUT OUTPUT 7 GND 8 CYCLE_END OUTPUT 9 GND 10 THSD_EN OUTPUT 11 GND 12 ERROR OUTPUT 13 GND 14 PROG<0> IN/OUT 15 GND 16 PROG<1> IN/OUT 17 GND 18 PROG<2> IN/OUT 19 GND 20 PROG<3> IN/OUT 21 GND 22 IDLE_SEL<0> IN/OUT 23 GND 24 IDLE_SEL<1> IN/OUT 25 GND 26 REMOTE_ENABLE INPUT 27 GND 28 REMOTE_START INPUT 29 GND 30 REMOTE_STOP INPUT 31 GND 32 REMOTE_RESET INPUT Table 25. FPGA PMOD connectors (J8) not mounted on the board Pin number Description Pin number Description 1 Not used 2 Not used 3 Not used 4 Not used 5 GND 6 3.3 V 7 Not used 8 Not used 9 Not used 10 Not used 11 GND 12 3.3 V DocID026197 Rev 1 27/39 39 Connectors AN4471 Table 26. FPGA PMOD connectors (J9) not mounted on the board Pin number Description Pin number Description 1 Not used 2 Not used 3 Not used 4 Not used 5 GND 6 3.3 V 7 Not used 8 Not used 9 Not used 10 Not used 11 GND 12 3.3 V Two right-angle, 12-pin (2 x 6 female) Peripheral module (PMOD) headers (J8, J9) are interfaced with the FPGA, with each header providing 3.3 V power, ground and eight I/O's, see Table 25 and Table 26. These headers may be utilized as general-purpose I/Os or may be used to interface to PMODs to enable additional user customization. J8 and J9 are placed in close proximity (0'9" - centers) on the PCB in order to support dual PMODs. Table 27. FPGA JTAG connectors (J11) not mounted on the board Pin number Description Pin number Description 1 GND 2 3.3 V 3 GND 4 TMS 5 GND 6 TCK 7 GND 8 TDO 9 GND 10 TDI 11 GND 12 Not used 13 GND 14 Not used The STEVAL-IME009V1 evaluation board supports the serial peripheral interface (SPI Flash) method of configuring the FPGA. The default configuration mode (determined by pull-up/pull-down resistors R17, R18, R21, and R22) is “Master Serial / SPI” mode, which allows the FPGA to be configured from the SPI Flash device. Spartan-6 devices have a dedicated four-wire JTAG port (always available to the FPGA regardless of the mode pin settings) that enables the Boundary-scan configuration method. Configuring the FPGA via Boundary-scan requires a JTAG download cable to be attached to the 14-pin 2 mm spaced keyed header J11 (to be mounted) with a ribbon cable. Resistors RN1, R41 - R44 and diode D22 must also be mounted. Jumper J13 is used to prevent FPGA programming from the configuration source. It must be open (default) to enable FPGA programming. LED D23, labeled “DONE” on the board, illuminates to indicate when the FPGA has been successfully configured. 28/39 DocID026197 Rev 1 DocID026197 Rev 1 FPGA FPGA_SPI_CCLK FPGA_SPI_MOSI FPGA_SPI_MISO1 FPGA_SPI_MISO2 FPGA_SPI_MISO3 FPGA_SPI_SEL MCU_FPGA_PROG MCU_FPGA_INIT_B MCU_FPGA_MODE1 FPGA_MCU_DONE MCU_FPGA_OSC_EN FPGA_MCU_AWAKE MCU_FPGA_SUSPEND MCU_FPGA_GPIO[0:7] DVDD VDDP VDDM HVP0 HVM0 HVPCW HVMCW MCU_FPGA_GPIO[0:7] HVMCW HVPCW HVM0 USB_DP USB_DP USB_DM USB_DISCONNECT USB_DM MCU_3V3 MCU_3V3 FLASH_3V3 FLASH_3V3 +VFPGA_IO_3V3 DATAOUT14 DATAOUT15 DATAOUT12 DATAOUT13 DATAOUT10 DATAOUT11 STHV800 CW CK THSD_EN IN8_0 IN8_1 IN7_0 IN7_1 IN6_0 IN6_1 IN5_0 IN5_1 IN4_0 IN4_1 IN3_0 IN3_1 IN2_0 IN2_1 IN1_0 IN1_1 VDDP +VFPGA_CORE_1V2 CK CW DATAOUT6 DATAOUT7 DATAOUT8 DATAOUT9 DATAOUT4 DATAOUT5 DATAOUT2 DATAOUT3 DATAOUT0 DATAOUT1 THSD_EN DATAOUT[0:15] DATAOUT[0:15] DVDD VDDP HVP0 HVPCW STHV800_BLK VDDM VDDM HVP BOARD_POWER BOARD_POWER_BLK STM32_FLASH FLASH_C FLASH_DQ0 FLASH_DQ1 FLASH_DQ2 FLASH_DQ3 FLASH_nS MCU_FPGA_PROG MCU_FPGA_INIT_B MCU_FPGA_MODE1 FPGA_MCU_DONE MCU_FPGA_OSC_EN FPGA_MCU_AWAKE MCU_FPGA_SUSPEND FPGA_GPIO[0:7] FPGA_BLK HVM_CW HVM HVP_CW HVMCW HVM0 5 STM32_FLASH_BLK AN4471 Schematics Schematics Figure 22. STEVAL-IME009V1- Part 1 DVDD +VFPGA_CORE_1V2 +VFPGA_IO_3V3 HVP0 VDDM VDDP DVDD USB_DISCONNECT GSPG2209140940SG 29/39 39 30/39 4 DocID026197 Rev 1 1 2 D1 SM2T3V3A J41 2 NOT ASSEMBLY 1 C12 4u7 6.3V EXT_3V3 USB_3V3 C8 2.2uF 6.3V MMS228T nc ON_2a COM_1a ON_1a SOT23-5L 5 D3 4 5 ON_1b nc ON_2b COM_1b DVDD D26 RED USB ON C13 4u7 6.3V 1 4 ST1S12xx EN Vin U3 FB/Vo +VFPGA_IO_3V3 FLASH_3V3 2 5 3 MCU L1 Detail TDK (VLF4012AT-2R2M1R5) - RS (614-3147) C14 Detail TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND) Dimension 0805 - EIA 2012 RED D28 FPGA R125 56 5 6 7 8 SW Kingbright KP2012SURC RS: 466-3829 Farnell: 8529930 LED 0805 3.3V Power Management R90 56R C8 Details: DigiKey (478-2552-2-ND) - AVX (TACL225M006XTA) Package 0603 L1 R124 56 D27 RED USB_DISCONNECT USB_DM USB_DP DM USB_DISCONNECT DP C7 Details: Digikey (445-4998-2-ND) - TDK (C1005X5R0J105K) Package 0402 USBUF02W6 D2 Grd 3.3V U1 SOTT323-6L 6 D1 D4 GND J4 Details Phoenix Contact (Mfg Code MPT 0.5/2-2.54) RS (220-4260) C12 and C13 Detail TDK (C1608X5R0J475K) - Digikey (445-5178-2-ND) Dimension 0603 - EIA 1608 3V3 3V3 Connector J4 SW1 Details: SW1 RS 711-8329 KNITTER-SWITCH (MMS228T) 2 4 3 2 1 GND EXT_3V3 BYPS FLASH_3V3 INH C11 33nF VOUT LDS3985M33R 3 2 1 USB_DISCONNECT USBDM USBDP USBDM USBDP 2.2uH C14 10u 10V MCU_3V3 HVMCW HVM0 VDDM DVDD VDDP HVPCW HVP0 C9 1 2 3 4 J2 DVDD VDDP GND VDDM LV 1 2 3 J3 HVMCW HVM0 GND HVM GND_POWER C10 J3 Details: 22000n 100V RS (193-0570) Phoenix Contact (Mfg Code MKDS 1.5/3-5.08) HVMCW HVM0 GND_POWER 0 R2 C4, C5, C6 Details: Digikey (445-1436-2-ND) - TDK (C3225X5R1C226M) Package 1210 - EIA 3225 +VFPGA_CORE_1V2 HVPCW HVP0 GND HVP C4 J2 Details RS 2X(193-0564) 22000n 16V Phoenix Contact (Mfg Code 16V MKDS 1.5/2-5.08) VDDM DVDD VDDP GND_POWER GND_POWER 16V J1 C2 J1 Details 22000n 100V RS (193-0570) 100V Phoenix Contact (Mfg Code MKDS 1.5/3-5.08) 0 GND_SHIELD R123 C1, C2, C9, C10 Details: Digikey (445-5217-2-ND) - TDK (CKG57NX7S2A226M) Package 6.5mm x 5.5 mm 100V 100V 22000n 100V 16V C6 100V C1 22000n 16V 22000n 16V C5 22000n 100V HVPCW 1 HVP0 2 3 STHV800 Power Management LOW POWER USB_3V3 C7 1uF 3 VIN ID nc GND SHELL SHELL SHELL SHELL VBUS DM DP RS (515-1995) Molex (54819-0572) C3 4.7nF 4 5 6 7 8 9 1 2 3 CN1 USB_miniB 1 U2 DM DP USB + HIGH VOLTAGE USB_5V R1 1M USB_5V Schematics AN4471 Figure 23. STEVAL-IME009V1- Part 2 - HIGH VOLTAGE GSPG2209141100SG DocID026197 Rev 1 XC6SLX16-2CSG324C IO_0_L01N_VREF IO_0_L01P_HSWAPEN IO_0_L02N IO_0_L02P IO_0_L03N IO_0_L03P IO_0_L04N IO_0_L04P IO_0_L05N IO_0_L05P IO_0_L06N IO_0_L06P IO_0_L07N IO_0_L07P IO_0_L08N_VREF IO_0_L08P IO_0_L09N IO_0_L09P IO_0_L10N IO_0_L10P IO_0_L11N IO_0_L11P IO_0_L32N IO_0_L32P IO_0_L33N IO_0_L33P IO_0_L34N_GCLK18 IO_0_L34P_GCLK19 IO_0_L35N_GCLK16 IO_0_L35P_GCLK17 IO_0_L36N_GCLK14 IO_0_L36P_GCLK15 IO_0_L37N_GCLK12 IO_0_L37P_GCLK13 IO_0_L38N_VREF IO_0_L38P IO_0_L39N IO_0_L39P IO_0_L40N IO_0_L40P IO_0_L41N IO_0_L41P IO_0_L42N IO_0_L42P IO_0_L47N IO_0_L47P IO_0_L50N IO_0_L50P IO_0_L51N IO_0_L51P IO_0_L62N_VREF IO_0_L62P IO_0_L63N_SCP6 IO_0_L63P_SCP7 IO_0_L64N_SCP4 IO_0_L64P_SCP5 IO_0_L65N_SCP2 IO_0_L65P_SCP3 IO_0_L66N_SCP0 IO_0_L66P_SCP1 FPGA - Bank 0 U4A C4 D4 A2 B2 C6 D6 A3 B3 A4 B4 A5 C5 E6 F7 A6 B6 E8 E7 A7 C7 C8 D8 F8 G8 A8 B8 C9 D9 A9 B9 C11 D11 A10 C10 F9 G9 A11 B11 F10 G11 A12 B12 E11 F11 C12 D12 A13 C13 E12 F12 A14 B14 E13 F13 A15 C15 C14 D14 A16 B16 Diff. pair DATAOUT8 Diff. pair DATAOUT9 Diff. pair DATAOUT10 Diff. pair DATAOUT11 Diff. pair DATAOUT12 Diff. pair DATAOUT13 Diff. pair DATAOUT14 Diff. pair DATAOUT15 Diff. pair CW IDLE_STATE0 IDLE_STATE1 HI_Z THSD_EN HSWAPEN Diff. pair DATAOUT3 Diff. pair DATAOUT4 Diff. pair DATAOUT2 Diff. pair DATAOUT1 Diff. pair DATAOUT0 Diff. pair DATAOUT5 Diff. pair DATAOUT6 Diff. pair DATAOUT7 Diff. pair CK R120 10K 0402 DATAOUT[0:15] THSD_EN J5 R121 10K 0402 CW DATAOUT[0:15] CK R122 10K 0402 C15 100n 0402 NOT ASSEMBLY JUMPER HSWAPEN 1 2 R3 10K 0402 +VFPGA_IO_3V3 2 2 2 FPGA DISCONNECT NOT ASSEMBLY THESE JUMPERS J35 1 J36 1 J37 1 IDLE STATE +VFPGA_IO_3V3 C16 10uF 10V 0805 +VFPGA_IO_3V3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 STHV748 I/O CONNECTOR HEADER 17X2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 NOT ASSEMBLY DATAOUT3 DATAOUT12 DATAOUT2 +VFPGA_IO_3V3 C17 10uF 10V 0805 C16 and C17 Details: TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND) Dimension 0805 - EIA 2012 Open J37 (default) to connect FPGA outputs Close J37 to disconnect outputs (High-Z) Configure J35 and J36 to setup outputs idle state as follows: 00 - (J35 and J36 open) --> High-Z (default) 01 - (J35 closed and J36 open) --> Clamp/HVR_SW 11 - (J35 and J36 closed) --> High-Z 10 - (J35 open and J36 closed) --> Clamp Jumpers J35, J36 and J37 are used to set dataout output state. CK CW DATAOUT0 DATAOUT1 DATAOUT9 DATAOUT13 DATAOUT10 DATAOUT14 DATAOUT6 DATAOUT15 DATAOUT7 DATAOUT8 DATAOUT5 DATAOUT11 THSD_EN DATAOUT4 J6 Open (default) to float I/O output during FPGA configuration. Set jumper 1:2 to enable I/O pullups during FPGA configuration. Jumper J5 is used to control I/O pullups during FPGA configuration. C18 100n 0402 AN4471 Schematics Figure 24. STEVAL-IME009V1- Part 3 GSPG2209141120SG 31/39 39 FPGA - Bank 1 DocID026197 Rev 1 XC6SLX16-2CSG324C IO_1_L01N_A24_VREF IO_1_L01P_A25 IO_1_L29N_A22_M1A14 IO_1_L29P_A23_M1A13 IO_1_L30N_A20_M1A11 IO_1_L30P_A21_M1RESET IO_1_L31N_A18_M1A12 IO_1_L31P_A19_M1CKE IO_1_L32N_A16_M1A9 IO_1_L32P_A17_M1A8 IO_1_L33N_A14_M1A4 IO_1_L33P_A15_M1A10 IO_1_L34N_A12_M1BA2 IO_1_L34P_A13_M1WE IO_1_L35N_A10_M1A2 IO_1_L35P_A11_M1A7 IO_1_L36N_A8_M1BA1 IO_1_L36P_A9_M1BA0 IO_1_L37N_A6_M1A1 IO_1_L37P_A7_M1A0 IO_1_L38N_A4_M1CLKN IO_1_L38P_A5_M1CLK IO_1_L39N_M1ODT IO_1_L39P_M1A3 IO_1_L40N_GCLK10_M1A6 IO_1_L40P_GCLK11_M1A5 IO_1_L41N_GCLK8_M1CASN IO_1_L41P_GCLK9_IRDY1_M1RASN IO_1_L42N_GCLK6_TRDY1_M1LDM IO_1_L42P_GCLK7_M1UDM IO_1_L43N_GCLK4_M1DQ5 IO_1_L43P_GCLK5_M1DQ4 IO_1_L44N_A2_M1DQ7 IO_1_L44P_A3_M1DQ6 IO_1_L45N_A0_M1LDQSN IO_1_L45P_A1_M1LDQS IO_1_L46N_FOE_B_M1DQ3 IO_1_L46P_FCS_B_M1DQ2 IO_1_L47N_LDC_M1DQ1 IO_1_L47P_FWE_B_M1DQ0 IO_1_L48N_M1DQ9 IO_1_L48P_HDC_M1DQ8 IO_1_L49N_M1DQ11 IO_1_L49P_M1DQ10 IO_1_L50N_M1UDQSN IO_1_L50P_M1UDQS IO_1_L51N_M1DQ13 IO_1_L51P_M1DQ12 IO_1_L52N_M1DQ15 IO_1_L52P_M1DQ14 IO_1_L53N_VREF IO_1_L53P IO_1_L61N IO_1_L61P IO_1_L74N_DOUT_BUSY IO_1_L74P_AWAKE U4B F16 F15 C18 C17 G14 F14 D18 D17 G13 H12 E18 E16 K13 K12 F18 F17 H14 H13 H16 H15 G18 G16 K14 J13 L13 L12 K16 K15 L16 L15 H18 H17 J18 J16 K18 K17 L18 L17 M18 M16 N18 N17 P18 P17 N16 N15 T18 T17 U18 U17 N14 M14 M13 L14 P16 P15 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 NOT ASSEMBLY FPGA_MCU_AWAKE TP1 TEST POINT HEADER 16X2 J7 FPGA USER I/O X1 GND OE ST OUT VCC FPGA_CLK_66MHZ 2 1 BACKUP OF U5 R126 10k 33R2 R7 1 8 7 3 2 FPGA_PMOD2_P7 FPGA_PMOD2_P9 FPGA_PMOD2_P1 FPGA_PMOD2_P3 C29 100nF J8 DX 2 4 6 8 10 12 NOT ASSEMBLY PMOD2 HEADER 6X2 1 3 5 7 9 11 J9 C27 C20 10nF FPGA_PMOD1_P8 FPGA_PMOD1_P10 C28 100nF +VFPGA_IO_3V3 R6 10K NM MCU_FPGA_OSC_EN FPGA_PMOD1_P2 FPGA_PMOD1_P4 10uF 10V 0805 5 4 6 C19 100nF FPGA_PMOD2_P8 FPGA_PMOD2_P10 FPGA_PMOD2_P2 FPGA_PMOD2_P4 C31 10uF 10V 0805 C32 100nF +VFPGA_IO_3V3 C26, C27, C30 and C31 Detail TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND) Dimension 0805 - EIA 2012 2 4 6 8 10 12 C30 10uF 10V 0805 HEADER 6X2 SX NOT ASSEMBLY PMOD1 C26 10uF 10V 0805 1 3 5 7 9 11 +VFPGA_IO_3V3 FPGA_PMOD1_P7 FPGA_PMOD1_P9 FPGA_PMOD1_P1 FPGA_PMOD1_P3 C25 100nF +VFPGA_IO_3V3 GND GND PDN 66MHZ OSC DS1088LU-66 OUT n/c n/c VCC VCC U5 PERIPHERRAL MODULE (PMOD) 3 4 +VFPGA_IO_3V3 66MHZ EXTERNAL OSCILLATOR Place R7 (1%) close to the clock source DS1088LU-66 device MCU_FPGA_OSC_EN Two right-angle, 12-pin (2 x 6 female) Peripheral Module (PMOD) headers (J8, J9) are interfaced to the FPGA, with each header providing 3.3 V power, ground, and eight I/O's. These headers may be utilized as general-purpose I/Os or may be used to interface to PMODs. J6 and J8 are placed in close proximity (0'9" -centers) on the PCB in order to support dual PMODs. FPGA_DOUT_BUSY FPGA_AWAKE FPGA_USER_IO_0 FPGA_USER_IO_1 FPGA_USER_IO_2 FPGA_USER_IO_3 FPGA_USER_IO_4 FPGA_USER_IO_5 FPGA_USER_IO_6 FPGA_USER_IO_7 FPGA_USER_IO_8 FPGA_USER_IO_9 FPGA_USER_IO_10 FPGA_USER_IO_11 FPGA_USER_IO_12 FPGA_USER_IO_13 FPGA_USER_IO_14 FPGA_USER_IO_15 CTRL_LED3 CTRL_LED2 FPGA_RESET STOP_PB CTRL_LED1 CTRL_LED0 SEL_PROG_PB FPGA_CLK_66MHZ START_PB FPGA_PMOD1_P2 FPGA_PMOD1_P1 FPGA_PMOD1_P4 FPGA_PMOD1_P3 FPGA_PMOD1_P8 FPGA_PMOD1_P7 FPGA_PMOD1_P10 FPGA_PMOD1_P9 FPGA_PMOD2_P2 FPGA_PMOD2_P1 FPGA_PMOD2_P4 FPGA_PMOD2_P3 FPGA_PMOD2_P8 FPGA_PMOD2_P7 FPGA_PMOD2_P10 FPGA_PMOD2_P9 1 32/39 When using backup oscillator X1, R126 have to be unmounted and R6 must be placed. STOP SW PUSHBUTTON-DPST R8 10K 0402 PROGRAM RED LED Kingbright KP2012SURC RS: 466-3829 Farnell: 8529930 LED 0805 CTRL LED R10 56R 0402 R13 56R 0402 R12 56R 0402 R11 56R 0402 RED D5 GREEN D4 GREEN D3 GREEN C24 100nF FPGA_RESET FPGA RESET D2 R5 10K 0402 R9 10K 0402 ERROR ERROR signal IDLE IDLE state signal Near STOP button Near START button SW5 START SW PUSHBUTTON-DPST +VFPGA_IO_3V3 C22 100nF SW3 START_PB +VFPGA_IO_3V3 SW PUSHBUTTON-DPST GREEN LED Kingbright KP2012SURC RS: 466-3778 Farnell: 8529906 LED 0805 CTRL_LED3 CTRL_LED2 CTRL_LED1 CTRL_LED0 SW2, SW3, SW4, Details RS (378-6527) C23 100nF SW4 STOP_PB R4 10K 0402 SW PUSHBUTTON-DPST +VFPGA_IO_3V3 C21 100nF SW2 SEL_PROG_PB +VFPGA_IO_3V3 PUSHBUTTONS Schematics AN4471 Figure 25. STEVAL-IME009V1- Part 4 GSPG2209141140SG DocID026197 Rev 1 MCU_FPGA_GPIO0 MCU_FPGA_GPIO1 MCU_FPGA_GPIO2 MCU_FPGA_GPIO3 MCU_FPGA_GPIO4 MCU_FPGA_GPIO5 MCU_FPGA_GPIO6 MCU_FPGA_GPIO7 T15 R15 V16 U16 T13 R13 V15 U15 V14 T14 P12 N12 V13 U13 N11 M11 T11 R11 V12 T12 P11 N10 N9 M10 V11 U11 T10 R10 V10 U10 T8 R8 V9 T9 N8 M8 V8 U8 V7 U7 P8 N7 V6 T6 T7 R7 P7 N6 T5 R5 V5 U5 T3 R3 V4 T4 P6 N5 V3 U3 MCU_FPGA_GPIO[0:7] IO_2_L01N_M0_CMPMISO IO_2_L01P_CCLK IO_2_L02N_CMPMOSI IO_2_L02P_CMPCLK IO_2_L03N_MOSI_CSI_B_MISO0 IO_2_L03P_D0_DIN_MISO_MISO1 IO_2_L05N IO_2_L05P IO_2_L12N_D2_MISO3 IO_2_L12P_D1_MISO2 IO_2_L13N_D10 IO_2_L13P_M1 IO_2_L14N_D12 IO_2_L14P_D11 IO_2_L15N IO_2_L15P IO_2_L16N_VREF IO_2_L16P IO_2_L19N IO_2_L19P IO_2_L20N IO_2_L20P IO_2_L22N IO_2_L22P IO_2_L23N IO_2_L23P IO_2_L29N_GCLK2 IO_2_L29P_GCLK3 IO_2_L30N_GCLK0_USERCCLK IO_2_L30P_GCLK1_D13 IO_2_L31N_GCLK30_D15 IO_2_L31P_GCLK31_D14 IO_2_L32N_GCLK28 IO_2_L32P_GCLK29 IO_2_L40N IO_2_L40P IO_2_L41N_VREF IO_2_L41P IO_2_L43N IO_2_L43P IO_2_L44N IO_2_L44P IO_2_L45N IO_2_L45P IO_2_L46N IO_2_L46P IO_2_L47N IO_2_L47P IO_2_L48N_RDWR_B_VREF IO_2_L48P_D7 IO_2_L49N_D4 IO_2_L49P_D3 IO_2_L62N_D6 IO_2_L62P_D5 IO_2_L63N IO_2_L63P IO_2_L64N_D9 IO_2_L64P_D8 IO_2_L65N_CSO_B IO_2_L65P_INIT_B FPGA - Bank 2 TP2 TEST POINT MCU_FPGA_GPIO[0:7] PROG_LED14 PROG_LED15 MCU_FPGA_GPIO6 MCU_FPGA_GPIO7 MCU_FPGA_GPIO4 MCU_FPGA_GPIO5 PROG_LED12 PROG_LED13 MCU_FPGA_GPIO2 MCU_FPGA_GPIO3 MCU_FPGA_GPIO0 MCU_FPGA_GPIO1 PROG_LED10 PROG_LED11 PROG_LED2 PROG_LED3 PROG_LED6 PROG_LED7 PROG_LED0 PROG_LED1 PROG_LED4 PROG_LED5 PROG_LED8 PROG_LED9 FPGA_SPI_SEL FPGA_INIT_B FPGA_MODE1 FPGA_SPI_MISO3 FPGA_SPI_MISO2 FPGA_SPI_MOSI FPGA_SPI_MISO1 FPGA_MODE0 CCLK 1 XC6SLX16-2CSG324C U4C R16 10K 0402 R21 2K43 0402 DNP R17 2K43 0402 R22 2K43 0402 MCU_FPGA_MODE1 MCU_FPGA_INIT_B R18 2K43 0402 DNP 1 2 3 4 5 6 7 8 9 10 Place D29 close to J10 EXT SPI FLASH CON10 R127 56 J10 R38 GREEN C33 Details: TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND) Dimension 0805 - EIA 2012 C34 100nF R40 NA 0402 R39 NA 0402 FPGA_SPI_CCLK FPGA_SPI_MISO1 FPGA_SPI_MOSI FPGA_SPI_SEL FPGA_SPI_MISO2 FPGA_SPI_MISO3 MCU_FPGA_PROG +VFPGA_IO_3V3 C33 10uF 10V 0805 33R2 0402 TO CORRECT D29 CCLK FPGA_SPI_MISO1 FPGA_SPI_MOSI FPGA_SPI_SEL FPGA_SPI_MISO2 FPGA_SPI_MISO3 Place R38 close to the FPGA device SPI FLASH CTRL SIGNALS When FPGA_INIT_B (bidirectional open-drain) is Low the configuration memory is being cleared. When held Low, the start of configuration is delayed. During configuration, a Low on this output indicates that a configuration data error has occurred. Configuration mode selection: FPGA_MODE0 = Parallel (Low) or Serial (High) FPGA_MODE1 = Master (Low) or Slave (High) FPGA_INIT_B FPGA_MODE0 FPGA_MODE1 +VFPGA_IO_3V3 FPGA CONFIGURATION PROG_LED7 PROG_LED6 PROG_LED5 PROG_LED4 PROG_LED3 PROG_LED2 PROG_LED1 PROG_LED0 68R 0402 R33 68R 0402 R31 68R 0402 R29 68R 0402 R27 68R 0402 R25 68R 0402 R23 68R 0402 R19 68R 0402 R14 YELLOW D20 PROG 7 YELLOW D18 PROG 6 YELLOW D16 PROG 5 YELLOW D14 PROG 4 YELLOW D12 PROG 3 YELLOW D10 PROG 2 YELLOW D8 PROG 1 YELLOW D6 PROG 0 PROGRAM SELECTOR LEDS 68R 0402 R34 68R 0402 R32 68R 0402 R30 68R 0402 R28 68R 0402 R26 68R 0402 R24 68R 0402 R20 68R 0402 R15 Kingbright KP-3216SYC RS: 466-3942 LED 0805 PROG_LED15 PROG_LED14 PROG_LED13 PROG_LED12 PROG_LED11 PROG_LED10 PROG_LED9 PROG_LED8 YELLOW D21 PROG 15 YELLOW D19 PROG 14 YELLOW D17 PROG 13 YELLOW D15 PROG 12 YELLOW D13 PROG 11 YELLOW D11 PROG 10 YELLOW D9 PROG 9 YELLOW D7 PROG 8 AN4471 Schematics Figure 26. STEVAL-IME009V1- Part 5 SPI EXTERNAL PROGRAMMING HEADER GSPG2209141200SG 33/39 39 34/39 FPGA - Bank 3 GSPG2209141410SG DocID026197 Rev 1 XC6SLX16-2CSG324C IO_3_L01N_VREF IO_3_L01P IO_3_L02N IO_3_L02P IO_3_L31N_VREF IO_3_L31P IO_3_L32N_M3DQ15 IO_3_L32P_M3DQ14 IO_3_L33N_M3DQ13 IO_3_L33P_M3DQ12 IO_3_L34N_M3UDQSN IO_3_L34P_M3UDQS IO_3_L35N_M3DQ11 IO_3_L35P_M3DQ10 IO_3_L36N_M3DQ9 IO_3_L36P_M3DQ8 IO_3_L37N_M3DQ1 IO_3_L37P_M3DQ0 IO_3_L38N_M3DQ3 IO_3_L38P_M3DQ2 IO_3_L39N_M3LDQSN IO_3_L39P_M3LDQS IO_3_L40N_M3DQ7 IO_3_L40P_M3DQ6 IO_3_L41N_GCLK26_M3DQ5 IO_3_L41P_GCLK27_M3DQ4 IO_3_L42N_GCLK24_M3LDM IO_3_L42P_GCLK25_TRDY2_M3UDM IO_3_L43N_GCLK22_IRDY2_M3CASN IO_3_L43P_GCLK23_M3RASN IO_3_L44N_GCLK20_M3A6 IO_3_L44P_GCLK21_M3A5 IO_3_L45N_M3ODT IO_3_L45P_M3A3 IO_3_L46N_M3CLKN IO_3_L46P_M3CLK IO_3_L47N_M3A1 IO_3_L47P_M3A0 IO_3_L48N_M3BA1 IO_3_L48P_M3BA0 IO_3_L49N_M3A2 IO_3_L49P_M3A7 IO_3_L50N_M3BA2 IO_3_L50P_M3WE IO_3_L51N_M3A4 IO_3_L51P_M3A10 IO_3_L52N_M3A9 IO_3_L52P_M3A8 IO_3_L53N_M3A12 IO_3_L53P_M3CKE IO_3_L54N_M3A11 IO_3_L54P_M3RESET IO_3_L55N_M3A14 IO_3_L55P_M3A13 IO_3_L83N_VREF IO_3_L83P U4D N3 N4 P3 P4 M5 L6 U1 U2 T1 T2 P1 P2 N1 N2 M1 M3 L1 L2 K1 K2 L3 L4 J1 J3 H1 H2 K3 K4 K5 L5 H3 H4 K6 L7 G1 G3 J6 J7 F1 F2 H5 H6 E1 E3 F3 F4 D1 D2 G6 H7 D3 E4 F5 F6 C1 C2 FPGA BANK 3 NOT USED Schematics AN4471 Figure 27. STEVAL-IME009V1- Part 6 DocID026197 Rev 1 SUSPEND SW PUSHBUTTON-DPST 4 FPGA_PROG C73 100nF To be placed near U3 74LX1G08CTR U7 Jumper J13 used to prevent FPGA from programming from configuration source. Set 1:2 to disable FPGA programming. Open (default) to enable FPGA programming. JUMPER FPGA PROG DISABLE J13 3 FPGA PROG 1 2 2 1 R50 10K 0402 5 RS (378-6527) R49 10K 0402 4 74V1G32CTR U6 +VFPGA_IO_3V3 3 MCU_FPGA_PROG 2 10K 0402 R48 1 CMPCS_B_2 PROGRAM_B_2 SUSPEND DONE_2 FPGA - Power & Configuration FPGA_MCU_DONE DONE DONE FPGA_DONE R52 330 0402 +VFPGA_IO_3V3 Q1 2N7002 D23 GREEN R51 56R A1 J9 K10 V18 V1 U6 U12 T16 R9 R4 R18 R14 R1 N13 M6 M2 M17 L9 L11 K8 G12 E15 J4 J15 J11 H8 H10 G5 G2 G17 C16 B7 D5 D10 C3 B13 A18 RST1 1 2 3 5 Header 3 J12 R46 10K 0402 FPGA_CMP_CS_B P13 V2 FPGA_PROG FPGA_SUSPEND R16 V17 FPGA_DONE TCK TMS TDO TDI GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND PROGRAM_B Jumper J12 1:2 to force FPGA into suspend mode. 2:3 (Default) to allow MCU to control FPGA suspend mode. MCU_FPGA_SUSPEND C62 100nF R45 A17 B18 D16 D15 C42 0805 R47 0 FPGA BANK 3 NOT USED E2 G4 J2 J5 M4 R2 P9 R12 R6 U14 U4 U9 E17 G15 J14 J17 M15 R17 0.22uF 6.3V 0402 C36, C37, C38, C41, C42, C52, C53, C59, C60, C67, C TDK (C1608X5R0J475K) - Digikey (445-5178-2-ND) Dimension 0603 - EIA 1608 C72 0.22uF 6.3V 0402 0.22uF 6.3V 0402 C69 C71 4.7uF 6.3V 0603 C68 0.22uF 6.3V 0402 4.7uF 6.3V 0603 C67 +VFPGA_IO_3V3 C70 100uF 6.3V 1206 0.22uF 6.3V 0402 C61 0.22uF 6.3V 0402 C65 4.7uF 6.3V 0603 C60 0.22uF 6.3V 0402 C63 0.22uF 6.3V 0402 4.7uF 6.3V 0603 C64 C59 100uF 6.3V 1206 0.22uF 6.3V 0402 0.22uF 6.3V 0402 +VFPGA_IO_3V3 C57 C56 C58 C66 C54 0.22uF 6.3V 0402 C55 4.7uF 6.3V 0603 C53 +VFPGA_IO_3V3 0.22uF 6.3V 0402 C52 4.7uF 6.3V 0603 C51 0.22uF 6.3V 0402 0.22uF 6.3V 0402 C50 4.7uF 6.3V 0603 0.22uF 6.3V 0402 C49 100uF 6.3V 1206 C35, C40, C51, C58, C66 Details Murata (GRM31CR60J107ME39L) - Digikey (490-4539-1-ND) Dimension 1206 - EIA 3216 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 B10 B15 B5 D13 D7 E10 XC6SLX16-3CSG324C 0.22uF 6.3V 0402 0.22uF 6.3V 0402 0.22uF 6.3V 0402 0.22uF 6.3V 0402 VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX 10K 0402 FPGA_TCK FPGA_TMS FPGA_TDO FPGA_TDI U4E XC6SLX16-2CSG324C 0.22uF 6.3V 0402 C48 C47 C46 C45 VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT To be placed near U6 4 3 2 1 +VFPGA_IO_3V3 NOT ASSEMBLY R43 49R 0402 NOT ASSEMBLY R44 49R 0402 NOT ASSEMBLY R42 49R 0402 NOT ASSEMBLY R41 49R 0402 C44 4.7uF 6.3V 0603 0.22uF 6.3V 0402 C43 C41 C40 100uF 6.3V 1206 C39 C38 4.7uF 6.3V 0603 +VFPGA_CORE_1V2 +VFPGA_IO_3V3 4.7uF 6.3V 0603 4.7uF 6.3V 0603 100uF 6.3V 1206 +VFPGA_IO_3V3 +VFPGA_CORE_1V2 C37 C36 C35 P5 P14 P10 M9 K7 J12 G10 E9 E5 E14 B17 B1 Xilinx Parallel IV Connector 2.0mm 7x2 shrouded header CON14A 2 4 6 8 10 12 14 NOT ASSEMBLY J11 RESDIP4X1206 RN1 RESISTOR DIP 4 4-Resistor Array 3.2x1.6mm Not Assembly +VFPGA_IO_3V3 +VFPGA_CORE_1V2 M7 M12 L8 L10 K9 K11 J8 J10 H9 H11 G7 SUSPEND & CMPCS_B 1 3 5 7 9 11 13 NOT ASSEMBLY D22 STTH102A +VFPGA_IO_3V3 5 6 7 8 FPGA JTAG FPGA JTAG AN4471 Schematics Figure 28. STEVAL-IME009V1- Part 7 GSPG2209141435SG 35/39 39 36/39 CW CK CK 2 BNC 1 BNC Jch7 2 1 Jch8 2 1 BNC Jch6 XDCR_5 1 Jch5 GND_PWR LVOUT_5 DocID026197 Rev 1 16 15 1 1 2 1 2 1 2 2 LVOUT_5 LVOUT_6 18 17 19 1 21 Jlch7 BNC 1 2 2 2 LVOUT_8 Jlch8 BNC B2S J30 B2S J29 LVOUT_7 1 1 1 B2S J34 B2S 2 26 LVOUT_6 Jlch5 BNC 20 Jlch6 BNC LVOUT_3 1 LVOUT_7 C113 LVOUT_8 LVOUT_2 22 100 R63 C112 270p 100V 1206 LVOUT_1 23 100 R65 IN5_0 100 R61 GND_PWR 24 C111 270p 100V 1206 IN5_1 25 1 IN6_0 J33 THSD VDDP VDDM AGND HVP HVP HVP HVP HVP HVP_CW IN4_1 IN4_0 IN3_1 IN3_0 IN2_2 IN2_0 IN1_1 IN1_0 C118 20p 1206 C117 20p 1206 C115 20p 1206 IN8_1 IN8_0 IN7_1 IN7_0 IN6_1 IN6_0 IN5_1 IN5_0 VDDP 30 29 VDDM 31 32 33 34 35 36 37 HVP 38 CK J25 CON3 C83 C95 220n CX7 HVP_CW CK LVOUT_4 TEST POINT TP3 220n C87 220n 100V 0805 220n 100V 0805 220n 100V 0805 220n CX9 220n 1 Jlch3 BNC Jlch4 BNC LVOUT_3 CX10 1 C101 220n C85 C97 220n HVP DVDD 40 39 CW 41 42 STHV800 C114 20p 1206 IN6_1 1 IN3_0 270p 100V 1206 J27 B2S IN7_0 28 270p 100V 1206 C116 100 R62 J31 B2S IN2_1 J28 B2S IN7_1 J32 B2S XDCR_8 XDCR_7 XDCR_6 XDCR_5 HVM_CW LVOUT_4 14 13 12 11 10 HVM HVM STHV800 IN2_0 HVM D46 DFLS1200 8 9 HVM HVM HVM IN8_0 HVP 220n C86 7 6 5 DGND DVDD CW CK 20p 1206 20p 1206 IN8_1 D44 DFLS1200 DFLS1200 D45 D39 DFLS1200 CX5 220n 220n 220n HVM_CW 220n 100V 0805 220n 100V 0805 CX4 C91 HVM C90 C88 IN1_1 DFLS1200 D43 D40 DFLS1200 DFLS1200 D41 CX3 GND_PWR BNC XDCR_7 XDCR_6 DFLS1200 D42 CX2 GND_PWR XDCR_8 CW HVM CX1 IN4_1 THSD_EN D38 DFLS1200 220n 100V 0805 220n 100V 0805 220n 100V 0805 XDCR_4 XDCR_3 IN4_0 DFLS1200 HVP D37 DFLS1200 D36 3 4 IN3_1 THSD_EN IN8_1 DFLS1200 D35 1 BNC Jch3 BNC C92 C76 20p 1206 20p 1206 LVOUT_2 LVOUT_1 2 IN8_1 IN8_0 IN7_1 2 1 Jch4 2 C75 C74 IN1_0 IN8_0 BNC XDCR_3 1 IN7_1 XDCR_4 2 IN7_0 IN6_1 2 IN7_0 56 XDCR_2 55 XDCR_1 54 1 53 2 52 D32 DFLS1200 51 D34 50 BNC 49 1 Jch2 48 IN6_1 XDCR_2 1 DFLS1200 B2S J14 B2S J15 2 2 2 47 IN6_0 1 Jch1 1 B2S J16 B2S J17 46 IN6_0 XDCR_1 U8 DFLS1200 D31 J19 B2S 1 1 1 45 IN5_1 J21 B2S C81 270p 100V 1206 44 IN5_0 1 DFLS1200 D33 J20 B2S R56 100 1 Jlch2 BNC 2 IN5_1 HVM HVP J18 B2S R55 100 43 IN5_0 IN4_1 IN4_0 IN3_1 C80 1 IN4_1 IN4_0 IN3_1 IN3_0 2 IN3_0 C77 270p 100V 1206 R54 100 2 IN2_1 R64 100 2 IN2_0 C84 270p 100V 1206 2 IN2_1 IN1_1 IN1_0 HVM HVM_CW DVDD VDDP VDDM HVP HVP_CW 2 IN2_0 IN1_1 IN1_0 HVM HVM_CW DVDD VDDP VDDM HVP HVP_CW 1 Jlch1 BNC 2 1 2 3 270p 100V 1206 D1, D2, D3 ,D4, D5, D6, D7, D8 diode DFLS1200 rs-code 708-2324 CX6 THSD_EN R59 100k THSD R58 10k C89 220n 1 2 3 CON3 J24 THSD 220n 100V 0805 DVDD CX8 220n 100V 0805 J16, J17, J22, J23, J25, J26, J29 and J30 Details Tyco Electronics (1-1337482-0) - RS (420-5401) C77, C80, C111, C112 Details DigiKey (490-1462-2-ND) Murata (GRM188R72A271KA01D) J16, J17, J22, J23, J25, J26, J29 and J30 Details Tyco Electronics (1-1337482-0) - RS (420-5401) Schematics AN4471 Figure 29. STEVAL-IME009V1- Part 8 1 27 2 2 2 2 2 2 GSPG2209141545SG VSS 4 DocID026197 Rev 1 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A FPGA_GPIO0 FPGA_GPIO1 FPGA_GPIO2 FPGA_GPIO3 FPGA_GPIO4 FPGA_GPIO5 FPGA_GPIO6 FPGA_GPIO7 STM32_GPIO_8 STM32_GPIO_9 STM32_GPIO_10 STM32_GPIO_11 STM32_GPIO_12 STM32_GPIO_13 STM32_GPIO_14 R82 R83 R84 R85 R86 R88 R89 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A 0R - N/A FPGA_MCU_AWAKE FPGA_MCU_DONE MCU_FPGA_OSC_EN MCU_FPGA_INIT_B MCU_FPGA_MODE1 MCU_FPGA_PROG MCU_FPGA_SUSPEND FPGA_GPIO[0:7] C122 100nF FPGA_MCU_AWAKE FPGA_MCU_DONE MCU_FPGA_OSC_EN MCU_FPGA_INIT_B MCU_FPGA_MODE1 MCU_FPGA_PROG MCU_FPGA_SUSPEND FPGA_GPIO[0:7] C123 1uF 6.3V R66 4K7 MCU_3V3 RESET# 9 44 20 7 JNTRST JTMS JTCK JTDO JTDI RESET# R76 10k R77 10k R78 10k MCU_3V3 STM32F103C8T6 VDDA BOOT0 PB2-BOOT1 NRST PC14-OSC32_IN PC15-OSC32_OUT PC13-Tamper-RTC PA0-WKUP PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 JTAG/SWD R67 4K7 VDDA BOOT0 BOOT1 3 4 2 10 STM32_GPIO_0 11 STM32_GPIO_1 12 STM32_GPIO_2 13 STM32_GPIO_3 14 STM32_GPIO_4 15 STM32_GPIO_5 16 STM32_GPIO_6 17 STM32_GPIO_7 29 STM32_GPIO_8 30 STM32_GPIO_9 USB_DISCONNECT31 32 DM_STM32 33 DP_STM32 MCU MCU_3V3 R79 10k R87 10k JP1 JUMPER 2 1 2 4 6 8 10 1 3 5 7 9 MCU JTAG SWD/JTAG J40 Male Connector 2x5 Pitch 1.27 mm SAMTEC FTSH-105-01-F-D-K MCU_3V3 OSCIN OSCOUT 5 6 C120 100nF USER_LED1 USER_LED2 STM32_GPIO_10 STM32_GPIO_11 STM32_GPIO_12 STM32_GPIO_13 STM32_GPIO_14 FLASH_DQ3 FLASH_DQ2 FLASH_nS FLASH_C FLASH_DQ1 FLASH_DQ0 JNTRST JTDO JTDI JTCK JTMS C119 100nF MCU_3V3 18 19 41 42 43 45 46 21 22 25 26 27 28 STM32F103 PD0 OSC_IN PD1 OSC_OUT PB0 PB1 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 U10 40 39 38 37 34 C126 100nF Place near MCU PB4 JNTRST PB3 JTDO PA15 JTDI PA14 JTCK PA13 JTMS FLASH_3V3 MCU_3V3 47 35 23 8 OPTIONAL FPGA CONFIGURATION SIGNALS R69 R70 R71 R72 R73 R74 R75 R80 FLASH_DQ1 INT SPI FLASH USB_DISCONNECT USB_DM USB_DP FLASH_DQ1 D30 RED FLASH_3V3 MCU_3V3 VSS_3 VSS_2 VSS_1 VSSA STM32_GPIO_0 STM32_GPIO_1 STM32_GPIO_2 STM32_GPIO_3 STM32_GPIO_4 STM32_GPIO_5 STM32_GPIO_6 STM32_GPIO_7 N25Q032xSC 2 56 R128 FLASH DISABLE Use J38 to enable/disable power for SPI flash device. J38 must be open when using external spi flash device on connecto J10. Default value closed. DQ0 DQ1 C nS nW/Vpp/DQ2 nHOLD/DQ3 2 1 J38 VBAT VDD_1 VDD_2 VDD_3 C123 Details: Digikey (445-4998-2-ND) - TDK (C1005X5R0J105K) Package 0402 5 6 1 3 7 U9 0R - N/A VCC OPTIONAL FPGA I/O 4k7 4k7 R131 C124 100nF 4k7 R132 8 FLASH_DQ0 FLASH_C FLASH_nS FLASH_DQ2 FLASH_DQ3 R130 R129 FLASH_3V3 1 24 36 48 FLASH_DQ0 FLASH_C FLASH_nS FLASH_DQ2 FLASH_DQ3 SPI FLASH C121 100nF MCU RESET Not Assembly RS (505-9186) C&K (Y78B22110FP) SW PUSHBUTTON-DPST RST2 OSCIN OSCOUT R68 56R R81 56R Kingbright KP2012SURC RS: 466-3829 Farnell: 8529930 LED 0805 RED D25 FLASH READY Kingbright KP2012SURC RS: 466-3829 Farnell: 8529930 LED 0805 RED D24 DOWNLOAD USER_LED2 USER_LED1 Murata (CSTCE8M00G55-R0) DigiKey (490-1195-1-ND) RS: 283-961 Farnell: 1615352 8MHz Y1 OSCILLATOR 8MHZ OSC C125 100nF RESET# R133 10K MCU_3V3 AN4471 Schematics Figure 30. STEVAL-IME009V1- Part 9 GSPG2209141610SG 37/39 39 Revision history 6 AN4471 Revision history Table 28. Document revision history 38/39 Date Revision 22-Oct-2014 1 Changes Initial release. DocID026197 Rev 1 AN4471 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved DocID026197 Rev 1 39/39 39