EZR32HG Wireless MCUs EZR32HG320 Data Sheet EZR32HG320 Wireless MCU family with ARM Cortex-M0+ CPU, USB, and sub-GHz Radio KEY FEATURES The EZR32HG Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high performance, low-energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit MCU, the EZR32HG family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale with 64/32 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the sub-GHz radio, result in a solution optimized for battery powered applications. • Silicon Labs’ energy efficient 32-bit Wireless MCUs • Based on ARM Cortex M0 CPU core with 64 kB of flash and 8 kB RAM • Best-in-class RF performance with EZradio and EZRadioPro transceivers • Ultra-low power wireless MCU • Low transmit and receive currents • Ultra-low power standby and sleep modes 32-Bit ARM Cortex wireless MCUs applications include the following: • Fast wake-up time • Alarm and security systems • Building and home automation • Energy, gas, water and smart metering • Health and fitness applications • Consumer electronics • Rich set of peripherals including 12-bit ADC and IDAC, multiple communication interfaces (USB, UART, SPI, I2C), multiple GPIO and timers • AES Accelerator with 128-bit keys EZR32HG320 F64/F32 Clock Management Core and Memory ARM Cortex™ M0+ processor Flash Program Memory RAM Memory Debug Interface w/ MTB Energy Management Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES DMA Controller 32-bit bus Peripheral Reflex System I/O Ports Serial Interfaces Transceiver TX 18 mA @ +10 dBm 142-1050 MHz ASK, OOK G(FSK) 4(G)FSK USART IC RX 10 mA Preamble Sense 6.0 mA 1 Mbps SPI SPI Low Energy USB Antenna Diversity 133 dBm sensitivity Low Energy UART™ silabs.com | Smart. Connected. Energy-friendly. 2 Timers and Triggers Analog Interfaces External Interrupts General Purpose I/O Timer/ Counter Real Time Counter ADC Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC Rev. 1.0 EZR32HG320 Data Sheet Feature List 1. Feature List The HG highlighted features are listed below. MCU Features • ARM Cortex-M0+ CPU platform • Up to 25 MHz • 64/32 kB Flash w/8 kB RAM • Hardware AES with 128-bit keys • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.6 µA @ 3 V Stop Mode • 127 µA/MHz @ 3 V Run Mode • Timers/Counters • 3× Timer/Counter • 3×3 Compare/Capture/PWM channels • Real-Time Counter • 16/8-bit Pulse Counter • Watchdog Timer • Communication interfaces • 1× USART (UART/SPI) • 1× Low Energy UART • 1× I2C Interface with SMBus support • Universal Serial Bus (USB) • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s ADC • On-chip temperature sensor • Current Digital to Analog Converter • Up to 25 General Purpose I/O pins silabs.com | Smart. Connected. Energy-friendly. RF Features • Frequency Range • 142-1050 MHz • Modulation • (G)FSK, 4(G)FSK, (G)MSK, OOK • Receive sensitivity up to -133 dBm • Up to +20 dBm max output power • Low active power consumption • 10/13 mA RX • 18 mA TX at +10 dBm • 6 mA @ 1.2 kbps (Preamble Sense) • Data rate = 100 bps to 1 Mbps • Excellent selectivity performance • 69 dB adjacent channel • 79 dB blocking at 1 MHz • Antenna diversity and T/R switch control • Highly configurable packet handler • TX and RX 64 byte FIFOs • Automatic frequency control (AFC) • Automatic gain control (AGC) • IEEE 802.15.4g compliant System Features • • • • • Power-on Reset and Brown-Out Detector Debug Interface Temperature range -40 to 85 °C Single power supply 1.98 to 3.8 V QFN48 package Rev. 1.0 | 1 EZR32HG320 Data Sheet Ordering Information 2. Ordering Information The table below shows the available EZR32HG320 devices. Table 2.1. Ordering Information Ordering Radio Flash (kB) RAM (kB) Power Am- Max Sensiplifier (dBm) tivity (dBm) Supply Voltage (V) Package EZR32HG320FxxR55G-B0 EZRadio 32-64 8 +13 -116 1.98 - 3.8 QFN48 EZR32HG320FxxR60G-B0 EZRadioPro 32-64 8 +13 -126 1.98 - 3.8 QFN48 EZR32HG320FxxR61G-B0 EZRadioPro 32-64 8 +16 -126 1.98 - 3.8 QFN48 EZR32HG320FxxR63G-B0 EZRadioPro 32-64 8 +20 -126 1.98 - 3.8 QFN48 EZR32HG320FxxR67G-B0 EZRadioPro 32-64 8 +13 -133 1.98 - 3.8 QFN48 EZR32HG320FxxR68G-B0 EZRadioPro 32-64 8 +20 -133 1.98 - 3.8 QFN48 EZR32HG320FxxR69G-B0 EZRadioPro 32-64 8 +13 & 20 -133 1.98 - 3.8 QFN48 Table 2.2. Flash Sizes Example Part Number Flash Size EZR32HG320F32R55G 32 kB EZR32HG320F64R55G 64 kB Note: Add an "(R)" at the end of the device part number to denote tape and reel option. Visit www.silabs.com for information on global distributors and representatives. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 2 EZR32HG320 Data Sheet System Overview 3. System Overview 3.1 Introduction The EZR32HG320 Wireless MCUs are the latest in the Silicon Labs family of wireless MCUs delivering a high-performance, low-energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit ARM Cortex-M0+, the EZR32HG family provides designers with the ultimate in flexibility with a family of pin-compatible parts that scale from 32 to 64 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times combined with the low transmit and receive power consumption of the sub-GHz radio result in a solution optimized for low power and battery powered applications. For a complete feature set and in-depth information on the modules, the reader is referred to the EZR32HG Reference Manual. The EZR32HG320 block diagram is shown below. EZR32HG320 F64/F32 Energy Management Clock Management Core and Memory ARM Cortex™ M0+ processor Flash Program Memory RAM Memory Debug Interface w/ MTB Voltage Regulator Voltage Comparator Brown-out Detector Power-on Reset Security Hardware AES DMA Controller 32-bit bus Peripheral Reflex System I/O Ports Serial Interfaces Transceiver TX 18 mA @ +10 dBm 142-1050 MHz ASK, OOK G(FSK) 4(G)FSK USART RX 10 mA Preamble Sense 6.0 mA 1 Mbps SPI SPI Antenna Diversity 133 dBm sensitivity Low Energy UART™ Timers and Triggers Analog Interfaces IC External Interrupts General Purpose I/O Timer/ Counter Real Time Counter ADC Low Energy USB Pin Reset Pin Wakeup Pulse Counter Watchdog Timer Current DAC 2 Figure 3.1. Block Diagram 3.1.1 ARM Cortex-M0+ Core The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is included as well. The EZR32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+ Devices Generic User Guide. 3.1.2 Debugging Interface (DBG) These devices include hardware debug support through a 2-pin serial-wire debug interface. 3.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EZR32HG microcontroller. The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is divided into two blocks: the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 3 EZR32HG320 Data Sheet System Overview 3.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving, for instance, data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 3.1.5 Reset Management Unit (RMU) The Reset Management Unit (RMU) is responsible for handling the reset functionality of the EZR32HG. 3.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manages all the low energy modes (EM) in EZR32HG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 3.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EZR32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 3.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may, for example, be caused by an external event, such as an ESD pulse, or by a software failure. 3.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 3.1.10 Universal Serial Bus Controller (USB) The USB is a full-speed USB 2.0 compliant device controller. The device supports both fullspeed (12 MBit/s) and low speed (1.5 MBit/s) operation. The USB also supports a Low Energy Mode that can be used to lower the current consumption up to 90% by shutting off the clock to the USB Core adn possibly suspending the USHFRCO. The USB device includes an internal dedicated Descriptor-Based Scatter/Garther DMA and supports up to 3 OUT endpoints and 3 IN endpoints, in addition to endpoint 0. 3.1.11 Inter-Integrated Circuit Interface (I2C) The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I2C module allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 3.1.13 Pre-Programmed USB/UART Bootloader The bootloader presented in application note AN0042 is pre-programmed in the device at the factory. The bootloader enables users to program the EZR32 through a UART or a USB CDC class virtual UART without the need for a debuger. The autobaud feature, interface, and commands are described further in the application note. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 4 EZR32HG320 Data Sheet System Overview 3.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique Low Energy Universal Asynchronous Receiver/Transmitter (LEUART™), the Low Energy UART, is a UART that allows twoway UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 3.1.15 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 3.1.16 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 3.1.17 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 3.1.18 Voltage Comparator (VCMP) The Voltage Supply Comparator (VCMP) is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.19 Analog to Digital Converter (ADC) The Analog to Digital Converter (ADC) is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 4 external pins and 6 internal signals. 3.1.20 Current Digital to Analog Converter (IDAC) The current digital to analog converter (IDAC) can source or sink a configurable constant current, which can be output on, or sinked from pin or ADC. The current is configurable with several ranges of various step sizes. 3.1.21 Advanced Encryption Standard Accelerator (AES) The Advanced Encryption Standard Accelerator (AES) performs AES encryption and decryption with 128-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations (i.e., 8- or 16-bit operations are not supported). 3.1.22 General Purpose Input/Output (GPIO) In the EZR32HG320, there are 25 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 5 EZR32HG320 Data Sheet System Overview 3.1.23 EZRadio® and EZRadioPro® Transceivers The EZR32HG family of devices is built using high-performance, low-current EZRadio and EZRadioPro RF transceivers covering the sub-GHz frequency bands from 142 to 1050 MHz. These devices offer outstanding sensitivity of up to –133 dBm (using EZRadioPro) while achieving extremely low active and standby current consumption. The EZR32HG devices using the EZRadioPro transceiver offer frequency coverage in all major bands and include optimal phase noise, blocking, and selectivity performance for narrow band and licensed band applications, such as FCC Part 90 and 169 MHz wireless Mbus. The 69 dB adjacent channel selectivity with 12.5 kHz channel spacing ensures robust receive operation in harsh RF conditions, which is particularly important for narrow band operation. The active mode TX current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with extremely low standby current and fast wake times is optimized for extended battery life in the most demanding applications. The EZR32HG devices can achieve up to +27 dBm output power with built-in ramping control of a low-cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI, and ARIB. All devices using the EZRadioPRO tranceiver are designed to be compliant with 802.15.4g and WMbus smart metering standards. The devices are highly flexible and can be programmed and configured via Simplicity Studio, available at www.silabs.com. Communications between the radio and MCU are done over USART and IRQ, which requires the pins to be configured in the following way: Table 3.1. Radio MCU Communication Configuration EZR32HG MCU RF EZR32HG Function Assignment PA2 SDN GPIO Output PC0 nSEL US1_CS #5 PC1 SDI US1_MOSI #5 PC2 SDO US1_MISO #5 PC3 SCLK US1_CLK #5 PC4 nIRQ GPIO_EM4WU6 (GPIO Input with IRQ enabled) 3.1.23.1 EZRadio and EZRadioPRO Transceivers GPIO Configuration The EZRadio and EZRadioPRO Transceivers have 4 General Purpose Digital I/O pins. These GPIOs may be configured to perform various radio-specific functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 6 EZR32HG320 Data Sheet System Overview 3.2 Configuration Summary The features of the EZR32HG320 are a subset of the feature set described in the EZR32HG Reference Manual. The table below describes device specific implementation of the features. Table 3.2. Configuration Summary Module Configuration Pin Connections Cortex-M0+ Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_CLK0, CMU_CLK1 WDOG Full configuration NA PRS Full configuration NA USB Full configuration USB_VBUS, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP I2C0 Full configuration I2C0_SDA, I2C0_SCL UART0 Full configuration with IrDA and I2S US0_TX, US0_RX, US0_CLK, US0_CS LEUART0 Full configuration LEU0_TX, LEU0_RX USARTRF1 Reduced configuration USRF1_RX, USRF1_TX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] RTC Full configuration NA PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7, 6, 5, 4, 1, 0] IDAC0 Full configuration IDAC0_OUT AES Full configuration NA GPIO 25 pins Available pins are shown in 5.4 GPIO Pinout Overview silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 7 EZR32HG320 Data Sheet System Overview 3.3 Memory Map The EZR32HG320 memory map is shown below with RAM and flash sizes for the largest memory configuration. Figure 3.2. EZR32HG320 Memory Map with Largest RAM and Flash Sizes silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 8 EZR32HG320 Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Test Conditions 4.1.1 Typical Values The typical data are based on TAMB = 25°C and VDD = 3.0 V, as defined in Table 4.3 General Operating Conditions on page 10, by simulation and/or technology characterisation unless otherwise specified. 4.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 4.3 General Operating Conditions on page 10, by simulation and/or technology characterisation unless otherwise specified. 4.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in the table below may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 4.3 General Operating Conditions on page 10. Table 4.1. Absolute Maximum Ratings Parameter Symbol Min Typ Max Unit -55 ─ 1501 °C ─ ─ 260 °C VDDMAX 0 ─ 3.8 V VIOPIN -0.3 ─ VDD+0.3 V Storage temperature range TSTG Maximum soldering temperature TS External main supply voltage Voltage on any I/O pin Test Condition Latest IPC/JEDEC JSTD-020 Standard Note: 1. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 9 EZR32HG320 Data Sheet Electrical Specifications 4.3 Thermal Characteristics Table 4.2. Thermal Conditions Parameter Symbol Test Condition Min Typ Max Unit Ambient temperature range TAMB -40 ─ 85 °C Junction temperature value TJ ─ ─ 1051 °C +13/+16 dBm on 2layer board ─ ─ 61.8 °C/W +20 dBm on 4-layer board ─ ─ 20.72 °C/W -55 ─ 150 °C Thermal impedance junction to ambient TIJA Storage temperature range TSTG Note: 1. Values are based on simulations run on 2 layer and 4 layer PCBs at 0m/s airflow. 2. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 4.4 General Operating Conditions Table 4.3. General Operating Conditions Parameter Symbol Min Typ Max Unit TAMB -40 ─ 85 °C VDDOP 1.98 ─ 3.8 V Internal APB clock frequency fAPB ─ ─ 25 MHz Internal AHB clock frequency fAHB ─ ─ 25 MHz Ambient temperature range Operating supply voltage Latch-up sensitivity passed: ±100 mA/1.5 × VSUPPLY(max) according to JEDEC JESD 78 method Class II, 85 °C. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 10 EZR32HG320 Data Sheet Electrical Specifications 4.5 Current Consumption Table 4.4. Current Consumption Symbol IEM0 Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. Condition Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 148 158 µA/MHz 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 153 163 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 161 172 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 163 174 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 127 137 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 129 139 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 131 140 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 134 143 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 134 143 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 137 145 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 136 144 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 139 148 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 142 150 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 146 154 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 184 196 µA/MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 194 208 µA/MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 11 EZR32HG320 Data Sheet Electrical Specifications Symbol IEM1 IEM2 Parameter EM1 current EM2 current IEM3 EM3 current IEM4 EM4 current Condition Min Typ Max Unit 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB =25°C 64 68 µA/MHz 24 MHz HFXO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 67 71 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 85 91 µA/MHz 24 MHz USHFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 86 92 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 51 55 µA/MHz 24 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 52 56 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 53 57 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 54 58 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 56 59 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 57 61 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 58 61 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 59 63 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 64 68 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 67 71 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD = 3.0 V, TAMB = 25°C 106 114 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD = 3.0 V, TAMB = 85°C 114 126 µA/MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD = 3.0 V, TAMB = 25°C 0.9 1.35 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD = 3.0 V, TAMB = 85°C 1.6 3.50 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD = 3.0 V, TAMB = 25°C 0.6 0.90 µA EM3 current (ULFRCO enabled, LFRCO/LFXO disabled), VDD = 3.0 V, TAMB = 85°C 1.2 2.65 µA VDD = 3.0 V, TAMB = 25°C 0.02 0.035 µA VDD = 3.0 V, TAMB = 85°C 0.18 0.480 µA silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 12 EZR32HG320 Data Sheet Electrical Specifications 4.5.1 EM0 Current Consumption Figure 4.1. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 24 MHz Figure 4.2. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 21 MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 13 EZR32HG320 Data Sheet Electrical Specifications Figure 4.3. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 14 MHz Figure 4.4. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 11 MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 14 EZR32HG320 Data Sheet Electrical Specifications Figure 4.5. EM0 Current Consumption while Executing Prime Number Calculation Code from Flash with HFRCO Running at 6.6 MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 15 EZR32HG320 Data Sheet Electrical Specifications 4.5.2 EM1 Current Consumption Figure 4.6. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 24 MHz Figure 4.7. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 21 MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 16 EZR32HG320 Data Sheet Electrical Specifications Figure 4.8. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 14 MHz Figure 4.9. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 11 MHz silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 17 EZR32HG320 Data Sheet Electrical Specifications Figure 4.10. EM1 Current Consumption with all Peripheral Clocks Disabled and HFRCO Running at 6.6 MHz 4.5.3 EM2 Current Consumption Figure 4.11. EM2 Current Consumption, RTC Prescaled to 1 kHz, 32.768 kHz LFRCO silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 18 EZR32HG320 Data Sheet Electrical Specifications 4.5.4 EM3 Current Consumption Figure 4.12. EM3 Current Consumption 4.5.5 EM4 Current Consumption Figure 4.13. EM4 Current Consumption silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 19 EZR32HG320 Data Sheet Electrical Specifications 4.6 Transitions between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 4.5. Energy Modes Transitions Parameter Symbol Min Typ Max Unit Transition time from EM1 to EM0 tEM10 ─ 0 ─ HFCORECLK cycles Transition time from EM2 to EM0 tEM20 ─ 2 ─ µs Transition time from EM3 to EM0 tEM30 ─ 2 ─ µs Transition time from EM4 to EM0 tEM40 ─ 163 ─ µs 4.7 Power Management The EZR32HG requires the AVDD_x, VDD_DREG, RFVDD_x and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, AN0002: EFM32 Hardware Design Considerations. Table 4.6. Power Management Symbol Parameter Condition VBODextthr- BOD threshold on fall- EM0 ing external supply voltEM2 age Min Typ Max 1.74 1.71 Unit 1.96 V 1.86 1.98 V 1.85 V 163 µs VBODextthr+ BOD threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts Applies to Power-on Reset, Brown-out Reset and pin reset. CDECOUPLE Voltage regulator decoupling capacitor. X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF CUSB_VREGO USB voltage regulator out decoupling capacitor. X5R capacitor recommended. Apply between USB_VREGO pin and GROUND 1 µF CUSB_VREGI USB voltage regulator X5R capacitor recommended. Apin decoupling capacitor. ply between USB_VREGI pin and GROUND 4.7 µF silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 20 EZR32HG320 Data Sheet Electrical Specifications 4.8 Flash Table 4.7. Flash Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Test Condition Min Typ Max Unit 20000 ─ ─ cycles TAMB<150 °C 10000 ─ ─ h TAMB<85 °C 10 ─ ─ years TAMB<70 °C 20 ─ ─ years Word (32-bit) programming time tW_PROG 20 ─ ─ µs Page erase time tPERASE 20 20.4 20.8 ms Device erase time tDERASE 40 40.8 41.6 ms Erase current IERASE ─ ─ 71 mA Write current IWRITE ─ ─ 71 mA Supply voltage during flash erase and write VFLASH 1.98 ─ 3.8 V Note: 1. Measured at 25 ºC. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 21 EZR32HG320 Data Sheet Electrical Specifications 4.9 General Purpose Input Output Table 4.8. GPIO Parameter Symbol Test Condition Min Typ Max Unit Input low voltage VIOIL ─ ─ 0.30 VDD V Input high voltage VIOIH 0.70 VDD ─ ─ V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.80 VDD ─ V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.90 VDD ─ V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.85 VDD ─ V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.90 VDD ─ V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75 VDD ─ ─ V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85 VDD ─ ─ V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60 VDD ─ ─ V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80 VDD ─ ─ V Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) VIOOH silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 22 EZR32HG320 Data Sheet Electrical Specifications Parameter Symbol VIOOL Output low voltage (Production test condition = 3.0 V, DRIVEMODE = STANDARD) Test Condition Min Typ Max Unit Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.20 VDD ─ V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.10 VDD ─ V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.10 VDD ─ V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.05 VDD Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD ─ ─ 0.30 VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD ─ ─ 0.20 VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH ─ ─ 0.35 VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH ─ ─ 0.25 VDD V High Impedance IO connected to GROUND or Vdd ─ ±0.1 ±40 nA V Input leakage current IIOLEAK I/O pin pull-up resistor RPU ─ 40 ─ kOhm I/O pin pull-down resistor RPD ─ 40 ─ kOhm RIOESD ─ 200 ─ Ohm tIOGLITCH 10 ─ 50 ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25 pF. 20+0.1 CL ─ 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600 pF 20+0.1 CL ─ 250 ns 0.1 VDD ─ ─ V Internal ESD series resistor Pulse width of pulses to be removed by the glitch suppression filter tIOOF Output fall time I/O pin hysteresis (VIOTHR+ VIOTHR-) VIOHYST silabs.com | Smart. Connected. Energy-friendly. VDD = 1.98 - 3.8 V Rev. 1.0 | 23 EZR32HG320 Data Sheet Electrical Specifications 5 0.20 4 Low-Level Output Current [mA] Low-Level Output Current [mA] 0.15 0.10 3 2 0.05 1 -40°C 25°C 85°C 0.00 0.0 0.5 1.0 Low-Level Output Voltage [V] 1.5 -40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.0 Low-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low-Level Output Current [mA] Low-Level Output Current [mA] 15 10 30 25 20 15 5 10 5 -40°C 25°C 85°C 0 0.0 0.5 1.0 Low-Level Output Voltage [V] 1.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2.0 0 0.0 -40°C 25°C 85°C 0.5 1.0 Low-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.14. Typical Low-Level Output Current, 2 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 24 EZR32HG320 Data Sheet Electrical Specifications 0.0 0.00 -40°C 25°C 85°C -40°C 25°C 85°C –0.5 High-Level Output Current [mA] High-Level Output Current [mA] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 –2.5 0.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Output Current [mA] High-Level Output Current [mA] –5 –10 –20 –30 –15 –40 –20 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2.0 –50 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.15. Typical High-Level Output Current, 2 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 25 EZR32HG320 Data Sheet 0.5 10 0.4 8 Low-Level Output Current [mA] Low-Level Output Current [mA] Electrical Specifications 0.3 0.2 0.1 6 4 2 -40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 -40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 50 40 35 40 Low-Level Output Current [mA] Low-Level Output Current [mA] 30 25 20 15 30 20 10 10 5 0 0.0 -40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 GPIO_Px_CTRL DRIVEMODE = STANDARD -40°C 25°C 85°C 3.0 0 0.0 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.16. Typical Low-Level Output Current, 3 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 26 EZR32HG320 Data Sheet Electrical Specifications 0.0 0 -40°C 25°C 85°C -40°C 25°C 85°C –1 High-Level Output Current [mA] High-Level Output Current [mA] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 -40°C 25°C 85°C 0 -40°C 25°C 85°C –10 High-Level Output Current [mA] High-Level Output Current [mA] –10 –20 –30 –20 –30 –40 –40 –50 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 –50 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD GPIO_Px_CTRL DRIVEMODE = High Figure 4.17. Typical High-Level Output Current, 3 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 27 EZR32HG320 Data Sheet Electrical Specifications 0.8 14 0.7 12 0.6 Low-Level Output Current [mA] Low-Level Output Current [mA] 10 0.5 0.4 0.3 8 6 4 0.2 2 0.1 0.0 0.0 -40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 -40°C 25°C 85°C 0 0.0 3.5 50 50 40 40 30 20 10 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 30 20 10 -40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low-Level Output Current [mA] Low-Level Output Current [mA] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD -40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = High Figure 4.18. Typical Low-Level Output Current, 3.8 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 28 EZR32HG320 Data Sheet Electrical Specifications 0 0.0 –0.1 -40°C 25°C 85°C –1 -40°C 25°C 85°C –2 High-Level Output Current [mA] High-Level Output Current [mA] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Output Current [mA] –10 High-Level Output Current [mA] 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD –50 0.0 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = High Figure 4.19. Typical High-Level Output Current, 3.8 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 29 EZR32HG320 Data Sheet Electrical Specifications 4.10 Oscillators 4.10.1 LXFO Table 4.9. LFXO Parameter Supported nominal crystal frequency Supported crystal equivalent series resistance (ESR) Supported crystal external load range Symbol Test Condition Min Typ Max Unit fLFXO 31.3 32.768 34.3 kHz ESRLFXO ─ 30 120 kΩ CLFXOL 5 ─ 25 pF Current consumption for core and buffer after startup ILFXO ESR=30 kΩ, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 ─ 190 ─ nA Start- up time tLFXO ESR=30 kΩ, CL=10 pF, 40% 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 ─ 1100 ─ ms For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note AN0016: EFM32 Oscillator Design Consideration. 4.10.2 HFXO Table 4.10. HFXO Parameter Supported frequency, any mode Supported crystal equivalent series resistance (ESR) The transconductance of the HFXO input transistor at crystal startup Supported crystal external load range Symbol Test Condition Min Typ Max Unit 4 ─ 25 MHz Crystal frequency 25 MHz ─ 30 100 Ω Crystal frequency 4 MHz ─ 400 1500 Ω HFXOBOOST in CMU_CTRL equals 0b11 20 ─ ─ ms 5 ─ 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 85 ─ µA 25 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 165 ─ µA 25 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 785 ─ µs fHFXO ESRHFXO gmHFXO CHFXOL Current consumption for HFXO after startup IHFXO Startup time tHFXO silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 30 EZR32HG320 Data Sheet Electrical Specifications 4.10.3 LFRCO Table 4.11. LFRCO Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency , VDD= 3.0 V, TAMB=25 °C fLFRCO 31.3 32.768 34.3 kHz Startup time not including software calibration tLFRCO ─ 150 ─ µs Current consumption ILFRCO ─ 361 492 nA ─ 202 ─ Hz 42 42 40 40 38 38 Frequency [kHz] Frequency [kHz] Frequency step for LSB change in TUNETUNING value STEPLFRCO -40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 3.8 2.0 V 3.0 V 3.8 V 36 30 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 31 EZR32HG320 Data Sheet Electrical Specifications 4.10.4 HFRCO Table 4.12. HFRCO Symbol fHFRCO tHFRCO_settling IHFRCO TUNESTEPHFRCO Parameter Oscillation frequency, VDD = 3.0 V, TAMB = 25°C Condition Min Typ Max Unit 24 MHz frequency band 23.28 24.0 24.72 MHz 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 6.60 6.80 MHz 1 MHz frequency band 1.15 1.20 1.25 MHz Settling time after start- fHFRCO = 14 MHz up 0.6 fHFRCO = 24 MHz 158 184 µA fHFRCO = 21 MHz 143 175 µA fHFRCO = 14 MHz 113 140 µA fHFRCO = 11 MHz 101 125 µA fHFRCO = 6.6 MHz 84 105 µA fHFRCO = 1.2 MHz 27 40 µA Current consumption Cycles 24 MHz frequency band 66.81 kHz 21 MHz frequency band 52.81 kHz Frequency step for LSB 14 MHz frequency band change in TUNING val11 MHz frequency band ue 36.91 kHz 30.11 kHz 7 MHz frequency band 18.01 kHz 1 MHz frequency band 3.4 kHz Note: 1. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 21 MHz across operating conditions. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 32 EZR32HG320 Data Sheet 1.45 1.45 1.40 1.40 1.35 1.35 1.30 Frequency [MHz] Frequency [MHz] Electrical Specifications -40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.05 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Temperature [°C] 45 65 85 6.70 6.70 6.65 6.65 6.60 6.60 6.55 6.55 Frequency [MHz] Frequency [MHz] Figure 4.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 6.50 6.45 6.40 6.45 6.40 -40°C 25°C 85°C 6.35 6.30 2.0 6.50 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 3.8 6.30 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 33 EZR32HG320 Data Sheet Electrical Specifications 11.15 11.20 11.15 11.10 1.8 V 3V 3.8 V 11.10 11.00 10.95 Frequency [MHz] Frequency [MHz] 11.05 -40°C 25°C 85°C 11.05 11.00 10.95 10.90 10.90 10.85 10.80 1.8 10.85 2.2 2.6 3.0 3.4 10.80 –40 3.8 –15 Vdd [V] 5 25 Temperature [°C] 45 65 85 65 85 Figure 4.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 11.15 14.15 11.10 14.10 1.8 V 3V 3.8 V 11.05 11.00 10.95 Frequency [MHz] Frequency [MHz] 14.05 -40°C 25°C 85°C 14.00 13.95 10.90 13.90 10.85 10.80 1.8 2.2 2.6 3.0 Vdd [V] 3.4 3.8 13.85 –40 –15 5 25 Temperature [°C] 45 Figure 4.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 34 EZR32HG320 Data Sheet Electrical Specifications 21.2 21.2 -40°C 25°C 85°C 21.1 21.1 21.0 Frequency [MHz] Frequency [MHz] 21.0 20.9 20.9 20.8 20.8 20.7 20.7 20.6 1.8 1.8 V 3V 3.8 V 2.2 2.6 3.0 3.4 3.8 20.6 –40 –15 5 25 Temperature [°C] Vdd [V] 45 65 85 Figure 4.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 4.10.5 AUXHFRCO Table 4.13. AUXHFRCO Symbol fAUXHFRCO tAUXHFRCO_settling TUNESTEPAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Condition Min Typ Max Unit 21 MHz frequency band 20.37 21.0 21.63 MHz 14 MHz frequency band 13.58 14.0 14.42 MHz 11 MHz frequency band 10.67 11.0 11.33 MHz 7 MHz frequency band 6.40 6.60 6.80 MHz 1 MHz frequency band 1.15 1.20 1.25 MHz Settling time after start- fAUXHFRCO = 14 MHz up 0.6 Cycles 21 MHz frequency band 52.8 kHz 14 MHz frequency band Frequency step for LSB change in TUNING val- 11 MHz frequency band ue 7 MHz frequency band 36.9 kHz 30.1 kHz 18.0 kHz 3.4 kHz 1 MHz frequency band silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 35 EZR32HG320 Data Sheet Electrical Specifications 4.10.6 USHFRCO Table 4.14. USHFRCO Symbol fUSHFRCO Parameter Condition Oscillation frequency Min Typ Max Unit No Clock Recovery, Full Temperature and Supply Range, 48 MHz band 47.10 48.00 48.90 MHz No Clock Recovery, Full Temperature and Supply Range, 24 MHz band 23.73 24.00 24.32 MHz No Clock Recovery, 25°C, 3.3V, 48 MHz band 47.50 48.00 48.50 MHz No Clock Recovery, 25°C, 3.3V, 24 MHz band 23.86 24.00 24.16 MHz USB Active with Clock Recovery, Full Temperature and Supply Range 47.88 48.00 48.12 MHz TCUSHFRCO Temperature coefficient 3.3V 0.0175 %/°C VCUSHFRCO Supply voltage coefficient 0.0045 %/V IUSHFRCO Current consumption 25°C fUSHFRCO = 48 MHz 1.21 1.36 1.48 mA fUSHFRCO = 24 MHz 0.81 0.92 1.02 mA 4.10.7 ULFRCO Table 4.15. ULFRCO Parameter Symbol Test Condition Min Oscillation frequency fULFRCO 25 °C, 3 V 0.7 Typ Max Unit 1.75 kHz Temperature coefficient TCULFRCO ─ 0.05 ─ %/°C Supply voltage coefficient VCULFRCO ─ -18.2 ─ %/V silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 36 EZR32HG320 Data Sheet Electrical Specifications 4.11 Analog Digital Converter (ADC) Table 4.16. ADC Symbol Parameter VADCIN Input voltage range VADCREFIN Input range of external reference voltage, single ended and differential VADCREFIN_CH7 Input range of external See VADCREFIN negative reference voltage on channel 7 VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio IADC Condition Single ended Average active current Differential See VADCREFIN Min Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V 0 VDD - 1.1 V 0.625 VDD V 0 VDD V 2pF sampling capacitors <100 nA 65 dB 1 MSamples/s, 12 bit, external reference 392 510 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 64 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b11 244 µA IADCREF Current consumption of Internal voltage reference internal voltage reference 65 µA CADCIN Input capacitance 2 pF RADCIN Input ON resistance RADCFILT Input RC filter resistance 10 kOhm CADCFILT Input RC filter/decoupling capacitance 250 fF silabs.com | Smart. Connected. Energy-friendly. 1 MOhm Rev. 1.0 | 37 EZR32HG320 Data Sheet Electrical Specifications Symbol Parameter fADCCLK ADC Clock Frequency tADCCONV Min Typ Max Unit 13 Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference MHz 6 bit 7 ADCCL K Cycles 8 bit 11 ADCCL K Cycles 12 bit 13 ADCCL K Cycles Programmable 1 Conversion time tADCACQ tADCSTART Condition 256 2 ADCCL K Cycles µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 38 EZR32HG320 Data Sheet Electrical Specifications Symbol SNRADC Parameter Signal to Noise Ratio (SNR) Condition Typ Max Unit 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 70 dB 200 kSamples/s, 12 bit, differential, VDD reference 200 kSamples/s, 12 bit, differential, 2xVDD reference silabs.com | Smart. Connected. Energy-friendly. Min 63 Rev. 1.0 | 39 EZR32HG320 Data Sheet Electrical Specifications Symbol SINADADC Parameter Condition Min Typ Unit 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 69 dB SIgnal-to-Noise And Distortion-ratio (SINAD) 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 200 kSamples/s, 12 bit, differential, VDD reference 200 kSamples/s, 12 bit, differential, 2xVDD reference silabs.com | Smart. Connected. Energy-friendly. Max 62 Rev. 1.0 | 40 EZR32HG320 Data Sheet Electrical Specifications Symbol SFDRADC Parameter Condition Min Typ Max Unit 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, Spurious-Free Dynamic 5V reference Range (SFDR) 200 kSamples/s, 12 bit, single 69 dBc 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, single ended, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 79 dBc 79 dBc ended, internal 1.25V reference 200 kSamples/s, 12 bit, differential, VDD reference 68 200 kSamples/s, 12 bit, differential, 2xVDD reference VADCOFFSET TGRADADCTH Offset voltage After calibration, single ended -4 After calibration, differential Thermometer output gradient DNLADC Differential non-linearity VDD= 3.0 V, external 2.5V refer(DNL) ence INLADC Integral non-linearity (INL), End point method MCADC No missing codes silabs.com | Smart. Connected. Energy-friendly. -1 11.999xref 0.3 4 mV 0.3 mV -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.6 ±3 LSB 12 bits Rev. 1.0 | 41 EZR32HG320 Data Sheet Electrical Specifications Symbol VREFADC Parameter Condition ADC Internal Voltage Reference Min Typ Max Unit Internal 1.25V, VDD = 3V, 25°C 1.248 1.254 1.262 V Internal 1.25V, Full temperature and supply range 1.188 1.254 1.302 V Internal 2.5V, VDD = 3V, 25°C 2.492 2.506 2.520 V Internal 2.5V, Full temperature and supply range 2.402 2.506 2.600 V Note: 1. On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.14 (p. 33) and Figure 3.15 (p. 33) , respectively. Digital ouput code 4095 4094 4093 4092 INL=|[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N - 1 Actual ADC tranfer function before offset and gain correction Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) 3 Ideal transfer curve 2 1 VOFFSET 0 Analog Input Figure 4.26. Integral Non-Linearity (INL) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 42 EZR32HG320 Data Sheet Electrical Specifications Digital ouput code DNL=|[(VD+1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+1 corrresponds to digital output code D+1 4093 4092 Code width =2 LSB DNL=1 LSB Ideal transfer curve 5 Actual transfer function with one missing code. Example: Input value VD corrresponds to digital output code D 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL=1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input Figure 4.27. Differential Non-Linearity (DNL) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 43 EZR32HG320 Data Sheet Electrical Specifications 4.11.1 Typical Performance 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 44 EZR32HG320 Data Sheet Electrical Specifications VDD Reference Figure 4.28. ADC Frequency Spectrum, VDD = 3 V, Temp = 25 °C 1.25V Reference silabs.com | Smart. Connected. Energy-friendly. 2.5V Reference Rev. 1.0 | 45 EZR32HG320 Data Sheet Electrical Specifications 2XVDDVSS Reference 5VDIFF Reference VDD Reference Figure 4.29. ADC Integral Linearity Error vs Code, VDD = 3 V, Temp = 25 °C silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 46 EZR32HG320 Data Sheet Electrical Specifications 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 47 EZR32HG320 Data Sheet Electrical Specifications VDD Reference Figure 4.30. ADC Differential Linearity Error vs Code, VDD = 3 V, Temp = 25 °C 5 2.0 Vref=1V25 Vref=2V5 Vref=2XVDDVSS Vref=5VDIFF Vref=VDD 4 3 1.5 1.0 Actual Offset [LSB] 2 Actual Offset [LSB] VRef=1V25 VRef=2V5 VRef=2XVDDVSS VRef=5VDIFF VRef=VDD 1 0 –1 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 Offset vs Supply Voltage, Temp = 25 °C 3.8 –1.0 –40 –15 5 25 Temp (C) 45 65 85 Offset vs Temperature, VDD = 3 V Figure 4.31. ADC Absolute Offset, Common Mode = VDD/2 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 48 EZR32HG320 Data Sheet Electrical Specifications 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Temperature [°C] 45 65 1V25 85 5VDIFF 78.0 –40 Signal to Noise Ratio (SNR) –15 5 25 Temperature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) Figure 4.32. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V 2600 Vdd=1.8 Vdd=3 Vdd=3.8 Sensor readout 2500 2400 2300 2200 2100 –40 –25 –15 –5 5 15 25 35 Temperature [°C] 45 55 65 75 85 Figure 4.33. ADC Temperature Sensor Readout silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 49 EZR32HG320 Data Sheet Electrical Specifications 4.12 Current Digital Analog Converter (IDAC) Table 4.17. IDAC Range 0 Source Parameter Symbol Min Typ Max Unit EM0, default settings ─ 13.0 ─ µA Duty-cycled ─ 10 ─ nA I0x10 ─ 0.85 ─ µA ISTEP ─ 0.05 ─ µA VIDAC_OUT = VDD - 100mV ─ 0.79 ─ % Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 Step size Current drop at high impedance load Test Condition ID Temperature coefficient TCIDAC VDD = 3.0V, STEPSEL=0x10 ─ 0.3 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 11.7 ─ nA/V Min Typ Max Unit ─ 15.1 ─ µA Table 4.18. IDAC Range 0 Sink Parameter Symbol Test Condition Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 0.85 ─ µA Step size ISTEP ─ 0.05 ─ µA VIDAC_OUT = 200 mV ─ 0.30 ─ % Current drop at high impedance load ID EM0, default settings Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 0.2 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 12.5 ─ nA/V Min Typ Max Unit EM0, default settings ─ 14.4 ─ µA Duty-cycled ─ 10 ─ nA Table 4.19. IDAC Range 1 Source Parameter Symbol Test Condition Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 3.2 ─ µA Step size ISTEP ─ 0.1 ─ µA VIDAC_OUT = VDD - 100mV ─ 0.75 ─ % Current drop at high impedance load ID Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 0.7 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 38.4 ─ nA/V silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 50 EZR32HG320 Data Sheet Electrical Specifications Table 4.20. IDAC Range 1 Sink Parameter Symbol Test Condition Typ Max Unit ─ 19.4 ─ µA Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 3.2 ─ µA Step size ISTEP ─ 0.1 ─ µA VIDAC_OUT = 200 mV ─ 0.32 ─ % Current drop at high impedance load ID EM0, default settings Min Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 0.7 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 40.9 ─ nA/V Min Typ Max Unit EM0, default settings ─ 17.3 ─ µA Duty-cycled ─ 10 ─ nA Table 4.21. IDAC Range 2 Source Parameter Symbol Test Condition Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 8.5 ─ µA Step size ISTEP ─ 0.5 ─ µA VIDAC_OUT = VDD - 100mV ─ 1.22 ─ % Current drop at high impedance load ID Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 2.8 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 96.6 ─ nA/V Min Typ Max Unit ─ 29.3 ─ µA Table 4.22. IDAC Range 2 Sink Parameter Symbol Test Condition Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 8.5 ─ µA Step size ISTEP ─ 0.5 ─ µA VIDAC_OUT = 200 mV ─ 0.62 ─ % Current drop at high impedance load ID EM0, default settings Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 2.8 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 94.4 ─ nA/V silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 51 EZR32HG320 Data Sheet Electrical Specifications Table 4.23. IDAC Range 3 Source Parameter Symbol Test Condition Min Typ Max Unit EM0, default settings ─ 18.7 ─ µA Duty-cycled ─ 10 ─ nA Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 33.9 ─ µA Step size ISTEP ─ 2.0 ─ µA VIDAC_OUT = VDD - 100 mV ─ 3.54 ─ % Current drop at high impedance load ID Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 10.9 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 159.5 ─ nA/V Min Typ Max Unit ─ 62.5 ─ µA Table 4.24. IDAC Range 3 Sink Parameter Symbol Test Condition Active current with STEPSEL=0x10 IIDAC Nominal IDAC output current with STEPSEL=0x10 I0x10 ─ 34.1 ─ µA Step size ISTEP ─ 2.0 ─ µA VIDAC_OUT = 200 mV ─ 1.75 ─ % Current drop at high impedance load ID EM0, default settings Temperature coefficient TCIDAC VDD = 3.0 V, STEPSEL=0x10 ─ 10.9 ─ nA/°C Voltage coefficient VCIDAC T = 25 °C, STEPSEL=0x10 ─ 148.6 ─ nA/V Table 4.25. IDAC Parameter Start-up time, from enabled to output settled silabs.com | Smart. Connected. Energy-friendly. Symbol tIDACSTART Min Typ 40 Max Unit µs Rev. 1.0 | 52 EZR32HG320 Data Sheet 101 100 100 99 99 98 98 97 96 95 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 93 97 96 95 93 92 91 91 –1.5 –1.0 V(IDAC_OUT) -Vdd [V] –0.5 90 –2.0 0.0 101 101 100 100 99 99 98 98 97 96 95 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 93 96 95 91 –0.5 0.0 –0.5 0.0 –1.0 V(IDAC_OUT) -Vdd [V] –0.5 0.0 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 93 91 –1.0 V(IDAC_OUT) -Vdd [V] –1.0 V(IDAC_OUT) -Vdd [V] 94 92 –1.5 –1.5 97 92 90 –2.0 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 94 92 90 –2.0 Percentage of nominal current [%] Percentage of nominal current [%] 101 Percentage of nominal current [%] Percentage of nominal current [%] Electrical Specifications 90 –2.0 –1.5 Figure 4.34. IDAC Source Current as a Function of Voltage on IDAC_OUT silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 53 EZR32HG320 Data Sheet 101 101 100 100 Percentage of nominal current [%] Percentage of nominal current [%] Electrical Specifications 99 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 97 0.5 1.0 V(IDAC_OUT) [V] 1.5 95 0.0 2.0 101 101 100 100 99 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 95 0.0 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 96 Percentage of nominal current [%] Percentage of nominal current [%] 95 0.0 99 0.5 1.0 V(IDAC_OUT) [V] 1.5 2.0 99 -40°C, 2.0V 25°C, 3.0V 85°C, 3.8V 98 97 96 0.5 1.0 V(IDAC_OUT) [V] 1.5 2.0 95 0.0 0.5 1.0 V(IDAC_OUT) [V] 1.5 2.0 Figure 4.35. IDAC Sink Current as a Function of Voltage from IDAC_OUT silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 54 EZR32HG320 Data Sheet Electrical Specifications 5 70 60 4 50 Range 0 Range 1 Idd [uA] Idd [uA] 3 2 40 Range 2 Range 3 30 20 1 10 0 0 5 10 15 Step 20 25 0 30 5 0 10 15 Step 20 25 30 Figure 4.36. IDAC Linearity 4.13 Voltage Comparator (VCMP) Table 4.26. VCMP Parameter Symbol Input voltage range VCMP Common Mode voltage range Active current Startup time reference generator Offset voltage VCMP hysteresis Test Condition Min Typ Max Unit VVCMPIN ─ VDD ─ V VVCMPC ─ VDD ─ V BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register ─ 0.2 0.8 µA IVCMP BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. ─ 22 35 µA tVCMPRE NORMAL ─ 10 ─ µs VVCMPOF Single ended ─ 10 ─ mV FSET Differential ─ 10 ─ mV ─ 17 ─ mV ─ ─ 10 µs M F VVCMPHY ST Startup time tVCMPST ART The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VDD Trigger Level=1.667 V+0.034 ×TRIGLEVEL silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 55 EZR32HG320 Data Sheet Electrical Specifications 4.14 I2C Table 4.27. I2C Standard-Mode (Sm) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 100 1 kHz SCL clock low time tLOW 4.7 ─ ─ µs SCL clock high time tHIGH 4.0 ─ ─ µs SDA set-up time tSU,DAT 250 ─ ─ ns SDA hold time tHD,DAT 8 ─ 34502, 3 ns Repeated START condition set-up time tSU,STA 4.7 ─ ─ µs (Repeated) START condition hold time tHD,STA 4.0 ─ ─ µs STOP condition set-up time tSU,STO 4.0 ─ ─ µs tBUF 4.7 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EZR32HG Reference Manual. 2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450 * 10-9 [s] * fHFPERCLK [Hz]) - 4). Table 4.28. I2C Fast-Mode (Fm) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 4001 kHz SCL clock low time tLOW 1.3 ─ ─ µs SCL clock high time tHIGH 0.6 ─ ─ µs SDA set-up time tSU,DAT 100 ─ ─ ns SDA hold time tHD,DAT 8 ─ 9002 , 3 ns Repeated START condition set-up time tSU,STA 0.6 ─ ─ µs (Repeated) START condition hold time tHD,STA 0.6 ─ ─ µs STOP condition set-up time tSU,STO 0.6 ─ ─ µs tBUF 1.3 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EZR32HG Reference Manual. 2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900 * 10-9 [s] * fHFPERCLK [Hz]) - 4). silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 56 EZR32HG320 Data Sheet Electrical Specifications Table 4.29. I2C Fast-mode Plus (Fm+) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 10001 kHz SCL clock low time tLOW 0.5 ─ ─ µs SCL clock high time tHIGH 0.26 ─ ─ µs SDA set-up time tSU,DAT 50 ─ ─ ns SDA hold time tHD,DAT 8 ─ ─ ns Repeated START condition set-up time tSU,STA 0.26 ─ ─ µs (Repeated) START condition hold time tHD,STA 0.26 ─ ─ µs STOP condition set-up time tSU,STO 0.26 ─ ─ µs tBUF 0.5 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EZR32HG Reference Manual. 4.15 USB The USB hardware in the EZR32HG320 passes all tests for USB 2.0 Full Speed certification. The test report will be distributed with application note AN0046 - USB Hardware Design Guide when ready. Table 4.30. USB Symbol Parameter VUSBOUT USB regulator output voltage IUSBOUT USB regulator output current Condition Min Typ Max Unit 3.1 3.4 3.7 V BIASPROG=0, TAMB=25°C 55.7 79.4 104.1 mA BIASPROG=1, TAMB=25°C 66.0 95.9 126.4 mA BIASPROG=2, TAMB=25°C 94.6 146.5 188.1 mA BIASPROG=3, TAMB=25°C 80.4 128.3 176.0 mA 4.16 Radio All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at V DD = 3.3 V and 25 °C unless otherwise stated. The data was collected while running off the internal RC oscillator (HFRCO). silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 57 EZR32HG320 Data Sheet Electrical Specifications 4.16.1 EZRadioPRO (R6x) DC Electrical Characteristics Measured on direct-tie RF evaluation board. Table 4.31. EZRadioPro DC Characteristics Parameter Symbol Test Condition Min Typ Max Unit Ishutdown RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF — 30 4000 nA Istandby Register values maintained and RC oscillator/WUT OFF — 40 9000 nA ISleepRC RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF — 740 10000 nA ISleepXO Sleep current using an external 32 kHz crystal — 1.7 — μA — 1 — μA Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF — 1.8 — mA Duty cycing during preamble search, 1.2 kbps, 4 byte preamble — 6 — mA Fixed 1s wakeup interval, 50 kbps, 5 byte preamble — 10 — μA ITuneRX RX Tune, High Performance Mode — 7.6 — mA ITuneTX TX Tune, High Performance Mode — 7.8 — mA IRXH High Performance Mode, 915 MHz, 40 kbps — 13.7 22 mA IRXL Low Power Mode, 915 MHz, 40 kbps — 11.1 — mA ITX_+20 +20 dBm output power, class-E match, 915 MHz, 3.3 V — 93 108 mA ITX_+13 +13 dBm output power, class-E match, 868/915 MHz, 3.3 V — 22 — mA +20 dBm output power, class-E match, 915 MHz, 3.3 V — 93 108 mA +20 dBm output power, square-wave match, 169 MHz, 3.3 V — 69 80 mA ITX_+13 +13 dBm output power, class-E match, 915 MHz, 3.3 V — 44.5 60 mA ITX_+10 +10 dBm output power, class-E match, 868/915 MHz, 3.3 V — 19.7 — mA ITX_+10 +10 dBm output power, class-E match, 169 MHz, 3.3 V — 18 — mA ITX_+13 +13 dBm output power, class-E match, 868/915 MHz, 3.3 V — 22 — mA Power Saving Modes ISensor-LBD Low battery detector ON, register values maintained, and all other blocks OFF IReady Preamble Sense Mode Current TUNE Mode Current Ipsm RX Mode Current TX Mode Current (R69) ITX_+20 TX Mode Current (R63, R68) TX Mode Current (R60, R67) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 58 EZR32HG320 Data Sheet Electrical Specifications Parameter TX Mode Current (R61) Symbol Test Condition Min Typ Max Unit ITX_+16 +16 dBm output power, class-E match, 868 MHz, 3.3 V — 43 55 mA ITX_+13 +13 dBm output power, switchedcurrent match, 868 MHz, 3.3 V — 33.5 40 mA Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz 4.16.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics Table 4.32. EZRadioPro Synthensizer Parameter Synthesizer Frequency Range Synthesizer Frequency Resolution Synthesizer Settling Time Symbol Test Condition FSYN FRES-1050 850–1050 MHz — 28.6 — Hz FRES-525 420–525 MHz — 14.3 — Hz FRES-420 350–420 MHz — 11.4 — Hz FRES-350 283–350 MHz — 9.5 — Hz FRES-175 142–175 MHz — 4.7 — Hz tLOCK Measured from exiting Ready mode with XOSC running to any frequency. Including VCO Calibration. — 50 — μs ΔF = 10 kHz, 169 MHz, High Perf — –117 –108 dBc/Hz — –120 –115 dBc/Hz — –138 –135 dBc/Hz — –148 –143 dBc/Hz — –102 –94 dBc/Hz — –105 –97 dBc/Hz — –125 –122 dBc/Hz — –138 –135 dBc/Hz Mode ΔF = 100 kHz, 169 MHz, High Perf Mode ΔF = 1 MHz, 169 MHz, High Perf Mode ΔF = 10 MHz, 169 MHz, High Perf Phase Noise L Φ(fM) Mode ΔF = 10 kHz, 915 MHz, High Perf Mode ΔF = 100 kHz, 915 MHz, High Perf Mode ΔF = 1 MHz, 915 MHz, High Perf Mode ΔF = 10 MHz, 915 MHz, High Perf Mode silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 59 EZR32HG320 Data Sheet Electrical Specifications 4.16.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used. Measured over 50000 bits using PN9 data sequence and data and clock on GPIOs. Sensitivity is expected to be better if reading data from packet handler FIFO especially at higher data rates. Table 4.33. EZRadioPro Receiver AC Electrical Characteristics Parameter RX Frequency Range Symbol Test Condition FRX Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 350 MHz 284 142 — 175 MHz RX Sensitivity 169 MHz (R68, R67)3 PRX_0.1 (BER < 0.1%) (100 bps, GFSK, BT = 0.5, Δf = ±100 Hz) — –133 — dBm RX Sensitivity 169 MHz (R60, R61, R63)3 PRX_0.5 (BER < 0.1%) (500 bps, GFSK, BT = 0.5, Δf = ±250 Hz) — –129 — dBm PRX_40 (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –110.7 –108 dBm PRX_100 (BER < 0.1%) (100 kbps, GFSK, BT = 0.5, Δf = ±50 kHz) — –106 –104 dBm (BER < 0.1%) (500 kbps, GFSK, BT = 0.5, Δf = ±250 kHz) — –99 –96 dBm PRX_9.6 (PER 1%) (9.6 kbps, 4GFSK, BT = 0.5, Δf = ±2.4 kHz) — –110 — dBm PRX_1M (PER 1%) (1 Mbps, 4GFSK, BT = 0.5, inner deviation = 83.3 kHz) — –89 — dBm (BER < 0.1%, 4.8 kbps, 350 kHz BW, OOK, PN15 data) — –110 –107 dBm (BER < 0.1%, 40 kbps, 350 kHz BW, OOK, PN15 data) — –103 –100 dBm (BER < 0.1%, 120 kbps, 350 kHz BW, OOK, PN15 data) — –97 –93 dBm (BER < 0.1%) (100 bps, GFSK, BT = 0.5, Δf = ±100 Hz) — –132 — dBm (BER < 0.1%) (500 bps, GFSK, BT = 0.5, Δf = ±250 Hz) — –127 — dBm (BER < 0.1%) (500 bps, GFSK, BT = 0.5, Δf = ±250 Hz) — –127 — dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –109.9 — dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –109.4 — dBm PRX_125 RX Sensitivity 169 MHz (R60, R61, R63, R67, R68)3 PRX_OOK RX Sensitivity 915/868 MHz (R68, R67)3 RX Sensitivity 915 MHz (R60, R61, R63, R69)3 RX Sensitivity 868 MHz (R60, R61, R63)3 RX Sensitivity 868 MHz (R60, R61, R63, R67, R68, R69)3 RX Sensitivity 915 MHz (R60, R61, R63, R67, R68, R69)3 PRX_0.1 PRX_0.5 PRX_40 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 60 EZR32HG320 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit PRX_100 (BER < 0.1%) (100 kbps, GFSK, BT = 0.5, Δf = ±50 kHz) — –104 –102 dBm (BER < 0.1%) (500 kbps, GFSK, BT = 0.5, Δf = ±250 kHz) — –97 –92 dBm PRX_9.6 (PER 1%) (9.6 kbps, 4GFSK, BT = 0.5, Δf = ±2.4 kHz) — –110.6 — dBm PRX_1M (PER 1%) (1 Mbps, 4GFSK, BT = 0.5, inner deviation = 83.3 kHz) — –88.7 — dBm (BER < 0.1%, 4.8 kbps, 350 kHz BW, OOK, PN15 data) — –108 –104 dBm (BER < 0.1%, 40 kbps, 350 kHz BW, OOK, PN15 data) — –101 –97 dBm (BER < 0.1%, 120 kbps, 350 kHz BW, OOK, PN15 data) — –96 –91 dBm 1.1 — 850 kHz 0.2 — 850 kHz PRX_125 RX Sensitivity 915/868 MHz (R60, R61, R63, R67, R68, R69)3 PRX_OOK RX Channel Bandwidth (R60, R61, R63) RX Channel Bandwidth (R68, R67) RSSI Resolution BW RESRSSI Valid from –110 dBm to -90 dBm — ±0.5 — dB — –69 –59 dB C/I1-CH Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 2.4 kbps ΔF = 1.2 kHz GFSK with BT = 0.5, RX channel BW = 4.8 kHz, channel spacing = 12.5 kHz ±1-Ch Offset Selectivity, 450 MHz — –60 –50 dB ±1-Ch Offset Selectivity, 868 / 915 MHz — –52.5 –45 dB — –79 –68 dB — –86 –75 dB ±1-Ch Offset Selectivity, 169 MHz Blocking 1 MHz Offset 1MBLOCK Blocking 8 MHz Offset 8MBLOCK silabs.com | Smart. Connected. Energy-friendly. Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 2.4 kbps ΔF = 1.2 kHz GFSK with BT = 0.5, RX channel BW = 4.8 kHz Rev. 1.0 | 61 EZR32HG320 Data Sheet Electrical Specifications Parameter Image Rejection (IF = 468.75 kHz) Symbol ImREJ Test Condition Min Typ Max Unit No image rejection calibration. Rejection at the image frequency. RF = 460 MHz 30 40 — dB With image rejection calibration. Rejection at the image frequency. RF = 460 MHz 40 55 — dB No image rejection calibration. Rejection at the image frequency. RF = 915 MHz 30 45 — dB With image rejection calibration. Rejection at the image frequency. RF = 915 MHz 40 52 — dB No image rejection calibration. Rejection at the image frequency. RF = 169 MHz 35 45 — dB With image rejection calibration. Rejection at the image frequency. RF = 169 MHz 45 60 — dB Note: 1. BER sensitivity measure using GPIO3 for data and GPIO1 for data clock. Use of other GPIO pins could result in degraded sensitivity. 2. When in HFXO mode sensitivity will degrade at multiples of HFXO crystal frequency. Values in data sheet do not include spurious channel values. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 62 EZR32HG320 Data Sheet Electrical Specifications 4.16.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). Default API setting for modulation deviation resolution is double the typical value specified. Output power is dependent on matching components and board layout. Table 4.34. EZRadioPro Transmitter AC Electrical Characteristics Parameter TX Frequency Range Symbol Test Condition FTX Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz (G)FSK Data Rate DRFSK 0.1 — 500 kbps 4(G)FSK Data Rate DR4FSK 0.2 — 1000 kbps OOK Data Rate DROOK 0.1 — 120 kbps Δf960 850–1050 MHz — 1.5 — MHz Δf525 420–525 MHz — 750 — kHz Δf420 350–420 MHz — 600 — kHz Δf350 283–350 MHz — 500 — kHz Δf175 142–175 MHz — 250 — kHz FRES-1050 850–1050 MHz — 28.6 — Hz FRES-525 420–525 MHz — 14.3 — Hz FRES-420 350–420 MHz — 11.4 — Hz FRES-350 283–350 MHz — 9.5 — Hz FRES-175 142–175 MHz — 4.7 — Hz Typical Output Power Range (R63) PTX63 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +20 dBm Typical Output Power Range (R61) PTX61 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –40 +16 dBm Typical Output Power Range (R60) PTX60 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +12.5 dBm Typical Output Power Range (R68) PTX68 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +20 dBm Typical Output Power Range (R69) PTX69 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +20 dBm Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +12.5 dBm Modulation Deviation Range Modulation Deviation Resolution Typical Output Power Range (R67) PTX67 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 63 EZR32HG320 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Output Power Variation (R63, R68, R69) At 20 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 19 20 21 dBm Output Power Variation (R60, R67) At 10 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 9 10 11 dBm Output Power Variation (R63, R68) At 20 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C 18.5 20 21 dBm Output Power Variation (R60, R67) At 10 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C 9.5 10 10.5 dBm TX RF Output Steps ΔPRF_OUT Using switched current match within 6 dB of max power — 0.25 0.4 dB TX RF Output Level Variation vs. Temperature ΔPRF_TEMP –40 to +85 °C — 2.3 3 dB TX RF Output Level Variation vs. Frequency ΔPRFFREQ Measured across 902–928 MHz — 0.6 1.7 dB Transmit Modulation Filtering B×T Gaussian Filtering Bandwith Time Product — 0.5 — 4.16.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench characterization. XTAL Range tested in production using an external clock source (similar to using a TCXO). Table 4.35. EZRadioPro Auxiliary Block Specifications Parameter Min Typ Max Unit 25 ─ 32 MHz ─ 300 ─ uS 30MRES ─ 70 ─ fF 32 kHz XTAL Start-Up Time t32K ─ 2 ─ sec 32 kHz Accuracy using Internal RC Oscillator 32KRCRES ─ 2500 ─ ppm tPOR ─ ─ 6 ms XTAL Range Symbol Test Condition XTALRANG E 30 MHz XTAL Start-Up Time 30 MHz XTAL Cap Resolution POR Reset Time t30M silabs.com | Smart. Connected. Energy-friendly. Using XTAL and board layout in reference design. Start-up time will vary with XTAL type and board layout. Rev. 1.0 | 64 EZR32HG320 Data Sheet Electrical Specifications 4.16.6 EZRadio (R55) DC Electrical Characteristics Table 4.36. EZRadio DC Characteristics Parameter Power Saving Modes TUNE Mode Current RX Mode Current TX Mode Current Symbol Test Condition Min Typ Max Unit Ishutdown RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF ─ 30 ─ nA Istandby Register values maintained ─ 40 ─ nA IReady Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF ─ 1.8 ─ mA ISPIActive SPI active state ─ 1.5 ─ mA ITuneRX RX Tune ─ 6.8 ─ mA ITuneTX TX Tune ─ 7.1 ─ mA IRX Measured at 40 kbps, 20 kHz deviation, 315 MHz ─ 10.9 ─ mA +10 dBm output power, measured on direct tie RF evaluation board at 868 MHz ─ 19 ─ mA +13 dBm output power, measured on direct tie RF evaluation board at 868 MHz ─ 24 ─ mA Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz ITX 4.16.7 EZRadio (R55) Synthesizer AC Electrical Characteristics Table 4.37. EZRadio Synthensizer Parameter Synthesizer Frequency Range Synthesizer Frequency Resolution Phase Noise Symbol Test Condition FSYN FRES-960 850-960 MHz ─ 114.4 ─ Hz FRES-525 420-525 MHz ─ 57.2 ─ Hz FRES-350 283-350 MHz ─ 38.1 ─ Hz ΔF = 10 kHz, 915 MHz ─ 100 ─ dBc/Hz ΔF = 100 kHz, 915 MHz ─ 102.1 ─ dBc/Hz ΔF = 1 MHz, 915 MHz ─ 123.5 ─ dBc/Hz ΔF = 10 MHz, 915 MHz ─ 136.6 ─ dBc/Hz L Φ(fM) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 65 EZR32HG320 Data Sheet Electrical Specifications 4.16.8 EZRadio (R55) Receiver AC Electrical Characteristics Table 4.38. EZRadio Receiver AC Electrical Characteristics Parameter RX Frequency Range Symbol Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz (BER < 0.1%) (2.4 kbps, GFSK, BT = 0.5, Δf = ±30 kHz, 114 kHz RX BW) ─ -115 ─ dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±25 kHz, 114 kHz RX BW) ─ -107.6 ─ dBm (BER < 0.1%) (128 kbps, GFSK, BT = 0.5, Δf = ±70 kHz, 305 kHz RX BW) ─ -102.4 ─ dBm (BER < 0.1%, 1 kbps, 185 kHz Rx BW, OOK, PN15 data) ─ -113.5 ─ dBm (BER < 0.1%, 40 kbps, 185 kHz BW, OOK, PN15 data) ─ -102.7 ─ dBm PRX_2 (BER < 0.1%) (2.4 kbps, GFSK, BT = 0.5, DF = ±30 kHz, 114 kHz Rx BW) ─ -116 ─ dBm PRX_40 (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, DF = ±25 kHz, 114 kHz Rx BW) ─ -108 ─ dBm PRX_128 (BER < 0.1%) (128 kbps, GFSK, BT = 0.5, DF = ±70 kHz, 305 kHz Rx BW) ─ -103 ─ dBm PRX_OOK (BER < 0.1%, 1 kbps, 185 kHz Rx BW, OOK, PN15 data) ─ -113 ─ dBm (BER < 0.1%, 40 kbps, 185 kHz BW, OOK, PN15 data) ─ -102 ─ dBm 40 ─ 850 kHz FRX PRX_2 PRX_40 RX Sensitivity 915 MHz PRX_128 PRX_OOK RX Sensitivity 434 MHz RX Channel Bandwidth RSSI Resolution Test Condition BW RESRSSI Valid from -110 dBm to -90 dBm ─ ±0.5 ─ dB ±1-Ch Offset Selectivity C/I1-CH Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 1.2 kbps ΔF = 5.2 kHz GFSK with BT = 0.5, RX channel BW = 58 kHz, channel spacing = 100 kHz ─ -50 ─ dB ±2-Ch Offset Selectivity C/I2-CH ─ -56 ─ dB ─ -56 ─ dB Blocking 200 kHz−1 MHz 200KBLOCK Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 1.2 kbps ΔF = 5.2 kHz GFSK with BT = 0.5, RX channel BW = 58 kHz Blocking 1 MHz Offset 1MBLOCK ─ -71 ─ dB Blocking 8 MHz Offset 8MBLOCK ─ -71 ─ dB silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 66 EZR32HG320 Data Sheet Electrical Specifications Parameter Image Rejection Symbol Test Condition Min Typ Max Unit ImREJ Rejection at the image frequency IF = 468 kHz ─ 40 ─ dB Note: 1. BER sensitivity measure using GPIO3 for data and GPIO1 for data clock. Use of other GPIO pins could result in degraded sensitivity. 2. When in HFXO mode sensitivity will degrade at multiples of HFXO crystal frequency. Values in data sheet do not include spurious channel values. 4.16.9 EZRadio (R55) Transmitter AC Electrical Characteristics The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). Conducted measurements based on RF evaluation board. Output power and emissions specifications are dependent on transmit frequency, matching components, and board layout. Table 4.39. EZRadio Transmitter AC Electrical Characteristics Parameter TX Frequency Range Symbol Test Condition FTX Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz (G)FSK Data Rate DRFSK 1.0 ─ 500 kbps OOK Data Rate DROOK 0.5 ─ 120 kbps Δf960 850-960 MHz ─ ─ 500 kHz Δf525 350-525 MHz ─ ─ 500 kHz Δf350 284-350 MHz ─ ─ 500 kHz FRES-960 850-960 MHz ─ 114.4 ─ Hz FRES-525 420-525 MHz ─ 57.2 ─ Hz FRES-420 350-420 MHz ─ 45.6 ─ Hz FRES-350 284-350 MHz ─ 38.1 ─ Hz Output Power Range PTX Measured at 434 MHz, 3.3 V, Class E match -20 ─ +13 dBm TX RF Output Steps ΔPRF_OUT Using switched current match within 6 dB of max power ─ 0.25 ─ dB TX RF Output Level Variation vs. Temperature ΔPRF_TEMP -40 to +85 °C ─ 2.3 ─ dB TX RF Output Level Variation vs. Frequency ΔPRFFREQ Measured across 902-928 MHz ─ 0.6 ─ dB Transmit Modulation Filtering B×T Gaussian Filtering Bandwith Time Product ─ 0.5 ─ Modulation Deviation Range Modulation Deviation Resolution silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 67 EZR32HG320 Data Sheet Electrical Specifications 4.16.10 EZRadio (R55) Radio Auxiliary Block Specifications XTAL Range tested in production using an external clock source (similar to using a TCXO). Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench characterization. Table 4.40. EZRadio Auxilliary Block Specifications Parameter XTAL Range Symbol Test Condition XTALRANG Min Typ 25 Max Unit 32 MHz E 30 MHz XTAL Start-Up Time 30 MHz XTAL Cap Resolution POR Reset Time t30M ─ 300 ─ us 30MRES ─ 70 ─ Ff tPOR ─ ─ 6 ms silabs.com | Smart. Connected. Energy-friendly. Using XTAL and board layout in reference design. Start-up time will vary with XTAL type and board layout. Rev. 1.0 | 68 EZR32HG320 Data Sheet Electrical Specifications 4.16.11 Radio Digital I/O Specification 6.7 ns is typical for GPIO0 rise time. Assuming VDD = 3.3 V, drive strength is specified at VOH (min) = 2.64 V and Vol(max) = 0.66 V at room temperature. 2.4 ns is typical for GPIO0 fall time. Table 4.41. EZRadio/Pro Digital I/O Specification Parameter Symbol Test Condition Min Typ Max Unit Rise Time TRISE 0.1 x VDD to 0.9 x VDD, CL = 10 pF, DRV<1:0> = LL ─ 2.3 ─ ns Fall Time TFALL 0.9 x VDD to 0.1 x VDD, CL = 10 pF, DRV<1:0> = LL ─ 2 ─ ns Input Capacitance CIN ─ 2 ─ pF Logic High Level Input Voltage VIH VDD_RF x 0.7 ─ ─ V Logic Low Level Input Voltage VIL ─ ─ VDD_RF x 0.3 V Input Current IIN 0<VIN< VDD -1 ─ 1 uA Input Current If Pullup is Activated IINP VIL = 0 V 1 ─ 4 uA IOmaxLL DRV[1:0] = LL ─ 6.66 ─ mA IOmaxLH DRV[1:0] = LH ─ 5.03 ─ mA IOmaxHL DRV[1:0] = HL ─ 3.16 ─ mA IOmaxHH DRV[1:0] = HH ─ 1.13 ─ mA IOmaxLL DRV[1:0] = LL ─ 5.75 ─ mA IOmaxLH DRV[1:0] = LH ─ 4.37 ─ mA IOmaxHL DRV[1:0] = HL ─ 2.73 ─ mA IOmaxHH DRV[1:0] = HH ─ 0.96 ─ mA IOmaxLL DRV[1:0] = LL ─ 2.53 ─ mA IOmaxLH DRV[1:0] = LH ─ 2.21 ─ mA IOmaxHL DRV[1:0] = HL ─ 1.7 ─ mA IOmaxHH DRV[1:0] = HH ─ 0.80 ─ mA Logic High Level Output Voltage VOH DRV[1:0] = HL VDD_RF x 0.8 ─ ─ V Logic Low Level Output Voltage VOL DRV[1:0] = HL ─ ─ VDD_RF x 0.2 V Drive Strength for Output Low Level3 Drive Strength for Output High Level3 Drive Strength for Output High Level for GPIO3 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 69 EZR32HG320 Data Sheet Electrical Specifications 4.17 Digital Peripherals Table 4.42. Digital Peripherals Parameter Symbol Condition USART current IUSART USART idle current, clock enabled 7.5 µA/MHz LEUART current ILEUART LEUART idle current, clock enabled 150 nA II2C I2C idle current, clock enabled 6.25 µA/MHz TIMER current ITIMER TIMER_0 idle current, clock enabled 8.75 µA/MHz PCNT current IPCNT PCNT idle current, clock enabled 100 nA RTC current IRTC RTC idle current, clock enabled 100 nA AES current IAES AES idle current, clock enabled 2.5 µA/MHz GPIO current IGPIO GPIO idle current, clock enabled 5.31 µA/MHz PRS current IPRS PRS idle current 2.81 µA/MHz DMA current IDMA Clock enable 8.12 µA/MHz I2C current silabs.com | Smart. Connected. Energy-friendly. Min Typ Max Unit Rev. 1.0 | 70 EZR32HG320 Data Sheet Pinout and Package 5. Pinout and Package Note: Please refer to the application note AN0002: EFM32 Hardware Design Considerations for guidelines on designing Printed Circuit Boards (PCB's) for the EZR32HG320. 5.1 Pinout The EZR32HG320 pinout is shown in below. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 5.1. Pinout (top view, not to scale) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 71 EZR32HG320 Data Sheet Pinout and Package 5.2 Pin Descriptions Table 5.1. Device Pinout QFN48 Pin# and Name Pin # Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other 0 VSS Ground. 1 PF0 TIM0_CC0 #5 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLK #0 2 PF1 TIM0_CC1 #5 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0 GPIO_EM4WU3 3 PF2 TIM0_CC2 #5/6 TIM2_CC0 #3 LEU0_TX #4 CMU_CLK0 #3 PRS_CH0 #3 GPIO_EM4WU4 4 PF3 TIM0_CDTI0 #5 PRS_CH0 #1 5 PF4 TIM0_CDTI1 #5 PRS_CH1 #1 6 IOVDD_5 7 PE10 TIM1_CC0 #1 US0_TX #0 PRS_CH2 #2 8 PE11 TIM1_CC1 #1 US0_RX #0 PRS_CH3 #2 9 PE12 ADC0_CH0 TIM1_CC2 #1 TIM2_CC1 #3 US0_RX #3 US0_CLK #0/6 I2C0_SDA #6 CMU_CLK1 #2 PRS_CH1 #3 10 PE13 ADC0_CH1 TIM2_CC2 #3 US0_TX #3 US0_CS #0/6 I2C0_SCL #6 PRS_CH2 #3 GPIO_EM4WU5 11 PA0 TIM0_CC1 #6 TIM0_CC0 #0/1/4 PCNT0_S0IN #4 USB_DMPU #0 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0 12 PA1 TIM0_CC0 #6 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 13 XOUT Digital IO power supply 5. EZRadio peripheral crystal oscillator output. Connect to an external 26/30 MHz crystal or leave floating if driving the XOUT pin with an external signal source. EZRadio peripheral crystal oscillator input. Connect to an external 26/30 MHz crystal or to an external clock source. If using an external clock source with no crystal, dc coupling with a nominal 0.8 VDC level is recommended with a minimum ac amplitude of 700 mVpp. Refer to AN417 for more details about using an external clock source. 14 XIN 15 GPIO2 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. 16 GPIO3 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. 17 DNC Do not connect. 18 RXP Differential RF Input Pin of the LNA. See application schematic for example matching network. 19 RXN Differential RF Input Pin of the LNA. See application schematic for example matching network. 20 TX_13/16/20 21 GND/DualTX_20 Transmit Output Pin. +13 dBm for EZR32HG320FXXR55, R60, R67 and R69, +16 dBm for EZR32HG320FXXR61, and +20 dBm for EZR32HG320FXXR63 and R68 variants. The PA output is an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. +20 dBm for EZR32HG320FXXR69 variant. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 72 EZR32HG320 Data Sheet Pinout and Package QFN48 Pin# and Name Pin Alternate Functionality / Description Pin # Pin Name 22 RFVDD_2 +1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply voltage is +3.3 V. 23 TXRAMP Programmable Bias Output with Ramp Capability for External FET PA. 24 RFVDD_1 +1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply voltage is +3.3 V. 25 GPIO0 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. 26 GPIO1 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. 27 PB7 LFXTAL_P TIM1_CC0 #3 US0_TX #4 28 PB8 LFXTAL_N TIM1_CC1 #3 US0_RX #4 29 RESETn 30 PB11 31 AVDD_1 32 PB13 HFXTAL_P US0_CLK #4/5 LEU0_TX #1 33 PB14 HFXTAL_N US0_CS #4/5 LEU0_RX #1 34 IOVDD_3 Digital IO power supply 3. 35 AVDD_0 Analog power supply 0. 36 PD4 ADC0_CH4 LEU0_TX #0 37 PD5 ADC0_CH5 LEU0_RX #0 38 PD6 ADC0_CH6 TIM1_CC0 #4 PCNT0_S0IN #3 USRF1_RX #2 I2C0_SDA #1 BOOT_RX 39 PD7 ADC0_CH7 TIM1_CC1 #4 PCNT0_S1IN #3 USRF1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 BOOT_TX 40 VDD_DREG Power supply for on-chip voltage regulator. 41 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 42 PC8 TIM2_CC0 #2 US0_CS #2 43 PC9 TIM2_CC1 #2 US0_CLK #2 44 PC10 TIM2_CC2 #2 US0_RX #2 45 USB_VREGI 46 USB_VREGO 47 PC14 TIM0_CDTI1 #1/6 TIM1_CC1 #0 PCNT0_S1IN #0 US0_CS #3 LEU0_TX #5 USB_DM PRS_CH0 #2 48 PC15 TIM0_CDTI2 #1/6 TIM1_CC2 #0 US0_CLK #3 LEU0_RX #5 USB_DP PRS_CH1 #2 Analog Timers Communication Other Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. IDAC0_OUT TIM1_CC2 #3 PCNT0_S1IN #4 CMU_CLK1 #3 Analog power supply 1. silabs.com | Smart. Connected. Energy-friendly. GPIO_EM4WU2 Rev. 1.0 | 73 EZR32HG320 Data Sheet Pinout and Package 5.3 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note: Some functionality, such as analog interfaces, do no have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to the LOCATION 0. Table 5.2. Alternate Functionality Overview Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description ADC0_CH0 PE12 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PE13 Analog to digital converter ADC0, input channel number 1. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PD6 Bootloader RX. BOOT_TX PD7 Bootloader TX. CMU_CLK0 PD7 PF2 Clock Management Unit, clock output number 0. PE12 PB11 Clock Management Unit, clock output number 1. CMU_CLK1 PA1 DBG_SWCLK PF0 DBG_SWDIO PF1 GPIO_EM4WU 0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU 2 PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU 3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU 4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU 5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. silabs.com | Smart. Connected. Energy-friendly. Note that this function is enabled to pin out of reset, and has a built-in pull up. Rev. 1.0 | 74 EZR32HG320 Data Sheet Pinout and Package Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description I2C0_SCL PA1 PD7 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PF0 PE12 I2C0 Serial Data input / output. IDAC0_OUT PB11 LEU0_RX PD5 PB14 PF1 PA0 PC15 LEUART0 Receive input. LEU0_TX PD4 PB13 PF0 PF2 PC14 LEUART0 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. IDAC0 output. PCNT0_S0IN PD6 PA0 Pulse Counter PCNT0 input number 0. PD7 PB11 Pulse Counter PCNT0 input number 1. PCNT0_S1IN PC14 PRS_CH0 PA0 PF3 PC14 PF2 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 PC15 PE12 Peripheral Reflex System PRS, channel 1. PRS_CH2 PE10 PE13 Peripheral Reflex System PRS, channel 2. PRS_CH3 PE11 PA0 Peripheral Reflex System PRS, channel 3. PF0 PA1 Timer 0 Capture Compare input / output channel 0. PF1 PA0 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PF2 PF2 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 PF3 TIM0_CC0 PA0 PA0 TIM0_CC1 PA1 PA1 PA0 PF4 Timer 0 Complimentary Deat Time Insertion channel 0. PC14 Timer 0 Complimentary Deat Time Insertion channel 1. PC15 Timer 0 Complimentary Deat Time Insertion channel 2. TIM0_CDTI1 PC14 TIM0_CDTI2 PC15 TIM1_CC0 PE10 PB7 PD6 Timer 1 Capture Compare input / output channel 0. PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC1 PC14 PE11 PB8 TIM1_CC2 PC15 PE12 PB11 Timer 1 Capture Compare input / output channel 2. TIM2_CC0 PC8 PF2 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PC9 PE12 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 PC10 PE13 Timer 2 Capture Compare input / output channel 2. US0_CLK PE12 PC9 PC15 PB13 PB13 PE12 USART0 clock input / output. US0_CS PE13 PC8 PC14 PB14 PB14 PE13 USART0 chip select input / output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 75 EZR32HG320 Data Sheet Pinout and Package Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description USART0 Asynchronous Receive. US0_RX PE11 PC10 PE12 PE13 PB8 USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. US0_TX PE10 PB7 USB_DM PC14 USB D- pin. USB_DMPU PA0 USB D- Pullup control. USB_DP PC15 USB D+ pin. USB_VREGI USB_VREGI USB Input to internal 3.3 V regulator USB_VREGO USB_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output USART0 Synchronous mode Master Output / Slave Input (MOSI). USARTRF1 Asynchronous Receive. USRF1_RX PD6 USRF1_TX USARTRF1 Synchronous mode Master Input / Slave Output (MISO). USARTRF1 Asynchronous Transmit.Also used as receive input in half duplex communication. PD7 USARTRF1 Synchronous mode Master Output / Slave Input (MOSI). 5.4 GPIO Pinout Overview The specific GPIO pins available in EZR32HG320 are shown in the GPIO pinout table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0. Table 5.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - - - - - - PA1 PA0 Port B - - PB11 - - PB8 PB7 - - - - - - - - - - PC10 PC9 PC8 - - - - - - - - - - - - - - PD7 PD6 PD5 PD4 - - - - - - - - - - - - - - - - - - - PF4 PF3 PF2 PF1 PF0 Port C PB14 PB13 PC15 PC14 Port D - - Port E - - Port F - - PE13 PE12 PE11 PE10 - - silabs.com | Smart. Connected. Energy-friendly. - - Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Rev. 1.0 | 76 EZR32HG320 Data Sheet Pinout and Package 5.5 QFN48 Package Figure 5.2. QFN48 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 77 EZR32HG320 Data Sheet Pinout and Package Table 5.4. QFN48 (Dimensions in mm) Dimension MIN NOM MAX A 0.80 0.85 0.90 A1 0.00 0.035 0.05 A2 --- 0.65 0.67 A3 0.203 REF b 0.20 0.25 0.30 D 6.90 7.00 7.10 E 6.90 7.00 7.10 J 5.55 5.65 5.75 K 5.55 5.65 5.75 e L 0.50 BSC 0.35 0.40 aaa 0.10 bbb 0.10 ccc 0.08 ddd 0.10 eee 0.10 0.45 The QFN48 Package uses Matte Tin plated leadframe. All EZR32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 78 EZR32HG320 Data Sheet PCB Layout and Soldering 6. PCB Layout and Soldering 6.1 Recommended PCB Layout Figure 6.1. PCB Land Pattern Table 6.1. PCB Land Pattern Dimensions (Dimensions in mm) Dimension MIN MAX C1 6.05 6.25 C2 6.05 6.25 E 0.50 BSC X1 0.17 0.37 X2 5.65 5.85 Y1 0.69 0.89 Y2 5.65 5.85 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 79 EZR32HG320 Data Sheet PCB Layout and Soldering Dimension MIN MAX Note: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 4. A 4x4 array of 1.1 mm square openings on 1.3 mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 6.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 80 EZR32HG320 Data Sheet Top Marking 7. Top Marking The top marking is illustrated and explained below. Mark Method: Laser Logo Size: Top center Font Size: 0.71 mm Left-Justified Line 1 Marking: EZR32 Line 2 Marking: PPPPPPPPPP = Part Number • P1P2: HG = Happy Gecko • P3P4P5: 320 (USB) • P6P7: Flash Size • FD = 32 • FE = 64 • P8P9: Radio • 55 = EZRadio +13 dBm, -116 sensitivity • 60 = EZRadioPRO +13 dBm, -126 sensitivity • 61 = EZRadioPRO +16 dBm, -126 sensitivity • 63 = EZRadioPRO +20 dBm, -126 sensitivity • 67 = EZRadioPRO +13 dBm, -133 sensitivity • 68 = EZRadioPRO +20 dBm, -133 sensitivity • 69 = EZRadioPRO +13 & 20 dBm, -133 sensitivity • P10: Temperature Range • G = -40 — 85 °C Line 3 Marking: YY = Year Assigned by the Assembly House. WW = Work Week Corresponds to the year and work week of the mold date. TTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order from assembly PO. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 81 EZR32HG320 Data Sheet Revision History 8. Revision History Revision 1.0 • Add R69 content Revision 0.4 • Removed content currently documented the RFI database: • Environmental Table from the Electrical Specifications chapter • Moisture Sensitivity Level in the Soldering Information section Revision 0.3 • Updated Current Consumption table • Updated Power Management table • Revised text describing LFXO Oscillator: “energyAware Designer” to “Configurator tool” • Updated HFXO oscillator table, fHXFO parameter changed: “Supported nominal crystal Frequency” to “Supported frequency, any mode”. • Updated LFRCO table • Updated HFRCO table • Updated AUXHFRCO table • Updated USHFRCO table • Updated ADC table • Added USB electrical table Revision 0.2 • Initial Release silabs.com | Smart. Connected. Energy-friendly. Rev. 1.0 | 82 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . 3.1.1 ARM Cortex-M0+ Core . . . . . . . . . . . . . . . . . 3.1.2 Debugging Interface (DBG). . . . . . . . . . . . . . . . 3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . . 3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . . 3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . . 3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . . 3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . . 3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . 3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . 3.1.10 Universal Serial Bus Controller (USB) . . . . . . . . . . . . 3.1.11 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.1.13 Pre-Programmed USB/UART Bootloader . . . . . . . . . . 3.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.1.15 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . 3.1.16 Real Time Counter (RTC) . . . . . . . . . . . . . . . . 3.1.17 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . 3.1.18 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . 3.1.19 Analog to Digital Converter (ADC) . . . . . . . . . . . . . 3.1.20 Current Digital to Analog Converter (IDAC) . . . . . . . . . . 3.1.21 Advanced Encryption Standard Accelerator (AES) . . . . . . . 3.1.22 General Purpose Input/Output (GPIO) . . . . . . . . . . . 3.1.23 EZRadio® and EZRadioPro® Transceivers . . . . . . . . . . 3.1.23.1 EZRadio and EZRadioPRO Transceivers GPIO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . . . 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 Test Conditions . . . . . . . 4.1.1 Typical Values . . . . . . . 4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . 9 . 9 4.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .10 4.4 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . .10 4.5 Current Consumption . . 4.5.1 EM0 Current Consumption 4.5.2 EM1 Current Consumption 4.5.3 EM2 Current Consumption 4.5.4 EM3 Current Consumption 4.5.5 EM4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .13 .16 .18 .19 .19 Table of Contents 83 . . . . . . . 4.6 Transitions between Energy Modes . . . . . . . . . . . . . . . . . . . . . .20 4.7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.8 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 4.9 General Purpose Input Output . . . . . . . . . . . . . . . . . . . . . . . .22 4.10 Oscillators. . 4.10.1 LXFO . . 4.10.2 HFXO . . 4.10.3 LFRCO . . 4.10.4 HFRCO . . 4.10.5 AUXHFRCO 4.10.6 USHFRCO . 4.10.7 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 .30 .30 .31 .32 .35 .36 .36 4.11 Analog Digital Converter (ADC) 4.11.1 Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 .44 4.12 Current Digital Analog Converter (IDAC) . . . . . . . . . . . . . . . . . . . .50 4.13 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . . .55 4.14 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.15 USB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 4.16 Radio . . . . . . . . . . . . . . . . . . . . 4.16.1 EZRadioPRO (R6x) DC Electrical Characteristics . . . . . 4.16.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics 4.16.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics . 4.16.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics. 4.16.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications . . 4.16.6 EZRadio (R55) DC Electrical Characteristics . . . . . . 4.16.7 EZRadio (R55) Synthesizer AC Electrical Characteristics . . 4.16.8 EZRadio (R55) Receiver AC Electrical Characteristics . . . 4.16.9 EZRadio (R55) Transmitter AC Electrical Characteristics . . 4.16.10 EZRadio (R55) Radio Auxiliary Block Specifications . . . 4.16.11 Radio Digital I/O Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 .58 .59 .60 .63 .64 .65 .65 .66 .67 .68 .69 4.17 Digital Peripherals . . . . . . . . . . . . .70 5. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 5.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 5.3 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . .74 5.4 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .76 5.5 QFN48 Package . . . . . . . . . . . . . . . . . . . . . . . . . . .77 6. PCB Layout and Soldering . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . 6.1 Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . .79 6.2 Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . .80 7. Top Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table of Contents 84 . . Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table of Contents 85 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com