EZR32WG Wireless MCUs EZR32WG330 Data Sheet EZR32WG330 Wireless MCU family with ARM Cortex-M4 CPU, USB, and sub-GHz Radio The EZR32WG Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high performance, low energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit MCU, the EZR32WG family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale with 64/128/256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the sub-GHz radio, result in a solution optimized for battery powered applications. 32-Bit ARM Cortex wireless MCUs applications include the following: • Energy, gas, water and smart metering • Health and fitness applications • Consumer electronics • Alarm and security systems • Building and home automation KEY FEATURES • Silicon Labs’ first 32-bit Wireless MCUs • Based on ARM Cortex M3 (LG) and M4 (WG) CPU cores with 256 kB of flash and 32 kB RAM • Best-in-class RF performance with EZradio and EZRadioPro transceivers • Ultra-low power wireless MCU • Low transmit and receive currents • Ultra-low power standby and sleep modes • Fast wake-up time • Low Energy sensor interface (LESENSE) • Rich set of peripherals including 12-bit ADC and DAC, multiple communication interfaces (USB, UART, SPI, I2C), multiple GPIO and timers • AES Accelerator with 128/256-bit keys silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 EZR32WG330 Data Sheet Feature List 1. Feature List The WG highlighted features are listed below. MCU Features • ARM Cortex-M4 CPU platform • Up to 48 MHz • 64/128/256 kB Flash w/32 kB RAM • Hardware AES with 128/256-bit keys • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.65 µA @ 3 V Stop Mode • 225 µA/MHz @ 3 V Run Mode • Timers/Counters • 4× Timer/Counter • 4×3 Compare/Capture/PWM channels • Low Energy Timer • Real-Time Counter • 16/8-bit Pulse Counter • Watchdog Timer • Communication interfaces • 2× USART (UART/SPI) • 2× UART • 2× Low Energy UART • 2× I2C Interface with SMBus support • Universal Serial Bus (USB) • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s ADC • On-chip temperature sensor • 12-bit 500 ksamples/s DAC • 2× Analog Comparator • 2x Operational Amplifier • Low Energy Sensor Interface (LESENSE) • Up to 38 General Purpose I/O pins silabs.com | Smart. Connected. Energy-friendly. RF Features • Frequency Range • 142-1050 MHz • Modulation • (G)FSK, 4(G)FSK, (G)MSK, OOK • Receive sensitivity up to -133 dBm • Up to +20 dBm max output power • Low active power consumption • 10/13 mA RX • 18 mA TX at +10 dBm • 6 mA @ 1.2 kbps (Preamble Sense) • Data rate = 100 bps to 1 Mbps • Excellent selectivity performance • 69 dB adjacent channel • 79 dB blocking at 1 MHz • Antenna diversity and T/R switch control • Highly configurable packet handler • TX and RX 64 byte FIFOs • Automatic frequency control (AFC) • Automatic gain control (AGC) • IEEE 802.15.4g compliant System Features • • • • • Power-on Reset and Brown-Out Detector Debug Interface Temperature range -40 to 85 °C Single power supply 1.98 to 3.8 V QFN64 package Rev. 1.1 | 1 EZR32WG330 Data Sheet Ordering Information 2. Ordering Information The table below shows the available EZR32WG330 devices. Table 2.1. Ordering Information Ordering Radio Flash (kB) RAM (kB) Power Am- Max Sensiplifier (dBm) tivity (dBm) Supply Voltage (V) Package EZR32WG330FxxxR55G EZRadio 64-256 32 +13 -116 1.98 - 3.8 QFN64 EZR32WG330FxxxR60G EZRadioPro 64-256 32 +13 -129 1.98 - 3.8 QFN64 EZR32WG330FxxxR61G EZRadioPro 64-256 32 +16 -129 1.98 - 3.8 QFN64 EZR32WG330FxxxR63G EZRadioPro 64-256 32 +20 -129 1.98 - 3.8 QFN64 EZR32WG330FxxxR67G EZRadioPro 64-256 32 +13 -133 1.98 - 3.8 QFN64 EZR32WG330FxxxR68G EZRadioPro 64-256 32 +20 -133 1.98 - 3.8 QFN64 EZR32WG330FxxxR69G EZRadioPro 64-256 32 +13 & 20 -133 1.98 - 3.8 QFN64 Table 2.2. Flash Sizes Example Part Number Flash Size EZR32WG330F64R55G 64 kB EZR32WG330F128R55G 128 kB EZR32WG330F256R55G 256 kB Note: Add an "(R)" at the end of the device part number to denote tape and reel option. Visit www.silabs.com for information on global distributors and representatives. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 2 EZR32WG330 Data Sheet System Overview 3. System Overview 3.1 Introduction The EZR32WG330 Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high performance, low energy wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit ARM Cortex-M4, the EZR32WG family provides designers with the ultimate in flexibility with a family of pin-compatible parts that scale from 64 to 256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times combined with the low transmit and receive power consumption of the sub-GHz radio result in a solution optimized for low power and battery powered applications. For a complete feature set and in-depth information on the modules, the reader is referred to the EZR32WG Reference Manual. The EZR32WG330 block diagram is shown below. Figure 3.1. Block Diagram 3.1.1 ARM Cortex-M4 Core The ARM Cortex-M4 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EZR32 implementation of the Cortex-M4 is described in detail in EZR32 Cortex-M4 Reference Manual. 3.1.2 Debugging These devices include hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 3.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EZR32WG microcontroller. The flash memory is readable and writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks: the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 3 EZR32WG330 Data Sheet System Overview 3.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving, for instance, data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 3.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EZR32WG. 3.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manages all the low energy modes (EM) in EZR32WG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 3.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EZR32WG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 3.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may, for example, be caused by an external event, such as an ESD pulse, or by a software failure. 3.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 3.1.10 Universal Serial Bus Controller (USB) The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12 MBit/s) and low speed (1.5 MBit/s) operation. The USB device includes an internal dedicated Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5 V to VBUS when operating as host. 3.1.11 Inter-Integrated Circuit Interface (I2C) The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I2C module allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and I2S devices. 3.1.13 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface, and commands are described further in the application note. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 4 EZR32WG330 Data Sheet System Overview 3.1.14 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication. 3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUART™, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 3.1.16 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 3.1.17 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 3.1.18 Backup Real Time Counter (BURTC) The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out. 3.1.19 Low Energy Timer (LETIMER) The unique LETIMER™, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 3.1.20 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 3.1.21 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.22 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 3.1.23 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals. 3.1.24 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 5 EZR32WG330 Data Sheet System Overview 3.1.25 Operational Amplifier (OPAMP) The EZR32WG330 features 2 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors, etc. 3.1.26 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface (LESENSE™), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.1.27 Backup Power Domain The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EZR32WG330 to keep track of time and retain data, even if the main power source should drain out. 3.1.28 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations (i.e., 8- or 16-bit operations are not supported). 3.1.29 General Purpose Input/Output (GPIO) In the EZR32WG330, there are 38 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 6 EZR32WG330 Data Sheet System Overview 3.1.30 EZRadio® and EZRadioPro® Transceivers The EZR32WG family of devices is built using high-performance, low-current EZRadio and EZRadioPro RF transceivers covering the sub-GHz frequency bands from 142 to 1050 MHz. These devices offer outstanding sensitivity of upto –133 dBm (using EZRadioPro) while achieving extremely low active and standby current consumption. The EZR32WG devices using the EZRadioPro transceiver offer frequency coverage in all major bands and include optimal phase noise, blocking, and selectivity performance for narrow band and licensed band applications, such as FCC Part 90 and 169 MHz wireless Mbus. The 69 dB adjacent channel selectivity with 12.5 kHz channel spacing ensures robust receive operation in harsh RF conditions, which is particularly important for narrow band operation. The active mode TX current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with extremely low standby current and fast wake times is optimized for extended battery life in the most demanding applications. The EZR32WG devices can achieve up to +27 dBm output power with built-in ramping control of a low-cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI, and ARIB. All devices are designed to be compliant with 802.15.4g and WMbus smart metering standards. The devices are highly flexible and can be programmed and configured via Simplicity Studio, available at www.silabs.com. Communications between the radio and MCU are done over USART, PRS and IRQ, which requires the pins to be configured in the following way: Table 3.1. Radio MCU Communication Configuration EZR32WG Pin Radio Assignment EZR32WG Function Assignment PE8 SDN GPIO Output PE9 nSEL Bit-Banged SPI.CS (GPIO Output) PE10 SDI US0_TX #0 PE11 SDO US0_RX #0 PE12 SCLK US0_CLK #0 PE13 nIRQ GPIO_EM4WU5 (GPIO Input with IRQ enabled) PE14 GPIO1 PRS Input PA15 GPIO0 PRS Input silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 7 EZR32WG330 Data Sheet System Overview 3.1.30.1 EZRadio® and EZRadioPRO® Transceivers GPIO Configuration The EZRadio and EZRadioPRO Transceivers have 4 General Purpose Digital I/O pins. These GPIOs may be configured to perform various radio-specific functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. Two of the radio GPIO pins are directly connected to pins on the package (GPIO2 and GPIO3). However, the remaining two radio GPIO pins (GPIO0 and GPIO1) connect internally on the EZR32WG to the pins shown in 3.1.30 EZRadio® and EZRadioPro® Transceivers. These radio GPIOs may be routed to external package pins using the EZR32WG’s peripheral reflex system (PRS). Note that the maximum frequency of the GPIO pins routed through PRS pins may be limited to ~10 MHz. Below is some example code illustrating how to configure the EZR32WG PRS system to output the radio GPIO0/GPIO1 functions to EZR32WG pins PA0 / PA1, respectively. Note that the radio GPIO0/GPIO1 functions could also be connected to EZR32WG pins PF3/ PF4. /* PRS routing radio GPIO0 and GPIO1 to external pin PA0&PA1 */ / * Note that this code example uses the emlib library functions for CMU, GPIO, and PRS */ /* Enable PRS clock */ CMU_ClockEnable(cmuClock_PRS, true); /* Setup input pins */ GPIO_PinModeSet(gpioPortA, 15, gpioModeInput, 0); GPIO_PinModeSet(gpioPortE, 14, gpioModeInput, 0); /* Setup output pins */ GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 0); GPIO_PinModeSet(gpioPortA, 1, gpioModePushPull, 0); /* Configure INT/PRS channels */ GPIO_IntConfig(gpioPortA, 15, false, false, false); GPIO_IntConfig(gpioPortE, 14, false, false, false); /* Setup PRS */ PRS_SourceAsyncSignalSet(0, PRS_CH_CTRL_SOURCESEL_GPIOH, PRS_CH_CTRL_SIGSEL_GPIOPIN15); PRS_SourceAsyncSignalSet(1, PRS_CH_CTRL_SOURCESEL_GPIOH, PRS_CH_CTRL_SIGSEL_GPIOPIN14); PRS->ROUTE = (PRS_ROUTE_CH0PEN | PRS_ROUTE_CH1PEN); /* Make sure PRS sensing is enabled (should be by default) */ GPIO_InputSenseSet(GPIO_INSENSE_PRS, GPIO_INSENSE_PRS); silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 8 EZR32WG330 Data Sheet System Overview 3.2 Configuration Summary The features of the EZR32WG330 are a subset of the feature set described in the EZR32WGReference Manual. The table below describes device specific implementation of the features. Table 3.2. Configuration Summary Module Configuration Pin Connections Cortex-M4 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA USB Full configuration USB_VBUS, USB_VBUSEN, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP, USB_ID I2C0 Full configuration I2C0_SDA, I2C0_SCL I2C1 Full configuration I2C1_SDA, I2C1_SCL USARTRF0 Full configuration with IrDA US0_TX, US0_RX, US0_CLK, US0_CS USART1 Full configuration with I2S US1_TX, US1_RX, US1_CLK, US1_CS USART2 Full configuration with I2S US2_TX, US2_RX, US2_CLK, US2_CS UART0 Full configuration U0_TX, U0_RX UART1 Full configuration U1_TX, U1_RX LEUART0 Full configuration LEU0_TX, LEU0_RX LEUART1 Full configuration LEU1_TX, LEU1_RX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] TIMER3 Full configuration TIM3_CC[2:0] RTC Full configuration NA BURTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] PCNT1 Full configuration, 8-bit count register PCNT1_S[1:0] PCNT2 Full configuration, 8-bit count register PCNT2_S[1:0] ACMP0 Full configuration ACMP0_CH[7:0], ACMP0_O ACMP1 Full configuration ACMP1_CH[7:0], ACMP1_O VCMP Full configuration NA silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 9 EZR32WG330 Data Sheet System Overview Module Configuration Pin Connections ADC0 Full configuration ADC0_CH[7:0] DAC0 Full configuration DAC0_OUT[1:0] OPAMP Full configuration Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx AES Full configuration NA GPIO 38 pins Available pins are shown in 5.4 GPIO Pinout Overview 3.3 Memory Map The EZR32WG330 memory map is shown below with RAM and flash sizes for the largest memory configuration. Figure 3.2. EZR32WG330 Memory Map with Largest RAM and Flash Sizes silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 10 EZR32WG330 Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Test Conditions 4.1.1 Typical Values The typical data are based on TAMB = 25°C and VDD = 3.0 V, as defined in Table 4.3 General Operating Conditions on page 12, by simulation and/or technology characterisation unless otherwise specified. 4.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 4.3 General Operating Conditions on page 12, by simulation and/or technology characterisation unless otherwise specified. 4.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in the table below may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 4.3 General Operating Conditions on page 12. Table 4.1. Absolute Maximum Ratings Parameter Storage temperature range Maximum soldering temperature External main supply voltage Voltage on any I/O pin Symbol Test Condition Min Typ Max Unit -55 ─ 1501 °C ─ ─ 260 °C VDDMAX 0 ─ 3.8 V VIOPIN -0.3 ─ VDD+0.3 V TSTG TS Latest IPC/ JEDEC JSTD-020 Standard Note: 1. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 11 EZR32WG330 Data Sheet Electrical Specifications 4.3 Thermal Characteristics Table 4.2. Thermal Conditions Parameter Symbol Test Condition Min Typ Max Unit Ambient temperature range TAMB -40 ─ 85 °C Junction temperature value TJ ─ ─ 1051 °C +13/+16 dBm on 2-layer board ─ ─ 61.8 °C/W +20 dBm on 4layer board ─ ─ 20.72 °C/W -55 ─ 150 °C Thermal impedance junction to ambient TIJA Storage temperature range TSTG Note: 1. Values are based on simulations run on 2 layer and 4 layer PCBs at 0m/s airflow. 2. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures. 4.4 General Operating Conditions Table 4.3. General Operating Conditions Parameter Symbol Min Typ Max Unit TAMB -40 ─ 85 °C VDDOP 1.98 ─ 3.8 V Internal APB clock frequency fAPB ─ ─ 48 MHz Internal AHB clock frequency fAHB ─ ─ 48 MHz Ambient temperature range Operating supply voltage Table 4.4. Environmental Parameter Symbol Test Condition Min Typ Max Unit ESD (Human Body Model HBM) VESDHBM TAMB=25 °C ─ ─ 2000 V ESD (Charged Device Model, CDM) VESDCDM TAMB=25 °C ─ ─ 500 V Latch-up sensitivity passed: ±100 mA/1.5 × VSUPPLY(max) according to JEDEC JESD 78 method Class II, 85 °C. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 12 EZR32WG330 Data Sheet Electrical Specifications 4.5 Current Consumption Table 4.5. Current Consumption Parameter EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) Symbol IEM0 silabs.com | Smart. Connected. Energy-friendly. Condition Min Typ Max Unit 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 225 236 µA/MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 225 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 226 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 227 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 228 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 229 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 230 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 231 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 232 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 233 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 238 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 238 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 271 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 275 µA/MHz 238 µA/MHz µA/MHz 240 µA/MHz µA/MHz 243 µA/MHz µA/MHz 245 µA/MHz µA/MHz 250 µA/MHz µA/MHz 286 µA/MHz µA/MHz Rev. 1.1 | 13 EZR32WG330 Data Sheet Electrical Specifications Parameter EM1 current (Production test condition = 14 MHz) Symbol IEM1 EM2 current IEM2 EM3 current IEM3 EM4 current IEM4 Condition Min Typ Max Unit 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 63 75 µA/MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 65 76 µA/MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 64 75 µA/MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 65 77 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 65 76 µA/MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 66 78 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 67 79 µA/MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 68 82 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 68 81 µA/MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 70 83 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 74 87 µA/MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 76 89 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=25°C 106 120 µA/MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V, TAMB=85°C 112 129 µA/MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 0.951 1.71 µA EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 3.01 4.01 µA VDD= 3.0 V, TAMB=25°C 0.65 1.3 µA VDD= 3.0 V, TAMB=85°C 2.7 4.0 µA VDD= 3.0 V, TAMB=25°C 0.020 0.055 µA VDD= 3.0 V, TAMB=85°C 0.44 0.90 µA Note: 1. Using backup RTC. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 14 EZR32WG330 Data Sheet Electrical Specifications 4.6 Transitions between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 4.6. Energy Modes Transitions Parameter Symbol Min Typ Max Unit Transition time from EM1 to EM0 tEM10 ─ 0 ─ HFCORECLK cycles Transition time from EM2 to EM0 tEM20 ─ 2 ─ µs Transition time from EM3 to EM0 tEM30 ─ 2 ─ µs Transition time from EM4 to EM0 tEM40 ─ 163 ─ µs 4.7 Power Management The EZR32WG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, AN0002: EFM32 Hardware Design Considerations. Table 4.7. Power Management Parameter Symbol Test Condition Min Typ Max Unit BOD threshold on falling external supply voltage VBODextthr- 1.74 ─ 1.96 V BOD threshold on falling internally regulated supply voltage VBODintthr- 1.57 ─ 1.7 V BOD threshold on rising external supply voltage VBODextthr+ ─ 1.85 1.98 V Power-on Reset (POR) threshold on rising external supply voltage VPORthr+ ─ ─ 1.98 V Delay from reset is released until program execution starts tRESET Applies to Power-on Reset, Brown-out Reset and pin reset. ─ 163 ─ µs Voltage regulator decoupling capacitor. CDECOUPLE X5R capacitor recommended. Apply between DECOUPLE pin and GROUND ─ 1 ─ µF silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 15 EZR32WG330 Data Sheet Electrical Specifications 4.8 Flash Table 4.8. Flash Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Test Condition Min Typ Max Unit 20000 ─ ─ cycles TAMB<150 °C 10000 ─ ─ h TAMB<85 °C 10 ─ ─ years TAMB<70 °C 20 ─ ─ years Word (32-bit) programming time tW_PROG 20 ─ ─ µs Page erase time tPERASE 20 20.4 20.8 ms Device erase time tDERASE 40 40.8 41.6 ms Erase current IERASE ─ ─ 71 mA Write current IWRITE ─ ─ 71 mA Supply voltage during flash erase and write VFLASH 1.98 ─ 3.8 V Note: 1. Measured at 25 ºC. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 16 EZR32WG330 Data Sheet Electrical Specifications 4.9 General Purpose Input Output Table 4.9. GPIO Parameter Symbol Test Condition Min Typ Max Unit Input low voltage VIOIL ─ ─ 0.30 VDD V Input high voltage VIOIH 0.70 VDD ─ ─ V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.80 VDD ─ V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.90 VDD ─ V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.85 VDD ─ V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.90 VDD ─ V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75 VDD ─ ─ V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85 VDD ─ ─ V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60 VDD ─ ─ V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80 VDD ─ ─ V Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) VIOOH silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 17 EZR32WG330 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit VIOOL Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.20 VDD ─ V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST ─ 0.10 VDD ─ V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.10 VDD ─ V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW ─ 0.05 VDD Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD ─ ─ 0.30 VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD ─ ─ 0.20 VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH ─ ─ 0.35 VDD V Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH ─ ─ 0.25 VDD V High Impedance IO connected to GROUND or Vdd ─ ±0.1 ±100 nA Output low voltage (Production test condition = 3.0 V, DRIVEMODE = STANDARD) V Input leakage current IIOLEAK I/O pin pull-up resistor RPU ─ 40 ─ kOhm I/O pin pull-down resistor RPD ─ 40 ─ kOhm RIOESD ─ 200 ─ Ohm tIOGLITCH 10 ─ ─ ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25 pF. 20+0.1 CL ─ 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600 pF 20+0.1 CL ─ 250 ns VDD = 1.98 - 3.8 V 0.10 VDD ─ ─ V Internal ESD series resistor Pulse width of pulses to be removed by the glitch suppression filter tIOOF Output fall time I/O pin hysteresis (VIOTHR+ VIOTHR-) VIOHYST silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 18 EZR32WG330 Data Sheet Electrical Specifications 5 0.20 4 Low-Level Output Current [mA] Low-Level Output Current [mA] 0.15 0.10 3 2 0.05 1 -40°C 25°C 85°C 0.00 0.0 0.5 1.0 Low-Level Output Voltage [V] 1.5 -40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.0 Low-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low-Level Output Current [mA] Low-Level Output Current [mA] 15 10 30 25 20 15 5 10 5 -40°C 25°C 85°C 0 0.0 0.5 1.0 Low-Level Output Voltage [V] 1.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2.0 0 0.0 -40°C 25°C 85°C 0.5 1.0 Low-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.1. Typical Low-Level Output Current, 2 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 19 EZR32WG330 Data Sheet Electrical Specifications 0.0 0.00 -40°C 25°C 85°C -40°C 25°C 85°C –0.5 High-Level Output Current [mA] High-Level Output Current [mA] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 –2.5 0.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Output Current [mA] High-Level Output Current [mA] –5 –10 –20 –30 –15 –40 –20 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2.0 –50 0.0 0.5 1.0 High-Level Output Voltage [V] 1.5 2.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.2. Typical High-Level Output Current, 2 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 20 EZR32WG330 Data Sheet 0.5 10 0.4 8 Low-Level Output Current [mA] Low-Level Output Current [mA] Electrical Specifications 0.3 0.2 0.1 6 4 2 -40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 -40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 50 40 35 40 Low-Level Output Current [mA] Low-Level Output Current [mA] 30 25 20 15 30 20 10 10 5 0 0.0 -40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 GPIO_Px_CTRL DRIVEMODE = STANDARD -40°C 25°C 85°C 3.0 0 0.0 0.5 1.5 1.0 2.0 Low-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = High Figure 4.3. Typical Low-Level Output Current, 3 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 21 EZR32WG330 Data Sheet Electrical Specifications 0.0 0 -40°C 25°C 85°C -40°C 25°C 85°C –1 High-Level Output Current [mA] High-Level Output Current [mA] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 -40°C 25°C 85°C 0 -40°C 25°C 85°C –10 High-Level Output Current [mA] High-Level Output Current [mA] –10 –20 –30 –20 –30 –40 –40 –50 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 –50 0.0 0.5 1.5 1.0 2.0 High-Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD GPIO_Px_CTRL DRIVEMODE = High Figure 4.4. Typical High-Level Output Current, 3 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 22 EZR32WG330 Data Sheet Electrical Specifications 0.8 14 0.7 12 0.6 Low-Level Output Current [mA] Low-Level Output Current [mA] 10 0.5 0.4 0.3 8 6 4 0.2 2 0.1 0.0 0.0 -40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 -40°C 25°C 85°C 0 0.0 3.5 50 50 40 40 30 20 10 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 30 20 10 -40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low-Level Output Current [mA] Low-Level Output Current [mA] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD -40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 2.0 2.5 Low-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = High Figure 4.5. Typical Low-Level Output Current, 3.8 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 23 EZR32WG330 Data Sheet Electrical Specifications 0 0.0 –0.1 -40°C 25°C 85°C –1 -40°C 25°C 85°C –2 High-Level Output Current [mA] High-Level Output Current [mA] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 -40°C 25°C 85°C -40°C 25°C 85°C –10 High-Level Output Current [mA] –10 High-Level Output Current [mA] 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD –50 0.0 0.5 1.5 1.0 2.0 2.5 High-Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = High Figure 4.6. Typical High-Level Output Current, 3.8 V Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 24 EZR32WG330 Data Sheet Electrical Specifications 4.10 Oscillators 4.10.1 LXFO Table 4.10. LFXO Parameter Min Typ Max Unit fLFXO ─ 32.768 ─ kHz ESRLFXO ─ 30 120 kΩ Supported crystal external load range CLFXOL X1 ─ 25 pF Duty cycle DCLFXO 48 50 53.5 % Supported nominal crystal frequency Supported crystal equivalent series resistance (ESR) Symbol Test Condition Current consumption for core and buffer after startup ILFXO ESR=30 kΩ, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 ─ 190 ─ nA Start- up time tLFXO ESR=30 kΩ, CL=10 pF, 40% 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 ─ 400 ─ ms Note: 1. See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio. For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note AN0016: EFM32 Oscillator Design Consideration. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 25 EZR32WG330 Data Sheet Electrical Specifications 4.10.2 HFXO Table 4.11. HFXO Parameter Supported nominal crystal Frequency Supported crystal equivalent series resistance (ESR) The transconductance of the HFXO input transistor at crystal startup Symbol Test Condition Min Typ Max Unit 4 ─ 48 MHz Crystal frequency 48 MHz ─ ─ 50 Ω Crystal frequency 32 MHz ─ 30 60 Ω Crystal frequency 4 MHz ─ 400 1500 Ω HFXOBOOST in CMU_CTRL equals 0b11 20 ─ ─ ms 5 ─ 25 pF 46 50 54 % 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 85 ─ µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 165 ─ µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 ─ 400 ─ µs fHFXO ESRHFXO gmHFXO Supported crystal external load range CHFXOL Duty cycle DCHFXO Current consumption for HFXO after startup IHFXO Startup time tHFXO silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 26 EZR32WG330 Data Sheet Electrical Specifications 4.10.3 LFRCO Table 4.12. LFRCO Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency , VDD= 3.0 V, TAMB=25 °C fLFRCO 31.29 32.768 34.28 kHz Startup time not including software calibration tLFRCO ─ 150 ─ µs Current consumption ILFRCO ─ 300 ─ nA ─ 1.5 ─ % 42 42 40 40 38 38 Frequency [kHz] Frequency [kHz] Frequency step for LSB change in TUNETUNING value STEPLFRCO -40°C 25°C 85°C 36 34 34 32 32 30 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 3.8 2.0 V 3.0 V 3.8 V 36 30 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.7. Calibrated LFRCO Frequency vs Temperature and Supply Voltage silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 27 EZR32WG330 Data Sheet Electrical Specifications 4.10.4 HFRCO Table 4.13. HFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25 °C Settling time after start-up Symbol fHFRCO tHFRCO_set- Test Condition Min Typ Max Unit 28 MHz frequency band 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 7 MHz frequency band 6.48 6.60 6.72 MHz 1 MHz frequency band 1.15 1.20 1.25 MHz fHFRCO = 14 MHz ─ 0.6 ─ Cycles fHFRCO = 28 MHz ─ 165 215 µA fHFRCO = 21 MHz ─ 134 175 µA fHFRCO = 14 MHz ─ 106 140 µA fHFRCO = 11 MHz ─ 94 125 µA fHFRCO = 6.6 MHz ─ 77 105 µA fHFRCO = 1.2 MHz ─ 25 40 µA fHFRCO = 14 MHz 48.5 50 51 % ─ 0.31 ─ % tling Current consumption IHFRCO Duty cycle DCHFRCO Frequency step for LSB change in TUNING value TUNESTEPHFRC O Note: 1. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 28 EZR32WG330 Data Sheet 1.45 1.45 1.40 1.40 1.35 1.35 1.30 Frequency [MHz] Frequency [MHz] Electrical Specifications -40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.05 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Temperature [°C] 45 65 85 6.70 6.70 6.65 6.65 6.60 6.60 6.55 6.55 Frequency [MHz] Frequency [MHz] Figure 4.8. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 6.50 6.45 6.40 6.45 6.40 -40°C 25°C 85°C 6.35 6.30 2.0 6.50 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 3.8 6.30 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.9. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 29 EZR32WG330 Data Sheet 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Electrical Specifications 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 -40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Temperature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 13.9 13.9 Frequency [MHz] Frequency [MHz] Figure 4.10. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 13.8 13.7 13.6 13.7 13.6 -40°C 25°C 85°C 13.5 13.4 2.0 13.8 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 13.5 3.8 13.4 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.11. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 30 EZR32WG330 Data Sheet 21.2 21.2 21.0 21.0 Frequency [MHz] Frequency [MHz] Electrical Specifications 20.8 20.6 20.4 20.8 20.6 20.4 -40°C 25°C 85°C 20.2 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 20.2 –40 3.8 –15 5 25 Temperature [°C] 45 65 85 Figure 4.12. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 28.2 28.4 28.2 28.0 28.0 Frequency [MHz] Frequency [MHz] 27.8 27.6 27.4 27.8 27.6 27.4 27.2 27.2 -40°C 25°C 85°C 27.0 26.8 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 27.0 3.8 26.8 –40 –15 5 25 Temperature [°C] 45 65 85 Figure 4.13. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 31 EZR32WG330 Data Sheet Electrical Specifications 4.10.5 AUXHFRCO Table 4.14. AUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25 °C Settling time after start-up Symbol fAUXHFRCO tAUXHFR- Test Condition Min Typ Max Unit 28 MHz frequency band 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 7 MHz frequency band 6.481 6.601 6.721 MHz 1 MHz frequency band 1.152 1.202 1.252 MHz fAUXHFRCO = 14 MHz ─ 0.6 ─ Cycles ─ 0.33 ─ % CO_settling Frequency step for LSB change in TUNING value TUNESTEPAUXHFR CO Note: 1. For devices with prod. rev. < 19, Typ = 7 MHz and Min/Max values not applicable. 2. For devices with prod. rev. < 19, Typ = 1 MHz and Min/Max values not applicable. 3. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 4.10.6 ULFRCO Table 4.15. ULFRCO Parameter Symbol Test Condition Min Oscillation frequency fULFRCO 25 °C, 3 V 0.7 Typ Max Unit 1.75 kHz Temperature coefficient TCULFRCO ─ 0.05 ─ %/°C Supply voltage coefficient VCULFRCO ─ -18.2 ─ %/V silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 32 EZR32WG330 Data Sheet Electrical Specifications 4.11 Analog Digital Converter (ADC) Table 4.16. ADC Parameter Symbol Input voltage range VADCIN Input range of external reference voltage, single ended and differential VADCREFIN Input range of external negative reference voltage on channel 7 VADCRE- Input range of external positive reference voltage on channel 6 VADCRE- Common mode input range VADCCMIN Input current Analog input common mode rejection ratio Average active current Test Condition Min Typ Max Unit Single ended 0 ─ VREF V Differential -VREF/2 ─ VREF/2 V 1.25 ─ VDD V See VADCREFIN 0 ─ VDD - 1.1 V See VADCREFIN 0.625 ─ VDD V 0 ─ VDD V ─ <100 ─ nA ─ 65 ─ dB 1 MSamples/s, 12 bit, external reference ─ 351 ─ µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 ─ 67 ─ µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 ─ 63 ─ µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 ─ 64 ─ µA Internal voltage reference ─ 65 ─ µA FIN_CH7 FIN_CH6 IADCIN 2 pF sampling capacitors CMRRADC IADC Current consumption of internal voltage reference IADCREF Input capacitance CADCIN ─ 2 ─ pF Input ON resistance RADCIN 1 ─ ─ MOhm Input RC filter resistance RADCFILT ─ 10 ─ kOhm Input RC filter/decoupling capacitance CADCFILT ─ 250 ─ fF ADC Clock Frequency fADCCLK ─ ─ 13 MHz 6 bit 7 ─ ─ ADCCLK Cycles 8 bit 11 ─ ─ ADCCLK Cycles 12 bit 13 ─ ─ ADCCLK Cycles Programmable 1 ─ 256 ADCCLK Cycles Conversion time Acquisition time tADCCONV tADCACQ silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 33 EZR32WG330 Data Sheet Electrical Specifications Parameter Required acquisition time for VDD/3 reference Startup time of reference generator and ADC core in NORMAL mode Startup time of reference generator and ADC core in KEEPADCWARM mode Signal to Noise Ratio (SNR) Symbol Test Condition Min Typ Max Unit 2 ─ ─ µs ─ 5 ─ µs ─ 1 ─ µs 1 MSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 59 ─ dB 1 MSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 63 ─ dB 1 MSamples/s, 12 bit, single ended, VDD reference ─ 65 ─ dB 1 MSamples/s, 12 bit, differential, internal 1.25 V reference ─ 60 ─ dB 1 MSamples/s, 12 bit, differential, internal 2.5 V reference ─ 65 ─ dB 1 MSamples/s, 12 bit, differential, 5 V reference ─ 54 ─ dB 1 MSamples/s, 12 bit, differential, VDD reference ─ 67 ─ dB 1 MSamples/s, 12 bit, differential, 2xVDD reference ─ 69 ─ dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference ─ 62 ─ dB 200 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 63 ─ dB 200 kSamples/s, 12 bit, single ended, VDD reference ─ 67 ─ dB 200 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 63 ─ dB 200 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 66 ─ dB 200 kSamples/s, 12 bit, differential, 5 V reference ─ 66 ─ dB 200 kSamples/s, 12 bit, differential, VDD reference 63 66 ─ dB 200 kSamples/s, 12 bit, differential, 2xVDD reference ─ 70 ─ dB tADCACQVDD3 tADCSTART SNRADC silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 34 EZR32WG330 Data Sheet Electrical Specifications Parameter SIgnal-to-Noise And Distortion-ratio (SINAD) Symbol SINADADC silabs.com | Smart. Connected. Energy-friendly. Test Condition Min Typ Max Unit 1 MSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 58 ─ dB 1 MSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 62 ─ dB 1 MSamples/s, 12 bit, single ended, VDD reference ─ 64 ─ dB 1 MSamples/s, 12 bit, differential, internal 1.25 V reference ─ 60 ─ dB 1 MSamples/s, 12 bit, differential, internal 2.5 V reference ─ 64 ─ dB 1 MSamples/s, 12 bit, differential, 5V reference ─ 54 ─ dB 1 MSamples/s, 12 bit, differential, VDD reference ─ 66 ─ dB 1 MSamples/s, 12 bit, differential, 2xVDD reference ─ 68 ─ dB 200 kSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 61 ─ dB 200 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 65 ─ dB 200 kSamples/s, 12 bit, single ended, VDD reference ─ 66 ─ dB 200 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 63 ─ dB 200 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 66 ─ dB 200 kSamples/s, 12 bit, differential, 5V reference ─ 66 ─ dB 200 kSamples/s, 12 bit, differential, VDD reference 62 66 ─ dB 200 kSamples/s, 12 bit, differential, 2xVDD reference ─ 69 ─ dB Rev. 1.1 | 35 EZR32WG330 Data Sheet Electrical Specifications Parameter Test Condition Min Typ Max Unit 1 MSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 64 ─ dBc 1 MSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 76 ─ dBc 1 MSamples/s, 12 bit, single ended, VDD reference ─ 73 ─ dBc 1 MSamples/s, 12 bit, differential, internal 1.25 V reference ─ 66 ─ dBc 1 MSamples/s, 12 bit, differential, internal 2.5 V reference ─ 77 ─ dBc 1 MSamples/s, 12 bit, differential, VDD reference ─ 76 ─ dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference ─ 75 ─ dBc 1 MSamples/s, 12 bit, differential, 5V reference ─ 69 ─ dBc 200 kSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 75 ─ dBc 200 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 75 ─ dBc 200 kSamples/s, 12 bit, single ended, VDD reference ─ 76 ─ dBc 200 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 79 ─ dBc 200 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 79 ─ dBc 200 kSamples/s, 12 bit, differential, 5 V reference ─ 78 ─ dBc 200 kSamples/s, 12 bit, differential, VDD reference 68 79 ─ dBc 200 kSamples/s, 12 bit, differential, 2xVDD reference ─ 79 ─ dBc VADCOFF- After calibration, single ended -3.5 0.3 3 mV SET After calibration, differential ─ 0.3 ─ mV ─ -1.92 ─ mV/°C CTH ─ -6.3 ─ ADC Codes/°C Differential non-linearity (DNL) DNLADC -1 ±0.7 4 LSB Integral non-linearity (INL), End point method INLADC ─ ±1.2 ±3 LSB No missing codes MCADC 11.9991 12 ─ bits GAINED 1.25 V reference ─ 0.012 0.0333 %/°C Gain error drift 2.5 V reference ─ 0.012 0.033 %/°C Spurious-Free Dynamic Range (SFDR) Offset voltage Thermometer output gradient Symbol SFDRADC TGRADAD silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 36 EZR32WG330 Data Sheet Electrical Specifications Parameter Symbol OFFSETED Offset error drift Test Condition Min Typ Max Unit 1.25 V reference ─ 0.22 0.73 LSB/°C 2.5 V reference ─ 0.22 0.623 LSB/°C Note: 1. On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78 dBc for a full scale input for chips that have the missing code issue. 2. Typical numbers given by abs(Mean) / (85 - 25). 3. Max number given by (abs(Mean) + 3x stddev) / (85 - 25). The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.14 (p. 33) and Figure 3.15 (p. 33) , respectively. Digital ouput code 4095 4094 4093 4092 INL=|[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N - 1 Actual ADC tranfer function before offset and gain correction Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) 3 Ideal transfer curve 2 1 VOFFSET 0 Analog Input Figure 4.14. Integral Non-Linearity (INL) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 37 EZR32WG330 Data Sheet Electrical Specifications Digital ouput code DNL=|[(VD+1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+1 corrresponds to digital output code D+1 4093 4092 Code width =2 LSB DNL=1 LSB Ideal transfer curve 5 Actual transfer function with one missing code. Example: Input value VD corrresponds to digital output code D 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL=1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input Figure 4.15. Differential Non-Linearity (DNL) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 38 EZR32WG330 Data Sheet Electrical Specifications 4.11.1 Typical Performance 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 39 EZR32WG330 Data Sheet Electrical Specifications VDD Reference Figure 4.16. ADC Frequency Spectrum, VDD = 3 V, Temp = 25 °C 1.25V Reference silabs.com | Smart. Connected. Energy-friendly. 2.5V Reference Rev. 1.1 | 40 EZR32WG330 Data Sheet Electrical Specifications 2XVDDVSS Reference 5VDIFF Reference VDD Reference Figure 4.17. ADC Integral Linearity Error vs Code, VDD = 3 V, Temp = 25 °C silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 41 EZR32WG330 Data Sheet Electrical Specifications 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 42 EZR32WG330 Data Sheet Electrical Specifications VDD Reference Figure 4.18. ADC Differential Linearity Error vs Code, VDD = 3 V, Temp = 25 °C 5 2.0 Vref=1V25 Vref=2V5 Vref=2XVDDVSS Vref=5VDIFF Vref=VDD 4 3 1.5 1.0 Actual Offset [LSB] 2 Actual Offset [LSB] VRef=1V25 VRef=2V5 VRef=2XVDDVSS VRef=5VDIFF VRef=VDD 1 0 –1 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 Offset vs Supply Voltage, Temp = 25 °C 3.8 –1.0 –40 –15 5 25 Temp (C) 45 65 85 Offset vs Temperature, VDD = 3 V Figure 4.19. ADC Absolute Offset, Common Mode = VDD/2 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 43 EZR32WG330 Data Sheet Electrical Specifications 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Temperature [°C] 45 65 1V25 85 5VDIFF 78.0 –40 Signal to Noise Ratio (SNR) –15 5 25 Temperature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) Figure 4.20. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V 2600 Vdd=2.0 Vdd=3.0 Vdd=3.8 Sensor readout 2500 2400 2300 2200 2100 –40 –25 –15 –5 5 15 25 35 Temperature [°C] 45 55 65 75 85 Figure 4.21. ADC Temperature Sensor Readout silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 44 EZR32WG330 Data Sheet Electrical Specifications 4.12 Digital Analog Converter (DAC) Table 4.17. DAC Parameter Symbol Output voltage range VDACOUT Output common mode voltage range VDACCM Active current including references for 2 channels Sample rate DAC clock frequency Clock cyckles per conversion Test Condition Min Typ Max Unit VDD voltage reference, single ended 0 ─ VDD V VDD voltage reference, differential -VDD ─ VDD V 0 ─ VDD V 500 kSamples/s, 12 bit ─ 4001 ─ µA 100 kSamples/s, 12 bit ─ 200 ─ µA 1 kSamples/s 12 bit NORMAL ─ 17 ─ µA ─ ─ 500 ksamples/s Continuous Mode ─ ─ 1000 kHz Sample/Hold Mode ─ ─ 250 kHz Sample/Off Mode ─ ─ 250 kHz ─ 2 ─ tDACCONV 2 ─ ─ µs tDACSETTLE ─ 5 ─ µs 500 kSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 58 ─ dB 500 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 59 ─ dB 500 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 58 ─ dB 500 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 58 ─ dB 500 kSamples/s, 12 bit, differential, VDD reference ─ 59 ─ dB 500 kSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 57 ─ dB 500 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 54 ─ dB 500 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 56 ─ dB 500 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 53 ─ dB 500 kSamples/s, 12 bit, differential, VDD reference ─ 55 ─ dB IDAC SRDAC fDAC CYCDACCONV Conversion time Settling time Signal to Noise Ratio (SNR) Signal to Noise-pulse Distortion Ratio (SNDR) SNRDAC SNDRDAC silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 45 EZR32WG330 Data Sheet Electrical Specifications Parameter Spurious-Free Dynamic Range(SFDR) Offset voltage Symbol Test Condition Min Typ Max Unit 500 kSamples/s, 12 bit, single ended, internal 1.25 V reference ─ 62 ─ dBc 500 kSamples/s, 12 bit, single ended, internal 2.5 V reference ─ 56 ─ dBc 500 kSamples/s, 12 bit, differential, internal 1.25 V reference ─ 61 ─ dBc 500 kSamples/s, 12 bit, differential, internal 2.5 V reference ─ 55 ─ dBc 500 kSamples/s, 12 bit, differential, VDD reference ─ 60 ─ dBc VDACOFF- After calibration, single ended ─ 2 9 mV SET After calibration, differential ─ 2 ─ mV SFDRDAC Differential non-linearity DNLDAC ─ ±1 ─ LSB Integral non-linearity INLDAC ─ ±5 ─ LSB No missing codes MCDAC ─ 12 ─ bits Note: 1. Measured with a static input code and no loading on the output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 46 EZR32WG330 Data Sheet Electrical Specifications 4.13 Operational Amplifier (OPAMP) The electrical characteristics for the Operational Amplifiers are based on simulations. Table 4.18. OPAMP Parameter Active Current Open Loop Gain Gain Bandwidth Product Phase Margin Symbol IOPAMP Test Condition Min Typ Max Unit (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain ─ 370 460 µA (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain ─ 95 135 µA (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, Unity Gain ─ 13 25 µA (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 ─ 101 ─ dB (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 ─ 98 ─ dB (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 ─ 91 ─ dB (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 ─ 6.1 ─ MHz (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 ─ 1.8 ─ MHz (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 ─ 0.25 ─ MHz (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, CL=75 pF ─ 64 ─ ° (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, CL=75 pF ─ 58 ─ ° (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, CL=75 pF ─ 58 ─ ° GOL GBWOPA MP PMOPAM P Input Resistance RINPUT ─ 100 ─ MΩ Load Resistance RLOAD 200 ─ ─ Ω DC Load Current ILOAD_DC ─ ─ 11 mA OPAxHCMDIS=0 VSS ─ VDD V OPAxHCMDIS=1 VSS ─ VDD-1.2 V VSS ─ VDD V Unity Gain, VSS<Vin<VDD, OPAxHCMDIS=0 -13 0 11 mV Unity Gain, VSS<Vin<VDD-1.2, OPAxHCMDIS=1 ─ 1 ─ mV ─ ─ 0.02 mV/°C Input Voltage Output Voltage Input Offset Voltage Input Offset Voltage Drift VINPUT VOUTPUT VOFFSET VOFFSET_DRIF T silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 47 EZR32WG330 Data Sheet Electrical Specifications Parameter Slew Rate Voltage Noise Symbol Test Condition Min Typ Max Unit (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 ─ 3.2 ─ V/µs (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 ─ 0.8 ─ V/µs (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 ─ 0.1 ─ V/µs Vout=1 V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 ─ 101 ─ µVRMS Vout=1 V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 ─ 141 ─ µVRMS Vout=1 V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 ─ 196 ─ µVRMS Vout=1 V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 ─ 229 ─ µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 ─ 1230 ─ µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 ─ 2130 ─ µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 ─ 1630 ─ µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 ─ 2590 ─ µVRMS SROPAM P NOPAMP Figure 4.22. OPAMP Common Mode Rejection Ratio silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 48 EZR32WG330 Data Sheet Electrical Specifications Figure 4.23. OPAMP Positive Power Supply Rejection Ratio Figure 4.24. OPAMP Negative Power Supply Rejection Ratio silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 49 EZR32WG330 Data Sheet Electrical Specifications Figure 4.25. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout = 1 V Figure 4.26. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 50 EZR32WG330 Data Sheet Electrical Specifications 4.14 Analog Comparator (ACMP) Table 4.19. ACMP Parameter Symbol Input voltage range ACMP Common Mode voltage range Test Condition Min Typ Max Unit VACMPIN 0 ─ VDD V VACMPCM 0 ─ VDD V BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register ─ 0.1 0.4 µA IACMP BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register ─ 2.87 15 µA IACMPREF VACMPOFFSET BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register ─ 195 520 µA Current consumption of internal voltage reference VACMPHYST Internal voltage reference off. Using external voltage reference ─ 0 ─ µA RCSRES Internal voltage reference ─ 5 ─ µA Offset voltage tACMPSTART BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register -12 0 12 mV Programmable ─ 17 ─ mV CSRESSEL=0b00 in ACMPn_INPUTSEL ─ 39 ─ kΩ CSRESSEL=0b01 in ACMPn_INPUTSEL ─ 71 ─ kΩ CSRESSEL=0b10 in ACMPn_INPUTSEL ─ 104 ─ kΩ CSRESSEL=0b11 in ACMPn_INPUTSEL ─ 136 ─ kΩ ─ ─ 10 µs Active current ACMP hysteresis Capacitive Sense Internal Resistance Startup time The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given below. IACMPREF is zero if an external voltage reference is used: IACMPTOTAL = IACMP = IACMPREF silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 51 EZR32WG330 Data Sheet Electrical Specifications 4.5 2.5 HYSTSEL=0.0 HYSTSEL=2.0 HYSTSEL=4.0 HYSTSEL=6.0 4.0 3.5 Response Time [us] Current [uA] 2.0 1.5 1.0 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 12 Current Consumption, HYSTEL = 4 0.0 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response Time 100 BIASPROG=0.0 BIASPROG=4.0 BIASPROG=8.0 BIASPROG=12.0 Hysteresis [mV] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis Figure 4.27. ACMP Characteristics, Vdd = 3 V, Temp = 25 °C, FULLBIAS = 0, HALFBIAS = 1 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 52 EZR32WG330 Data Sheet Electrical Specifications 4.15 Voltage Comparator (VCMP) Table 4.20. VCMP Parameter Symbol Input voltage range VCMP Common Mode voltage range Active current Startup time reference generator Offset voltage VCMP hysteresis Test Condition Min Typ Max Unit VVCMPIN ─ VDD ─ V VVCMPC ─ VDD ─ V BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register ─ 0.3 0.6 µA IVCMP BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. ─ 22 35 µA tVCMPRE NORMAL ─ 10 ─ µs VVCMPOF Single ended ─ 10 ─ mV FSET Differential ─ 10 ─ mV ─ 61 210 mV ─ ─ 10 µs M F VVCMPHY ST Startup time tVCMPST ART The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VDD Trigger Level=1.667 V+0.034 ×TRIGLEVEL silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 53 EZR32WG330 Data Sheet Electrical Specifications 4.16 I2C Table 4.21. I2C Standard-Mode (Sm) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 100 1 kHz SCL clock low time tLOW 4.7 ─ ─ µs SCL clock high time tHIGH 4.0 ─ ─ µs SDA set-up time tSU,DAT 250 ─ ─ ns SDA hold time tHD,DAT 8 ─ 34502, 3 ns Repeated START condition set-up time tSU,STA 4.7 ─ ─ µs (Repeated) START condition hold time tHD,STA 4.0 ─ ─ µs STOP condition set-up time tSU,STO 4.0 ─ ─ µs tBUF 4.7 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EZR32WG Reference Manual. 2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450 * 10-9 [s] * fHFPERCLK [Hz]) - 4). Table 4.22. I2C Fast-Mode (Fm) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 4001 kHz SCL clock low time tLOW 1.3 ─ ─ µs SCL clock high time tHIGH 0.6 ─ ─ µs SDA set-up time tSU,DAT 100 ─ ─ ns SDA hold time tHD,DAT 8 ─ 9002 , 3 ns Repeated START condition set-up time tSU,STA 0.6 ─ ─ µs (Repeated) START condition hold time tHD,STA 0.6 ─ ─ µs STOP condition set-up time tSU,STO 0.6 ─ ─ µs tBUF 1.3 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EZR32WG Reference Manual. 2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900 * 10-9 [s] * fHFPERCLK [Hz]) - 4). silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 54 EZR32WG330 Data Sheet Electrical Specifications Table 4.23. I2C Fast-mode Plus (Fm+) Parameter Symbol Min Typ Max Unit SCL clock frequency fSCL 0 ─ 10001 kHz SCL clock low time tLOW 0.5 ─ ─ µs SCL clock high time tHIGH 0.26 ─ ─ µs SDA set-up time tSU,DAT 50 ─ ─ ns SDA hold time tHD,DAT 8 ─ ─ ns Repeated START condition set-up time tSU,STA 0.26 ─ ─ µs (Repeated) START condition hold time tHD,STA 0.26 ─ ─ µs STOP condition set-up time tSU,STO 0.26 ─ ─ µs tBUF 0.5 ─ ─ µs Bus free time between a STOP and a START condition Note: 1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EZR32WG Reference Manual. 4.17 Radio All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at V DD = 3.3 V and 25 °C unless otherwise stated. The data was collected while running off the internal RC oscillator (HFRCO). silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 55 EZR32WG330 Data Sheet Electrical Specifications 4.17.1 EZRadioPRO (R6x) DC Electrical Characteristics Measured on direct-tie RF evaluation board. Table 4.24. EZRadioPro DC Characteristics Parameter Symbol Test Condition Min Typ Max Unit Ishutdown RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF — 30 4000 nA Istandby Register values maintained and RC oscillator/WUT OFF — 40 9000 nA ISleepRC RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF — 740 10000 nA ISleepXO Sleep current using an external 32 kHz crystal — 1.7 — μA ISensor-LBD Low battery detector ON, register values maintained, and all other blocks OFF — 1 — μA IReady Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF — 1.8 — mA Duty cycing during preamble search, 1.2 kbps, 4 byte preamble — 6 — mA Fixed 1s wakeup interval, 50 kbps, 5 byte preamble — 10 — μA ITuneRX RX Tune, High Performance Mode — 7.6 — mA ITuneTX TX Tune, High Performance Mode — 7.8 — mA IRXH High Performance Mode, 868 MHz, 40 kbps — 13.7 22 mA IRXL Low Power Mode, 868 MHz, 40 kbps — 11.1 — mA +20 dBm output power, class-E match, 915 MHz, 3.3 V — 88 108 mA +20 dBm output power, square-wave match, 169 MHz, 3.3 V — 69 80 mA +13 dBm output power, class-E match, 915 MHz, 3.3 V — 44.5 60 mA ITX+10 +10 dBm output power, class-E match, 868/915 MHz, 3.3 V — 19.7 — mA ITX_+10 +10 dBm output power, class-E match, 169 MHz, 3.3 V — 18 — mA ITX_+13 +13 dBm output power, class-E match, 868/915 MHz, 3.3 V — 22 — mA ITX_+16 +16 dBm output power, class-E match, 868 MHz, 3.3 V — 43 55 mA ITX_+13 +13 dBm output power, switchedcurrent match, 868 MHz, 3.3 V — 33.5 40 mA Power Saving Modes Preamble Sense Mode Current TUNE Mode Current Ipsm RX Mode Current TX Mode Current (R63, R68) TX Mode Current (R60, R67) TX Mode Current (R61) ITX+20 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 56 EZR32WG330 Data Sheet Electrical Specifications 4.17.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics Table 4.25. EZRadioPro Synthensizer Parameter Synthesizer Frequency Range Synthesizer Frequency Resolution Synthesizer Settling Time Symbol Test Condition FSYN Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz FRES-1050 850–1050 MHz — 28.6 — Hz FRES-525 420–525 MHz — 14.3 — Hz FRES-350 283–350 MHz — 9.5 — Hz FRES-175 142–175 MHz — 4.7 — Hz tLOCK Measured from exiting Ready mode with XOSC running to any frequency. Including VCO Calibration. — 50 — μs ΔF = 10 kHz, 169 MHz, High Perf — –117 –108 dBc/Hz — –120 –115 dBc/Hz — –138 –135 dBc/Hz — –148 –143 dBc/Hz — –102 –94 dBc/Hz — –105 –97 dBc/Hz — –125 –122 dBc/Hz — –138 –135 dBc/Hz Mode ΔF = 100 kHz, 169 MHz, High Perf Mode ΔF = 1 MHz, 169 MHz, High Perf Mode ΔF = 10 MHz, 169 MHz, High Perf Phase Noise L Φ(fM) Mode ΔF = 10 kHz, 915 MHz, High Perf Mode ΔF = 100 kHz, 915 MHz, High Perf Mode ΔF = 1 MHz, 915 MHz, High Perf Mode ΔF = 10 MHz, 915 MHz, High Perf Mode silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 57 EZR32WG330 Data Sheet Electrical Specifications 4.17.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used. Measured over 50000 bits using PN9 data sequence and data and clock on GPIOs. Sensitivity is expected to be better if reading data from packet handler FIFO especially at higher data rates. Table 4.26. EZRadioPro Receiver AC Electrical Characteristics Parameter RX Frequency Range Symbol Test Condition FRX Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 350 MHz 284 142 — 175 MHz RX Sensitivity 169 MHz (R68, R67)3 PRX_0.1 (BER < 0.1%) (100 bps, GFSK, BT = 0.5, Δf = ±100 Hz) — –133 — dBm RX Sensitivity 169 MHz (R60, R61, R63)3 PRX_0.5 (BER < 0.1%) (500 bps, GFSK, BT = 0.5, Δf = ±250 Hz) — –129 — dBm PRX_40 (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –110.7 –108 dBm PRX_100 (BER < 0.1%) (100 kbps, GFSK, BT = 0.5, Δf = ±50 kHz) — –106 –104 dBm (BER < 0.1%) (500 kbps, GFSK, BT = 0.5, Δf = ±250 kHz) — –99 –96 dBm PRX_9.6 (PER 1%) (9.6 kbps, 4GFSK, BT = 0.5, Δf = ±2.4 kHz) — –110 — dBm PRX_1M (PER 1%) (1 Mbps, 4GFSK, BT = 0.5, inner deviation = 83.3 kHz) — –89 — dBm (BER < 0.1%, 4.8 kbps, 350 kHz BW, OOK, PN15 data) — –110 –107 dBm (BER < 0.1%, 40 kbps, 350 kHz BW, OOK, PN15 data) — –103 –100 dBm (BER < 0.1%, 120 kbps, 350 kHz BW, OOK, PN15 data) — –97 –93 dBm PRX_125 RX Sensitivity 169 MHz (R60, R61, R63, R67, R68)3 PRX_OOK RX Sensitivity 915/868 MHz (R68, R67)3 PRX_0.1 (BER < 0.1%) (100 bps, GFSK, BT = 0.5, Δf = ±100 Hz) — –132 — dBm RX Sensitivity 915/868 MHz (R60, R61, R63)3 PRX_0.5 (BER < 0.1%) (500 bps, GFSK, BT = 0.5, Δf = ±250 Hz) — –127 — dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –109.9 — dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±20 kHz) — –109.4 — dBm RX Sensitivity 868 MHz (R60, R61, R63, R67, R68)3 RX Sensitivity 915 MHz (R60, R61, R63, R67, R68)3 PRX_40 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 58 EZR32WG330 Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit PRX_100 (BER < 0.1%) (100 kbps, GFSK, BT = 0.5, Δf = ±50 kHz) — –104 –102 dBm (BER < 0.1%) (500 kbps, GFSK, BT = 0.5, Δf = ±250 kHz) — –97 –92 dBm PRX_9.6 (PER 1%) (9.6 kbps, 4GFSK, BT = 0.5, Δf = ±2.4 kHz) — –110.6 — dBm PRX_1M (PER 1%) (1 Mbps, 4GFSK, BT = 0.5, inner deviation = 83.3 kHz) — –88.7 — dBm (BER < 0.1%, 4.8 kbps, 350 kHz BW, OOK, PN15 data) — –108 –104 dBm (BER < 0.1%, 40 kbps, 350 kHz BW, OOK, PN15 data) — –101 –97 dBm (BER < 0.1%, 120 kbps, 350 kHz BW, OOK, PN15 data) — –96 –91 dBm 1.1 — 850 kHz 0.2 — 850 kHz PRX_125 RX Sensitivity 915/868 MHz (R60, R61, R63, R67, R68)3 PRX_OOK RX Channel Bandwidth (R60, R61, R63) RX Channel Bandwidth (R68, R67) RSSI Resolution BW RESRSSI Valid from –110 dBm to -90 dBm — ±0.5 — dB — –69 –59 dB C/I1-CH Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 2.4 kbps ΔF = 1.2 kHz GFSK with BT = 0.5, RX channel BW = 4.8 kHz, channel spacing = 12.5 kHz ±1-Ch Offset Selectivity, 450 MHz — –60 –50 dB ±1-Ch Offset Selectivity, 868 / 915 MHz — –52.5 –45 dB — –79 –68 dB — –86 –75 dB ±1-Ch Offset Selectivity, 169 MHz Blocking 1 MHz Offset 1MBLOCK Blocking 8 MHz Offset 8MBLOCK silabs.com | Smart. Connected. Energy-friendly. Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 2.4 kbps ΔF = 1.2 kHz GFSK with BT = 0.5, RX channel BW = 4.8 kHz Rev. 1.1 | 59 EZR32WG330 Data Sheet Electrical Specifications Parameter Image Rejection (IF = 468.75 kHz) Symbol ImREJ silabs.com | Smart. Connected. Energy-friendly. Test Condition Min Typ Max Unit No image rejection calibration. Rejection at the image frequency. RF = 460 MHz 30 40 — dB With image rejection calibration. Rejection at the image frequency. RF = 460 MHz 40 55 — dB No image rejection calibration. Rejection at the image frequency. RF = 915 MHz 30 45 — dB With image rejection calibration. Rejection at the image frequency. RF = 915 MHz 40 52 — dB No image rejection calibration. Rejection at the image frequency. RF = 169 MHz 35 45 — dB With image rejection calibration. Rejection at the image frequency. RF = 169 MHz 45 60 — dB Rev. 1.1 | 60 EZR32WG330 Data Sheet Electrical Specifications 4.17.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). Default API setting for modulation deviation resolution is double the typical value specified. Output power is dependent on matching components and board layout. Table 4.27. EZRadioPro Transmitter AC Electrical Characteristics Parameter TX Frequency Range Symbol Test Condition FTX Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz (G)FSK Data Rate DRFSK 0.1 — 500 kbps 4(G)FSK Data Rate DR4FSK 0.2 — 1000 kbps OOK Data Rate DROOK 0.1 — 120 kbps Δf960 850–1050 MHz — 1.5 — MHz Δf525 420–525 MHz — 750 — kHz Δf420 350–420 MHz — 600 — kHz Δf350 283–350 MHz — 500 — kHz Δf175 142–175 MHz — 250 — kHz FRES-1050 850–1050 MHz — 28.6 — Hz FRES-525 420–525 MHz — 14.3 — Hz FRES-420 350–420 MHz — 11.4 — Hz FRES-350 283–350 MHz — 9.5 — Hz FRES-175 142–175 MHz — 4.7 — Hz Output Power Range (R63) PTX63 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +20 dBm Typical Output Power Range (R61) Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –40 +16 dBm PTX61 Modulation Deviation Range Modulation Deviation Resolution Typical Output Power Range at (R60) PTX60 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +12.5 dBm Typical Output Power Range at (R68) PTX68 Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +20 dBm silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 61 EZR32WG330 Data Sheet Electrical Specifications Parameter Test Condition Min Typ Max Unit Typical Output Power Range at (R67) Typical Output Power Range at 3.3 V with Class E mtch optimized for best PA efficiency –20 — +12.5 dBm Output Power Variation (R63, R68) At 20 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 19 20 21 dBm At 10 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 9 10 11 dBm Output Power Variation (R63, R68) At 20 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C 18.5 20 21 dBm Output Power Variation (R60, R67) At 10 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C 9.5 10 10.5 dBm Output Power Variation (R60, R67) Symbol PTX67 TX RF Output Steps ΔPRF_OUT Using switched current match within 6 dB of max power — 0.25 0.4 dB TX RF Output Level Variation vs. Temperature ΔPRF_TEMP –40 to +85 °C — 2.3 3 dB TX RF Output Level Variation vs. Frequency ΔPRFFREQ Measured across 902–928 MHz — 0.6 1.7 dB Transmit Modulation Filtering B×T Gaussian Filtering Bandwith Time Product — 0.5 — 4.17.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench characterization. XTAL Range tested in production using an external clock source (similar to using a TCXO). Table 4.28. EZRadioPro Auxiliary Block Specifications Parameter Min Typ Max Unit 25 ─ 32 MHz ─ 300 ─ uS 30MRES ─ 70 ─ fF 32 kHz XTAL Start-Up Time t32K ─ 2 ─ sec 32 kHz Accuracy using Internal RC Oscillator 32KRCRES ─ 2500 ─ ppm tPOR ─ ─ 6 ms XTAL Range Symbol Test Condition XTALRANG E 30 MHz XTAL Start-Up Time 30 MHz XTAL Cap Resolution POR Reset Time t30M silabs.com | Smart. Connected. Energy-friendly. Using XTAL and board layout in reference design. Start-up time will vary with XTAL type and board layout. Rev. 1.1 | 62 EZR32WG330 Data Sheet Electrical Specifications 4.17.6 EZRadio (R55) DC Electrical Characteristics Table 4.29. EZRadio DC Characteristics Parameter Power Saving Modes TUNE Mode Current RX Mode Current TX Mode Current Symbol Test Condition Min Typ Max Unit Ishutdown RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF ─ 30 ─ nA Istandby Register values maintained ─ 40 ─ nA IReady Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF ─ 1.8 ─ mA ISPIActive SPI active state ─ 1.5 ─ mA ITuneRX RX Tune ─ 6.8 ─ mA ITuneTX TX Tune ─ 7.1 ─ mA IRX Measured at 40 kbps, 20 kHz deviation, 315 MHz ─ 10.9 ─ mA +10 dBm output power, measured on direct tie RF evaluation board at 868 MHz ─ 19 ─ mA +13 dBm output power, measured on direct tie RF evaluation board at 868 MHz ─ 24 ─ mA Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz ITX 4.17.7 EZRadio (R55) Synthesizer AC Electrical Characteristics Table 4.30. EZRadio Synthensizer Parameter Synthesizer Frequency Range Synthesizer Frequency Resolution Phase Noise Symbol Test Condition FSYN FRES-960 850-960 MHz ─ 114.4 ─ Hz FRES-525 420-525 MHz ─ 57.2 ─ Hz FRES-420 420-525 MHz ─ 57.2 ─ Hz FRES-350 283-350 MHz ─ 38.1 ─ Hz ΔF = 10 kHz, 915 MHz ─ 100 ─ dBc/Hz ΔF = 100 kHz, 915 MHz ─ 102.1 ─ dBc/Hz ΔF = 1 MHz, 915 MHz ─ 123.5 ─ dBc/Hz ΔF = 10 MHz, 915 MHz ─ 136.6 ─ dBc/Hz L Φ(fM) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 63 EZR32WG330 Data Sheet Electrical Specifications 4.17.8 EZRadio (R55) Receiver AC Electrical Characteristics Table 4.31. EZRadio Receiver AC Electrical Characteristics Parameter RX Frequency Range Symbol PRX_40 PRX_128 PRX_OOK RX Channel Bandwidth RSSI Resolution Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz (BER < 0.1%) (2.4 kbps, GFSK, BT = 0.5, Δf = ±30 kHz, 114 kHz RX BW) ─ -115 ─ dBm (BER < 0.1%) (40 kbps, GFSK, BT = 0.5, Δf = ±25 kHz, 114 kHz RX BW) ─ -107.6 ─ dBm (BER < 0.1%) (128 kbps, GFSK, BT = 0.5, Δf = ±70 kHz, 305 kHz RX BW) ─ -102.4 ─ dBm (BER < 0.1%, 1 kbps, 185 kHz Rx BW, OOK, PN15 data) ─ -113.5 ─ dBm (BER < 0.1%, 40 kbps, 185 kHz BW, OOK, PN15 data) ─ -102.7 ─ dBm 40 ─ 850 kHz FRX PRX_2 RX Sensitivity 915 MHz Test Condition BW RESRSSI Valid from -110 dBm to -90 dBm ─ ±0.5 ─ dB ±1-Ch Offset Selectivity C/I1-CH Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 1.2 kbps ΔF = 5.2 kHz GFSK with BT = 0.5, RX channel BW = 58 kHz, channel spacing = 100 kHz ─ -50 ─ dB ±2-Ch Offset Selectivity C/I2-CH ─ -56 ─ dB ─ -56 ─ dB Blocking 200 kHz−1 MHz 200KBLOCK Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW and desired is modulated with 1.2 kbps ΔF = 5.2 kHz GFSK with BT = 0.5, RX channel BW = 58 kHz Blocking 1 MHz Offset 1MBLOCK ─ -71 ─ dB Blocking 8 MHz Offset 8MBLOCK ─ -71 ─ dB ─ 40 ─ dB Image Rejection ImREJ silabs.com | Smart. Connected. Energy-friendly. Rejection at the image frequency IF = 468 kHz Rev. 1.1 | 64 EZR32WG330 Data Sheet Electrical Specifications 4.17.9 EZRadio (R55) Transmitter AC Electrical Characteristics The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). Conducted measurements based on RF evaluation board. Output power and emissions specifications are dependent on transmit frequency, matching components, and board layout. Table 4.32. EZRadio Transmitter AC Electrical Characteristics Parameter TX Frequency Range Symbol Test Condition FTX Min Typ Max Unit 284 ─ 350 MHz 350 ─ 525 MHz 850 ─ 960 MHz (G)FSK Data Rate DRFSK 1.0 ─ 500 kbps OOK Data Rate DROOK 0.5 ─ 120 kbps Δf960 850-960 MHz ─ ─ 500 kHz Δf525 350-525 MHz ─ ─ 500 kHz Δf350 284-350 MHz ─ ─ 500 kHz FRES-960 850-960 MHz ─ 114.4 ─ Hz FRES-525 420-525 MHz ─ 57.2 ─ Hz FRES-420 350-420 MHz ─ 45.6 ─ Hz FRES-350 284-350 MHz ─ 38.1 ─ Hz Output Power Range PTX Measured at 434 MHz, 3.3 V, Class E match -20 ─ +13 dBm TX RF Output Steps ΔPRF_OUT Using switched current match within 6 dB of max power ─ 0.25 ─ dB TX RF Output Level Variation vs. Temperature ΔPRF_TEMP -40 to +85 °C ─ 2.3 ─ dB TX RF Output Level Variation vs. Frequency ΔPRFFREQ Measured across 902-928 MHz ─ 0.6 ─ dB Transmit Modulation Filtering B×T Gaussian Filtering Bandwith Time Product ─ 0.5 ─ Modulation Deviation Range Modulation Deviation Resolution silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 65 EZR32WG330 Data Sheet Electrical Specifications 4.17.10 EZRadio (R55) Radio Auxiliary Block Specifications XTAL Range tested in production using an external clock source (similar to using a TCXO). Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench characterization. Table 4.33. EZRadio Auxilliary Block Specifications Parameter XTAL Range Symbol Test Condition XTALRANG Min Typ 25 Max Unit 32 MHz E 30 MHz XTAL Start-Up Time 30 MHz XTAL Cap Resolution POR Reset Time t30M ─ 300 ─ us 30MRES ─ 70 ─ Ff tPOR ─ ─ 6 ms silabs.com | Smart. Connected. Energy-friendly. Using XTAL and board layout in reference design. Start-up time will vary with XTAL type and board layout. Rev. 1.1 | 66 EZR32WG330 Data Sheet Electrical Specifications 4.17.11 Radio Digital I/O Specification 6.7 ns is typical for GPIO0 rise time. Assuming VDD = 3.3 V, drive strength is specified at VOH (min) = 2.64 V and Vol(max) = 0.66 V at room temperature. 2.4 ns is typical for GPIO0 fall time. Table 4.34. EZRadio/Pro Digital I/O Specification Parameter Symbol Test Condition Min Typ Max Unit Rise Time TRISE 0.1 x VDD to 0.9 x VDD, CL = 10 pF, DRV<1:0> = LL ─ 2.3 ─ ns Fall Time TFALL 0.9 x VDD to 0.1 x VDD, CL = 10 pF, DRV<1:0> = LL ─ 2 ─ ns Input Capacitance CIN ─ 2 ─ pF Logic High Level Input Voltage VIH VDD_RF x 0.7 ─ ─ V Logic Low Level Input Voltage VIL ─ ─ VDD_RF x 0.3 V Input Current IIN 0<VIN< VDD -1 ─ 1 uA Input Current If Pullup is Activated IINP VIL = 0 V 1 ─ 4 uA IOmaxLL DRV[1:0] = LL ─ 6.66 ─ mA IOmaxLH DRV[1:0] = LH ─ 5.03 ─ mA IOmaxHL DRV[1:0] = HL ─ 3.16 ─ mA IOmaxHH DRV[1:0] = HH ─ 1.13 ─ mA IOmaxLL DRV[1:0] = LL ─ 5.75 ─ mA IOmaxLH DRV[1:0] = LH ─ 4.37 ─ mA IOmaxHL DRV[1:0] = HL ─ 2.73 ─ mA IOmaxHH DRV[1:0] = HH ─ 0.96 ─ mA IOmaxLL DRV[1:0] = LL ─ 2.53 ─ mA IOmaxLH DRV[1:0] = LH ─ 2.21 ─ mA IOmaxHL DRV[1:0] = HL ─ 1.7 ─ mA IOmaxHH DRV[1:0] = HH ─ 0.80 ─ mA Logic High Level Output Voltage VOH DRV[1:0] = HL VDD_RF x 0.8 ─ ─ V Logic Low Level Output Voltage VOL DRV[1:0] = HL ─ ─ VDD_RF x 0.2 V Drive Strength for Output Low Level3 Drive Strength for Output High Level3 Drive Strength for Output High Level for GPIO3 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 67 EZR32WG330 Data Sheet Electrical Specifications 4.18 Digital Peripherals Table 4.35. Digital Peripherals Parameter Symbol Test Condition Min Typ Max Unit USART current IUSART USART idle current, clock enabled ─ 4.0 ─ µA/MHz UART current IUART UART idle current, clock enabled ─ 3.8 ─ µA/MHz ILEUART LEUART idle current, clock enabled ─ 194 ─ nA II2C I2C idle current, clock enabled ─ 7.6 ─ µA/MHz ITIMER TIMER_0 idle current, clock enabled ─ 6.5 ─ µA/MHz ILETIMER LETIMER idle current, clock enabled ─ 86 ─ nA PCNT current IPCNT PCNT idle current, clock enabled ─ 91 ─ nA RTC current IRTC RTC idle current, clock enabled ─ 55 ─ nA AES current IAES AES idle current, clock enabled ─ 1.8 ─ µA/MHz GPIO current IGPIO GPIO idle current, clock enabled ─ 3.4 ─ µA/MHz PRS current IPRS PRS idle current ─ 3.9 ─ µA/MHz DMA current IDMA Clock enable ─ 10.9 ─ µA/MHz LEUART current I2C current TIMER current LETIMER current silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 68 EZR32WG330 Data Sheet Pinout and Package 5. Pinout and Package Note: Please refer to the application note AN0002: EFM32 Hardware Design Considerations for guidelines on designing Printed Circuit Boards (PCB's) for the EZR32WG330. 5.1 Pinout The EZR32WG330 pinout is shown in below. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 5.1. Pinout (top view, not to scale) silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 69 EZR32WG330 Data Sheet Pinout and Package 5.2 Pin Descriptions Table 5.1. Device Pinout QFN64 Pin# and Name Pin # Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other 0 VSS Ground. 1 NC No connect. 2 RXP Differential RF Input Pin of the LNA. See application schematic for example matching network. 3 RXN Differential RF Input Pin of the LNA. See application schematic for example matching network. 4 TX_13/16 5 TX_20 6 NC 7 RFVDD_2 +1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply voltage is +3.3 V. 8 TXRAMP Programmable Bias Output with Ramp Capability for External FET PA. 9 RFVDD_1 +1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply voltage is +3.3 V. 10 PA01 TIM0_CC0 #0/1/4 LEU0_RX #4 I2C0_SDA #0 PRS_CH0 #0 GPIO_EM4WU0 RF_GPIO0 11 PA1 1 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 RF_GPIO1 12 IOVDD_0 13 PB3 PCNT1_S0IN #1 US2_TX #1 14 PB4 PCNT1_S1IN #1 US2_RX #1 15 PB5 US2_CLK #1 16 PB6 US2_CS #1 17 PB7 LFXTAL_P TIM1_CC0 #3 USRF0_TX #4 18 PB8 LFXTAL_N TIM1_CC1 #3 USRF0_RX #4 19 PA12 TIM2_CC0 #1 20 PA13 TIM2_CC1 #1 21 PA14 TIM2_CC2 #1 22 RESETn 23 PB11 24 AVDD_1 25 PB13 Transmit Output Pin (+13 dBm or +16 dBm) for R55, R60, R61, R67 and R69 variants. The PA output is an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. Pin is DNC on the +20 dBm parts. Transmit Output Pin (+20 dBm) for R63, R68 and R69 variants. The PA output is an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. Pin is DNC on the +13 dBm parts. No connect. Digital IO power supply 0. Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. TIM1_CC2 #3 LETIM0_OUT0 #1 Analog power supply 1. HFXTAL_P silabs.com | Smart. Connected. Energy-friendly. LEU0_TX #1 Rev. 1.1 | 70 EZR32WG330 Data Sheet Pinout and Package QFN64 Pin# and Name Pin # Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other 26 PB14 HFXTAL_N 27 IOVDD_3 Digital IO power supply 3. 28 AVDD_0 Analog power supply 0. 29 PD0 ADC0_CH0 OPAMP_OUT2 #1 PCNT2_S0IN #0 US1_TX #1 30 PD1 ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT TIM0_CC0 #3 PCNT2_S1IN #0 US1_RX #1 DBG_SWO #2 31 PD2 ADC0_CH2 TIM0_CC1 #3 USB_DMPU #0 US1_CLK #1 DBG_SWO #3 32 PD3 ADC0_CH3 OPAMP_N2 TIM0_CC2 #3 US1_CS #1 ETM_TD1 #0/2 33 PD4 ADC0_CH4 OPAMP_P2 LEU0_TX #0 ETM_TD2 #0/2 34 PD5 ADC0_CH5 OPAMP_OUT2 #0 LEU0_RX #0 ETM_TD3 #0/2 35 PD6 ADC0_CH6 DAC0_P1 / OPAMP_P1 TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3 US1_RX #2 I2C0_SDA #1 ACMP0_O #2 ETM_TD0 #0 BOOT_RX 36 PD7 ADC0_CH7 DAC0_N1 / OPAMP_N1 TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 ACMP1_O #2 ETM_TCLK #0 BOOT_TX 37 PD8 BU_VIN 38 PC6 ACMP0_CH6 LEU1_TX #0 I2C0_SDA #2 LES_CH6 #0 ETM_TCLK #2 39 PC7 ACMP0_CH7 LEU1_RX #0 I2C0_SCL #2 LES_CH7 #0 ETM_TD0 #2 40 VDD_DREG 41 DEC_0 42 PE0 TIM3_CC0 #1 PCNT0_S0IN #1 U0_TX #1 I2C1_SDA #2 43 PE1 TIM3_CC1 #1 PCNT0_S1IN #1 U0_RX #1 I2C1_SCL #2 44 PE2 BU_VOUT TIM3_CC2 #1 U1_TX #3 ACMP0_O #1 45 PE3 BU_STAT U1_RX #3 ACMP1_O #1 46 USB_VREGI 47 USB_VREGO 48 PF10 USB_DM 49 PF11 USB_DP 50 PF0 TIM0_CC0 #5 LETIM0_OUT0 #2 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLK #0/1/2/3 51 PF1 TIM0_CC1 #5 LETIM0_OUT1 #2 US1_CS #2 LEU0_RX #3 I2C0_SCL #5 DBG_SWDIO #0/1/2/3 GPIO_EM4WU3 LEU0_RX #1 CMU_CLK1 #1 Power supply for on-chip voltage regulator. Decouple output for on-chip voltage regulator. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 71 EZR32WG330 Data Sheet Pinout and Package QFN64 Pin# and Name Pin # Pin Name Pin Alternate Functionality / Description Analog Timers Communication Other LEU0_TX #4 ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4 52 PF2 TIM0_CC2 #5 53 PF3 TIM0_CDTI0 #2/5 PRS_CH0 #1 54 USB_VBUS 55 PF4 TIM0_CDTI1 #2/5 PRS_CH1 #1 56 PF5 TIM0_CDTI2 #2/5 57 IOVDD_5 58 PF6 TIM0_CC0 #2 59 PF7 TIM0_CC1 #2 60 PF8 TIM0_CC2 #2 61 XOUT EZRadio peripheral crystal oscillator output. Connect to an external 26/30 MHz crystal or leave floating if driving the XIN pin with an external signal source. 62 XIN EZRadio peripheral crystal oscillator input. Connect to an external 26/30 MHz crystal or to an external clock source. If using an external clock source with no crystal, DC coupling with a nominal 0.8 VDC level is recommended with a minimum AC amplitude of 700 mVpp. Refer to AN785 for more details about using an external clock source. 63 GPIO2 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. 64 GPIO3 General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc. USB 5.0 V VBUS input. USB_VBUSEN #0 PRS_CH2 #1 Digital IO power supply 5. Note: 1. General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFOStatus, POR, Wake-up Timer, TRSW, AntDiversity control, etc. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 72 EZR32WG330 Data Sheet Pinout and Package 5.3 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note: Some functionality, such as analog interfaces, do no have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to the LOCATION 0. Table 5.2. Alternate functionality overview Alternate LOCATION Functionality 0 1 2 3 4 5 Description ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE2 PD6 Analog comparator ACMP0, digital output. PE3 PD7 Analog comparator ACMP1, digital output. ACMP1_O PF2 ADC0_CH0 PD0 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 1. ADC0_CH2 PD2 Analog to digital converter ADC0, input channel number 2. ADC0_CH3 PD3 Analog to digital converter ADC0, input channel number 3. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PD6 Bootloader RX. BOOT_TX PD7 Bootloader TX. BU_STAT PE3 Backup Power Domain status, whether or not the system is in backup mode BU_VIN PD8 Battery input for Backup Power Domain BU_VOUT PE2 Power output for Backup Power Domain CMU_CLK0 PD7 Clock Management Unit, clock output number 0. CMU_CLK1 PA1 PD8 DAC0_N1 / OPAMP_N1 PD7 Operational Amplifier 1 external negative input. OPAMP_N2 PD3 Operational Amplifier 2 external negative input. DAC0_OUT1ALT / OPAMP_OUT1A LT OPAMP_OUT2 Clock Management Unit, clock output number 1. PD1 PD5 PD0 silabs.com | Smart. Connected. Energy-friendly. Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1. Operational Amplifier 2 output. Rev. 1.1 | 73 EZR32WG330 Data Sheet Pinout and Package Alternate LOCATION Functionality 0 1 2 3 4 5 Description DAC0_P1 / OPAMP_P1 PD6 Operational Amplifier 1 external positive input. OPAMP_P2 PD4 Operational Amplifier 2 external positive input. DBG_SWCLK PF0 PF0 PF0 PF0 DBG_SWDIO PF1 PF1 PF1 PF1 DBG_SWO PF2 PD1 PD2 ETM_TCLK PD7 PC6 Embedded Trace Module ETM clock . ETM_TD0 PD6 PC7 Embedded Trace Module ETM data 0. ETM_TD1 PD3 PD3 Embedded Trace Module ETM data 1. ETM_TD2 PD4 PD4 Embedded Trace Module ETM data 2. ETM_TD3 PD5 PD5 Embedded Trace Module ETM data 3. GPIO_EM4WU0 PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PC7 PF1 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC6 PF0 I2C0 Serial Data input / output. Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used. I2C1_SCL PE1 I2C1 Serial Clock Line input / output. I2C1_SDA PE0 I2C1 Serial Data input / output. LES_CH6 PC6 LESENSE channel 6. LES_CH7 PC7 LESENSE channel 7. LETIM0_OUT0 PD6 LETIM0_OUT1 PD7 LEU0_RX PD5 PB14 PF1 PA0 LEUART0 Receive input. LEU0_TX PD4 PB13 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LEU1_RX PC7 LEUART1 Receive input. LEU1_TX PC6 LEUART1 Transmit output. Also used as receive input in half duplex communication. LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. PB11 silabs.com | Smart. Connected. Energy-friendly. PF0 Low Energy Timer LETIM0, output channel 0. PF1 Low Energy Timer LETIM0, output channel 1. Rev. 1.1 | 74 EZR32WG330 Data Sheet Pinout and Package Alternate LOCATION Functionality LFXTAL_P 0 1 2 3 4 5 Description Low Frequency Crystal (typically 32.768 kHz) positive pin. PB7 PCNT0_S0IN PE0 PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PE1 PD7 Pulse Counter PCNT0 input number 1. PCNT1_S0IN PB3 Pulse Counter PCNT1 input number 0. PCNT1_S1IN PB4 Pulse Counter PCNT1 input number 1. PCNT2_S0IN PD0 Pulse Counter PCNT2 input number 0. PCNT2_S1IN PD1 Pulse Counter PCNT2 input number 1. PRS_CH0 PA0 PF3 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 Peripheral Reflex System PRS, channel 1. PF5 Peripheral Reflex System PRS, channel 2. PRS_CH2 RF_GPIO0 PA0 RF GPIO0. RF_GPIO1 PA1 RF GPIO1. TIM0_CC0 PA0 PA0 PF6 PD1 TIM0_CC1 PA1 PA1 PF7 TIM0_CC2 PF8 TIM0_CDTI0 PA0 PF0 Timer 0 Capture Compare input / output channel 0. PD2 PF1 Timer 0 Capture Compare input / output channel 1. PD3 PF2 Timer 0 Capture Compare input / output channel 2. PF3 PF3 Timer 0 Complimentary Deat Time Insertion channel 0. TIM0_CDTI1 PF4 PF4 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 PF5 PF5 Timer 0 Complimentary Deat Time Insertion channel 2. TIM1_CC0 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PB11 Timer 1 Capture Compare input / output channel 2. TIM2_CC0 PA12 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PA13 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 PA14 Timer 2 Capture Compare input / output channel 2. TIM3_CC0 PE0 Timer 3 Capture Compare input / output channel 0. TIM3_CC1 PE1 Timer 3 Capture Compare input / output channel 1. TIM3_CC2 PE2 Timer 3 Capture Compare input / output channel 2. U0_RX PE1 UART0 Receive input. U0_TX PE0 UART0 Transmit output. Also used as receive input in half duplex communication. U1_RX PE3 UART1 Receive input. U1_TX PE2 UART1 Transmit output. Also used as receive input in half duplex communication. US1_CLK PD2 PF0 USART1 clock input / output. US1_CS PD3 PF1 USART1 chip select input / output. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 75 EZR32WG330 Data Sheet Pinout and Package Alternate LOCATION Functionality 0 1 2 PD1 PD6 3 4 5 Description USART1 Asynchronous Receive. US1_RX USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PD0 PD7 US2_CLK PB5 USART2 clock input / output. US2_CS PB6 USART2 chip select input / output. US2_RX PB4 USART1 Synchronous mode Master Output / Slave Input (MOSI). USART2 Asynchronous Receive. US2_TX USART2 Synchronous mode Master Input / Slave Output (MISO). USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. PB3 USART2 Synchronous mode Master Output / Slave Input (MOSI). USB_DM PF10 USB D- pin. USB_DMPU PD2 USB D- Pullup control. USB_DP PF11 USB D+ pin. USB_VBUS USB_VBUS USB 5 V VBUS input. USB_VBUSEN PF5 USB 5 V VBUS enable. USB_VREGI USB_VREGI USB Input to internal 3.3 V regulator USB_VREGO USB_VREGO USB Decoupling for internal 3.3 V USB regulator and regulator output USARTRF0 Asynchronous Receive. USRF0_RX USRF0_TX silabs.com | Smart. Connected. Energy-friendly. PB8 PB7 USARTRF0 Synchronous mode Master Input / Slave Output (MISO). USARTRF0 Asynchronous Transmit.Also used as receive input in half duplex communication. USARTRF0 Synchronous mode Master Output / Slave Input (MOSI). Rev. 1.1 | 76 EZR32WG330 Data Sheet Pinout and Package 5.4 GPIO Pinout Overview The specific GPIO pins available in EZR32WG330 are shown in the GPIO pinout table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0. Table 5.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - PA14 PA13 PA12 Port B - PB14 PB13 Port C - - Port D - Port E Port F - - - - - - - - - - - - - PB11 - - PB8 PB7 PB6 PB5 PB4 PB3 - - - - - - - - - PC7 PC6 - - - - - - - - - - - - PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 - - - - - - - - - - - - PE3 PE2 PE1 PE0 - - - - - PF8 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PF11 PF10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 5.5 Opamp Pinout Overview The specific opamp terminals available in EZR32WG330 are shown in Opamp pinout figure. PC4 PC5 PD4 PD3 PD6 PD7 OUT0ALT + OPA0 OUT0 + OPA2 OUT2 OUT1ALT + OPA1 OUT1 - PB11 PB12 PC0 PC1 PC2 PC3 PC12 PC13 PC14 PC15 PD0 PD1 PD5 Figure 5.2. Opamp Pinout silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 77 EZR32WG330 Data Sheet Pinout and Package 5.6 QFN64 Package Figure 5.3. QFN64 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC outline MO-220 except for custom features D2, E2, L, Z, and Y which are toleranced per supplier designation. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Table 5.4. QFN64 (Dimensions in mm) Symbol A A1 Min 0.80 0.00 Nom 0.85 0.02 Max 0.90 0.05 A3 0.20 REF b D/E D2/E2 0.18 8.90 6.80 0.25 9.00 6.90 0.30 9.10 7.00 e 0.50 BSC L R K 0.30 0.09 0.20 0.40 ─ ─ 0.50 0.14 ─ aaa bbb ccc ddd eee fff 0.15 0.10 0.10 0.05 0.08 0.10 The QFN64 Package uses Matte Tin plated leadframe. All EZR32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 78 EZR32WG330 Data Sheet PCB Layout and Soldering 6. PCB Layout and Soldering 6.1 Recommended PCB Layout Figure 6.1. PCB Land Pattern Table 6.1. PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dimension (mm) S1 7.93 S 7.93 L1 7.00 W1 7.00 e 0.50 W 0.26 L 0.84 silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 79 EZR32WG330 Data Sheet PCB Layout and Soldering Symbol Dimension (mm) Note: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. Stencil Design 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 2. The stencil thickness should be 0.125 mm (5 mils). 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 4. A 4x4 array of 1.45 mm square openings on a 1.25 mm pitch should be used for the center ground pad. Card Assembly 1. A No-Clean, Type-3 solder paste is recommended. 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 6.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description and level 3 bake conditions. Place as many and as small as possible vias underneath each of the solder patches under the ground pad. silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 80 EZR32WG330 Data Sheet Top Marking 7. Top Marking The top marking is illustrated and explained below. Mark Method: Laser Logo Size: Top center Font Size: 0.71 mm Left-Justified Line 1 Marking: FFFFFFFFFF = Family Part Number (EZR32) Line 2 Marking: PPPPPPPPPP = Part Number • P1P2: WG = Wonder Gecko • P3P4P5: 330 (USB) • P6P7: Flash Size • FE = 64 • FF = 128 • FG = 256 Refer to the line marking instruction from assembly PO. • P8P9: Radio • 55 = EZRadio +13 dBm, -116 sensitivity • 60 = EZRadioPRO +13 dBm, -129 sensitivity • 61 = EZRadioPRO +16 dBm, -129 sensitivity • 63 = EZRadioPRO +20 dBm, -129 sensitivity • 67 = EZRadioPRO +13 dBm, -133 sensitivity • 68 = EZRadioPRO +20 dBm, -133 sensitivity • 69 = EZRadioPRO +13 & 20 dBm, -133 sensitivity • P10: Temperature Range • G = -40 — 85 °C Line 3 Marking: Line 4 Marking: YY = Year Assigned by the Assembly House. WW = Work Week Corresponds to the year and work week of the mold date. TTTTTT = Mfg Code Manufacturing Code from the Assembly Purchase Order from assembly PO. Circle = 1.3 mm diameter; center justified "e3" Pb-Free Symbol Gecko Logo; right justified Gecko Logo height = 1.90 mm silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 81 EZR32WG330 Data Sheet Revision History 8. Revision History 8.1 Revision History Revision 1.1 • Updated OPNs in Ordering section. • USART0 in Configuarion Summary table changed to USARTRF0. • Sleep current corrected from 40 nA to 20 nA. • GPIO number corrected from 41 to 38. • Number of operational amplifiers corrected from 3 to 2. • Added "EZRadio and EZRadioPRO Transceivers GPIO Configuration" section. • Updated Table 5.1 Device Pinout: Revised Pin 10, Pin 11, Pin 61, and Pin 62 • Updated Table 5.2 Alternate Functionality Overview: Removed GPIO0 and GPIO1 • Revised Top Marking Table: Corrected Line 2 Marking row • Revised Table 3.2 Configuration Table: Added USB • Updated Section 5.6 (QFN64 Package) and Table 5.4 (QFN64 package dimensions)* • Updated Section 6.1—PCB Land Pattern Dimensions* * This revision reflects the actual package dimension that is in production and affects the documentation only. There is no change to the package/product. Revision 1.0 • Initial full production revision silabs.com | Smart. Connected. Energy-friendly. Rev. 1.1 | 82 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . 3.1.1 ARM Cortex-M4 Core . . . . . . . . . . . . . . . . . 3.1.2 Debugging . . . . . . . . . . . . . . . . . . . . . 3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . . 3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . . 3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . . 3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . . 3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . . 3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . 3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . 3.1.10 Universal Serial Bus Controller (USB) . . . . . . . . . . . . 3.1.11 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.1.13 Pre-Programmed UART Bootloader . . . . . . . . . . . . 3.1.14 Universal Asynchronous Receiver/Transmitter (UART) . . . . . . 3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.1.16 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . 3.1.17 Real Time Counter (RTC) . . . . . . . . . . . . . . . . 3.1.18 Backup Real Time Counter (BURTC) . . . . . . . . . . . . 3.1.19 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . 3.1.20 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . 3.1.21 Analog Comparator (ACMP) . . . . . . . . . . . . . . . 3.1.22 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . 3.1.23 Analog to Digital Converter (ADC) . . . . . . . . . . . . . 3.1.24 Digital to Analog Converter (DAC) . . . . . . . . . . . . . 3.1.25 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . 3.1.26 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . 3.1.27 Backup Power Domain . . . . . . . . . . . . . . . . . 3.1.28 Advanced Encryption Standard Accelerator (AES) . . . . . . . 3.1.29 General Purpose Input/Output (GPIO) . . . . . . . . . . . 3.1.30 EZRadio® and EZRadioPro® Transceivers . . . . . . . . . . 3.1.30.1 EZRadio® and EZRadioPRO® Transceivers GPIO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . .10 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 11 . . . 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7 8 4.1 Test Conditions . . . . . . . 4.1.1 Typical Values . . . . . . . 4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 4.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . .11 4.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .12 4.4 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . .12 Table of Contents 83 . 4.5 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . .13 4.6 Transitions between Energy Modes . . . . . . . . . . . . . . . . . . . . . .15 4.7 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.8 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 4.9 General Purpose Input Output . . . . . . . . . . . . . . . . . . . . . . . .17 4.10 Oscillators. . 4.10.1 LXFO . . 4.10.2 HFXO . . 4.10.3 LFRCO . . 4.10.4 HFRCO . . 4.10.5 AUXHFRCO 4.10.6 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 .25 .26 .27 .28 .32 .32 4.11 Analog Digital Converter (ADC) 4.11.1 Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 .39 4.12 Digital Analog Converter (DAC) . . . . . . . . . . . . . . . . . . . . . . .45 4.13 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . .47 4.14 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . .51 4.15 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . . .53 4.16 I2C . . . . . . . . . . . . . . . . . . . . . . . .54 4.17 Radio . . . . . . . . . . . . . . . . . . . . 4.17.1 EZRadioPRO (R6x) DC Electrical Characteristics . . . . . 4.17.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics 4.17.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics . 4.17.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics. 4.17.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications . . 4.17.6 EZRadio (R55) DC Electrical Characteristics . . . . . . 4.17.7 EZRadio (R55) Synthesizer AC Electrical Characteristics . . 4.17.8 EZRadio (R55) Receiver AC Electrical Characteristics . . . 4.17.9 EZRadio (R55) Transmitter AC Electrical Characteristics . . 4.17.10 EZRadio (R55) Radio Auxiliary Block Specifications . . . 4.17.11 Radio Digital I/O Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 .56 .57 .58 .61 .62 .63 .63 .64 .65 .66 .67 4.18 Digital Peripherals . . . . . . . . . . . . .68 5. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 5.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 5.3 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . .73 5.4 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .77 5.5 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . .77 5.6 QFN64 Package . . . . . . . . . . . . . . . . . . . . . . . . . .78 6. PCB Layout and Soldering . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . . 6.1 Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . .79 6.2 Soldering Information . . . . . . . . . . . . . . . . . . . . . . . . .80 Table of Contents 84 . . 7. Top Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table of Contents 85 Simplicity Studio One-click access to MCU tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! www.silabs.com/simplicity MCU Portfolio www.silabs.com/mcu SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com 86