EZR32WG230 DataSheet

EZR32WG Wireless MCUs
EZR32WG230 Data Sheet
EZR32WG230 Wireless MCU family with ARM Cortex-M4 CPU
and sub-GHz Radio
The EZR32WG Wireless MCUs are the latest in Silicon Labs family of wireless MCUs
delivering a high performance, low energy wireless solution integrated into a small form
factor package. By combining a high performance sub-GHz RF transceiver with an energy efficient 32-bit MCU, the EZR32WG family provides designers the ultimate in flexibility with a family of pin-compatible devices that scale with 64/128/256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating
modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the sub-GHz radio, result
in a solution optimized for battery powered applications.
32-Bit ARM Cortex wireless MCUs applications include the following:
• Energy, gas, water and smart metering
• Health and fitness applications
• Consumer electronics
• Alarm and security systems
• Building and home automation
KEY FEATURES
• Silicon Labs’ first 32-bit Wireless MCUs
• Based on ARM Cortex M3 (LG) and M4
(WG) CPU cores with 256 kB of flash and
32 kB RAM
• Best-in-class RF performance with EZradio
and EZRadioPro transceivers
• Ultra-low power wireless MCU
• Low transmit and receive currents
• Ultra-low power standby and sleep
modes
• Fast wake-up time
• Low Energy sensor interface (LESENSE)
• Rich set of peripherals including 12-bit ADC
and DAC, multiple communication
interfaces (UART, SPI, I2C), multiple GPIO
and timers
• AES Accelerator with 128/256-bit keys
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1
EZR32WG230 Data Sheet
Feature List
1. Feature List
The WG highlighted features are listed below.
MCU Features
• ARM Cortex-M4 CPU platform
• Up to 48 MHz
• 64/128/256 kB Flash w/32 kB RAM
• Hardware AES with 128/256-bit keys
• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.65 µA @ 3 V Stop Mode
• 225 µA/MHz @ 3 V Run Mode
• Timers/Counters
• 4× Timer/Counter
• 4×3 Compare/Capture/PWM channels
• Low Energy Timer
• Real-Time Counter
• 16/8-bit Pulse Counter
• Watchdog Timer
• Communication interfaces
• 2× USART (UART/SPI)
• 2× UART
• 2× Low Energy UART
• 2× I2C Interface with SMBus support
• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s ADC
• On-chip temperature sensor
• 12-bit 500 ksamples/s DAC
• 2× Analog Comparator
• 2x Operational Amplifier
• Low Energy Sensor Interface (LESENSE)
• Up to 41 General Purpose I/O pins
silabs.com | Smart. Connected. Energy-friendly.
RF Features
• Frequency Range
• 142-1050 MHz
• Modulation
• (G)FSK, 4(G)FSK, (G)MSK, OOK
• Receive sensitivity up to -133 dBm
• Up to +20 dBm max output power
• Low active power consumption
• 10/13 mA RX
• 18 mA TX at +10 dBm
• 6 mA @ 1.2 kbps (Preamble Sense)
• Data rate = 100 bps to 1 Mbps
• Excellent selectivity performance
• 69 dB adjacent channel
• 79 dB blocking at 1 MHz
• Antenna diversity and T/R switch control
• Highly configurable packet handler
• TX and RX 64 byte FIFOs
• Automatic frequency control (AFC)
• Automatic gain control (AGC)
• IEEE 802.15.4g compliant
System Features
•
•
•
•
•
Power-on Reset and Brown-Out Detector
Debug Interface
Temperature range -40 to 85 °C
Single power supply 1.98 to 3.8 V
QFN64 package
Rev. 1.1 | 1
EZR32WG230 Data Sheet
Ordering Information
2. Ordering Information
The table below shows the available EZR32WG230 devices.
Table 2.1. Ordering Information
Ordering
Radio
Flash (kB)
RAM (kB)
Power Am- Max Sensiplifier (dBm) tivity (dBm)
Supply Voltage (V)
Package
EZR32WG230FxxxR55G
EZRadio
64-256
32
+13
-116
1.98 - 3.8
QFN64
EZR32WG230FxxxR60G
EZRadioPro
64-256
32
+13
-129
1.98 - 3.8
QFN64
EZR32WG230FxxxR61G
EZRadioPro
64-256
32
+16
-129
1.98 - 3.8
QFN64
EZR32WG230FxxxR63G
EZRadioPro
64-256
32
+20
-129
1.98 - 3.8
QFN64
EZR32WG230FxxxR67G
EZRadioPro
64-256
32
+13
-133
1.98 - 3.8
QFN64
EZR32WG230FxxxR68G
EZRadioPro
64-256
32
+20
-133
1.98 - 3.8
QFN64
EZR32WG230FxxxR69G
EZRadioPro
64-256
32
+13 & 20
-133
1.98 - 3.8
QFN64
Table 2.2. Flash Sizes
Example Part Number
Flash Size
EZR32WG230F64R55G
64 kB
EZR32WG230F128R55G
128 kB
EZR32WG230F256R55G
256 kB
Note: Add an "(R)" at the end of the device part number to denote tape and reel option.
Visit www.silabs.com for information on global distributors and representatives.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 2
EZR32WG230 Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EZR32WG230 Wireless MCUs are the latest in Silicon Labs family of wireless MCUs delivering a high performance, low energy
wireless solution integrated into a small form factor package. By combining a high performance sub-GHz RF transceiver with an energy
efficient 32-bit ARM Cortex-M4, the EZR32WG family provides designers with the ultimate in flexibility with a family of pin-compatible
parts that scale from 64 to 256 kB of flash and support Silicon Labs EZRadio or EZRadioPRO transceivers. The ultra-low power operating modes and fast wake-up times combined with the low transmit and receive power consumption of the sub-GHz radio result in a
solution optimized for low power and battery powered applications. For a complete feature set and in-depth information on the modules,
the reader is referred to the EZR32WG Reference Manual.
The EZR32WG230 block diagram is shown below.
Figure 3.1. Block Diagram
3.1.1 ARM Cortex-M4 Core
The ARM Cortex-M4 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection
Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while
the CPU is asleep. The EZR32 implementation of the Cortex-M4 is described in detail in EZR32 Cortex-M4 Reference Manual.
3.1.2 Debugging
These devices include hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for
data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data
trace and software-generated messages.
3.1.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the EZR32WG microcontroller. The flash memory is readable and
writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks: the main block and the information block.
Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock
bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations
are supported in the energy modes EM0 and EM1.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 3
EZR32WG230 Data Sheet
System Overview
3.1.4 Direct Memory Access Controller (DMA)
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing
the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving, for instance,
data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230
µDMA controller licensed from ARM.
3.1.5 Reset Management Unit (RMU)
The RMU is responsible for handling the reset functionality of the EZR32WG.
3.1.6 Energy Management Unit (EMU)
The Energy Management Unit (EMU) manages all the low energy modes (EM) in EZR32WG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.
3.1.7 Clock Management Unit (CMU)
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EZR32WG. The CMU provides
the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the
available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not
wasting power on peripherals and oscillators that are inactive.
3.1.8 Watchdog (WDOG)
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may,
for example, be caused by an external event, such as an ESD pulse, or by a software failure.
3.1.9 Peripheral Reflex System (PRS)
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each
other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex
signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but
edge triggers and other functionality can be applied by the PRS.
3.1.10 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and
supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all
the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant
system. The interface provided to software by the I2C module allows both fine-grained control of the transmission process and close to
automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full
duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and I2S devices.
3.1.12 Pre-Programmed UART Bootloader
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are
supported. The autobaud feature, interface, and commands are described further in the application note.
3.1.13 Universal Asynchronous Receiver/Transmitter (UART)
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 4
EZR32WG230 Data Sheet
System Overview
3.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUART™, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a
32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to
make asynchronous serial communication possible with minimum of software intervention and energy consumption.
3.1.15 Timer/Counter (TIMER)
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.
3.1.16 Real Time Counter (RTC)
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC
oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time
since the RTC is enabled in EM2 where most of the device is powered down.
3.1.17 Backup Real Time Counter (BURTC)
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768
kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it
operational even if the main power should drain out.
3.1.18 Low Energy Timer (LETIMER)
The unique LETIMER™, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0.
Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be
performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of
waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start
counting on compare matches from the RTC.
3.1.19 Pulse Counter (PCNT)
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either
the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.
3.1.20 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current
consumption can be configured by altering the current supply to the comparator.
3.1.21 Voltage Comparator (VCMP)
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply
falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by
altering the current supply to the comparator.
3.1.22 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per
second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.
3.1.23 Digital to Analog Converter (DAC)
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail,
with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used
for a number of different applications such as sensor interfaces or sound output.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 5
EZR32WG230 Data Sheet
System Overview
3.1.24 Operational Amplifier (OPAMP)
The EZR32WG230 features 2 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail
differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin,
OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable
gain using internal resistors, etc.
3.1.25 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface (LESENSE™), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy
mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.
3.1.26 Backup Power Domain
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery
when the main power drains out. The backup power domain enables the EZR32WG230 to keep track of time and retain data, even if
the main power source should drain out.
3.1.27 Advanced Encryption Standard Accelerator (AES)
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data
block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave
which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations (i.e., 8- or
16-bit operations are not supported).
3.1.28 General Purpose Input/Output (GPIO)
In the EZR32WG230, there are 41 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each.
These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive
strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed
through the Peripheral Reflex System to other peripherals.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 6
EZR32WG230 Data Sheet
System Overview
3.1.29 EZRadio® and EZRadioPro® Transceivers
The EZR32WG family of devices is built using high-performance, low-current EZRadio and EZRadioPro RF transceivers covering the
sub-GHz frequency bands from 142 to 1050 MHz. These devices offer outstanding sensitivity of upto –133 dBm (using EZRadioPro)
while achieving extremely low active and standby current consumption. The EZR32WG devices using the EZRadioPro transceiver offer
frequency coverage in all major bands and include optimal phase noise, blocking, and selectivity performance for narrow band and licensed band applications, such as FCC Part 90 and 169 MHz wireless Mbus. The 69 dB adjacent channel selectivity with 12.5 kHz
channel spacing ensures robust receive operation in harsh RF conditions, which is particularly important for narrow band operation. The
active mode TX current consumption of 18 mA at +10 dBm and RX current of 10 mA coupled with extremely low standby current and
fast wake times is optimized for extended battery life in the most demanding applications. The EZR32WG devices can achieve up to
+27 dBm output power with built-in ramping control of a low-cost external FET. The devices can meet worldwide regulatory standards:
FCC, ETSI, and ARIB. All devices are designed to be compliant with 802.15.4g and WMbus smart metering standards. The devices are
highly flexible and can be programmed and configured via Simplicity Studio, available at www.silabs.com.
Communications between the radio and MCU are done over USART, PRS and IRQ, which requires the pins to be configured in the
following way:
Table 3.1. Radio MCU Communication Configuration
EZR32WG Pin
Radio Assignment
EZR32WG Function Assignment
PE8
SDN
GPIO Output
PE9
nSEL
Bit-Banged SPI.CS (GPIO Output)
PE10
SDI
US0_TX #0
PE11
SDO
US0_RX #0
PE12
SCLK
US0_CLK #0
PE13
nIRQ
GPIO_EM4WU5 (GPIO Input with IRQ enabled)
PE14
GPIO1
PRS Input
PA15
GPIO0
PRS Input
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 7
EZR32WG230 Data Sheet
System Overview
3.1.29.1 EZRadio® and EZRadioPRO® Transceivers GPIO Configuration
The EZRadio and EZRadioPRO Transceivers have 4 General Purpose Digital I/O pins. These GPIOs may be configured to perform
various radio-specific functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc.
Two of the radio GPIO pins are directly connected to pins on the package (GPIO2 and GPIO3). However, the remaining two radio GPIO
pins (GPIO0 and GPIO1) connect internally on the EZR32WG to the pins shown in 3.1.29 EZRadio® and EZRadioPro® Transceivers.
These radio GPIOs may be routed to external package pins using the EZR32WG’s peripheral reflex system (PRS). Note that the maximum frequency of the GPIO pins routed through PRS pins may be limited to ~10 MHz.
Below is some example code illustrating how to configure the EZR32WG PRS system to output the radio GPIO0/GPIO1 functions to
EZR32WG pins PA0 / PA1, respectively. Note that the radio GPIO0/GPIO1 functions could also be connected to EZR32WG pins PF3/
PF4.
/* PRS routing radio GPIO0 and GPIO1 to external pin PA0&PA1 */
/ * Note that this code example uses the emlib library functions for CMU, GPIO, and PRS */
/* Enable PRS clock */
CMU_ClockEnable(cmuClock_PRS, true);
/* Setup input pins */
GPIO_PinModeSet(gpioPortA, 15, gpioModeInput, 0);
GPIO_PinModeSet(gpioPortE, 14, gpioModeInput, 0);
/* Setup output pins */
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 0);
GPIO_PinModeSet(gpioPortA, 1, gpioModePushPull, 0);
/* Configure INT/PRS channels */
GPIO_IntConfig(gpioPortA, 15, false, false, false);
GPIO_IntConfig(gpioPortE, 14, false, false, false);
/* Setup PRS */
PRS_SourceAsyncSignalSet(0, PRS_CH_CTRL_SOURCESEL_GPIOH, PRS_CH_CTRL_SIGSEL_GPIOPIN15);
PRS_SourceAsyncSignalSet(1, PRS_CH_CTRL_SOURCESEL_GPIOH, PRS_CH_CTRL_SIGSEL_GPIOPIN14);
PRS->ROUTE = (PRS_ROUTE_CH0PEN | PRS_ROUTE_CH1PEN);
/* Make sure PRS sensing is enabled (should be by default) */
GPIO_InputSenseSet(GPIO_INSENSE_PRS, GPIO_INSENSE_PRS);
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 8
EZR32WG230 Data Sheet
System Overview
3.2 Configuration Summary
The features of the EZR32WG230 are a subset of the feature set described in the EZR32WGReference Manual. The table below describes device specific implementation of the features.
Table 3.2. Configuration Summary
Module
Configuration
Pin Connections
Cortex-M4
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
I2C1
Full configuration
I2C1_SDA, I2C1_SCL
USARTRF0
Full configuration with IrDA
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
Full configuration with I2S
US2_TX, US2_RX, US2_CLK, US2_CS
UART0
Full configuration
U0_TX, U0_RX
UART1
Full configuration
U1_TX, U1_RX
LEUART0
Full configuration
LEU0_TX, LEU0_RX
LEUART1
Full configuration
LEU1_TX, LEU1_RX
TIMER0
Full configuration with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
TIMER2
Full configuration
TIM2_CC[2:0]
TIMER3
Full configuration
TIM3_CC[2:0]
RTC
Full configuration
NA
BURTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
PCNT1
Full configuration, 8-bit count register
PCNT1_S[1:0]
PCNT2
Full configuration, 8-bit count register
PCNT2_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[1:0]
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 9
EZR32WG230 Data Sheet
System Overview
Module
Configuration
Pin Connections
OPAMP
Full configuration
Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES
Full configuration
NA
GPIO
41 pins
Available pins are shown in 5.4 GPIO Pinout Overview
3.3 Memory Map
The EZR32WG230 memory map is shown below with RAM and flash sizes for the largest memory configuration.
Figure 3.2. EZR32WG230 Memory Map with Largest RAM and Flash Sizes
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 10
EZR32WG230 Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Test Conditions
4.1.1 Typical Values
The typical data are based on TAMB = 25°C and VDD = 3.0 V, as defined in Table 4.3 General Operating Conditions on page 12, by
simulation and/or technology characterisation unless otherwise specified.
4.1.2 Minimum and Maximum Values
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined
in Table 4.3 General Operating Conditions on page 12, by simulation and/or technology characterisation unless otherwise specified.
4.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond
the limits specified in the table below may affect the device reliability or cause permanent damage to the device. Functional operating
conditions are given in Table 4.3 General Operating Conditions on page 12.
Table 4.1. Absolute Maximum Ratings
Parameter
Storage temperature
range
Maximum soldering temperature
External main supply
voltage
Voltage on any I/O pin
Symbol
Test Condition
Min
Typ
Max
Unit
-55
─
1501
°C
─
─
260
°C
VDDMAX
0
─
3.8
V
VIOPIN
-0.3
─
VDD+0.3
V
TSTG
TS
Latest IPC/
JEDEC JSTD-020 Standard
Note:
1. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 11
EZR32WG230 Data Sheet
Electrical Specifications
4.3 Thermal Characteristics
Table 4.2. Thermal Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Ambient temperature range
TAMB
-40
─
85
°C
Junction temperature value
TJ
─
─
1051
°C
+13/+16 dBm
on 2-layer
board
─
─
61.8
°C/W
+20 dBm on 4layer board
─
─
20.72
°C/W
-55
─
150
°C
Thermal impedance junction to
ambient
TIJA
Storage temperature range
TSTG
Note:
1. Values are based on simulations run on 2 layer and 4 layer PCBs at 0m/s airflow.
2. Based on programmed devices tested for 10000 hours at 150 ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.
4.4 General Operating Conditions
Table 4.3. General Operating Conditions
Parameter
Symbol
Min
Typ
Max
Unit
TAMB
-40
─
85
°C
VDDOP
1.98
─
3.8
V
Internal APB clock frequency
fAPB
─
─
48
MHz
Internal AHB clock frequency
fAHB
─
─
48
MHz
Ambient temperature range
Operating supply voltage
Table 4.4. Environmental
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
ESD (Human Body Model HBM)
VESDHBM
TAMB=25 °C
─
─
2000
V
ESD (Charged Device Model,
CDM)
VESDCDM
TAMB=25 °C
─
─
500
V
Latch-up sensitivity passed: ±100 mA/1.5 × VSUPPLY(max) according to JEDEC JESD 78 method Class II, 85 °C.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 12
EZR32WG230 Data Sheet
Electrical Specifications
4.5 Current Consumption
Table 4.5. Current Consumption
Parameter
EM0 current. No prescaling. Running prime number
calculation code from
Flash. (Production test condition = 14 MHz)
Symbol
IEM0
silabs.com | Smart. Connected. Energy-friendly.
Condition
Min
Typ
Max
Unit
48 MHz HFXO, all peripheral clocks
disabled, VDD= 3.0 V, TAMB=25°C
225
236
µA/MHz
48 MHz HFXO, all peripheral clocks
disabled, VDD= 3.0 V, TAMB=85°C
225
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
226
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
227
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
228
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
229
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
230
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
231
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
232
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
233
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
238
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
238
1.2 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
271
1.2 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
275
µA/MHz
238
µA/MHz
µA/MHz
240
µA/MHz
µA/MHz
243
µA/MHz
µA/MHz
245
µA/MHz
µA/MHz
250
µA/MHz
µA/MHz
286
µA/MHz
µA/MHz
Rev. 1.1 | 13
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
EM1 current (Production
test condition = 14 MHz)
Symbol
IEM1
EM2 current
IEM2
EM3 current
IEM3
silabs.com | Smart. Connected. Energy-friendly.
Condition
Min
Typ
Max
Unit
48 MHz HFXO, all peripheral clocks
disabled, VDD= 3.0 V, TAMB=25°C
63
75
µA/MHz
48 MHz HFXO, all peripheral clocks
disabled, VDD= 3.0 V, TAMB=85°C
65
76
µA/MHz
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
64
75
µA/MHz
28 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
65
77
µA/MHz
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
65
76
µA/MHz
21 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
66
78
µA/MHz
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
67
79
µA/MHz
14 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
68
82
µA/MHz
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
68
81
µA/MHz
11 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
70
83
µA/MHz
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
74
87
µA/MHz
6.6 MHz HFRCO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
76
89
µA/MHz
1.2 MHz HFRCO. all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
106
120
µA/MHz
1.2 MHz HFRCO. all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
112
129
µA/MHz
EM2 current with RTC prescaled to 1
Hz, 32.768 kHz LFRCO, VDD= 3.0 V,
TAMB=25°C
0.951
1.71
µA
EM2 current with RTC prescaled to 1
Hz, 32.768 kHz LFRCO, VDD= 3.0 V,
TAMB=85°C
3.01
4.01
µA
VDD= 3.0 V, TAMB=25°C
0.65
1.3
µA
VDD= 3.0 V, TAMB=85°C
2.7
4.0
µA
Rev. 1.1 | 14
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Symbol
EM4 current
IEM4
Condition
Min
Typ
Max
Unit
VDD= 3.0 V, TAMB=25°C
0.020
0.055
µA
VDD= 3.0 V, TAMB=85°C
0.44
0.90
µA
Note:
1. Using backup RTC.
4.6 Transitions between Energy Modes
The transition times are measured from the trigger to the first clock edge in the CPU.
Table 4.6. Energy Modes Transitions
Parameter
Symbol
Min
Typ
Max
Unit
Transition time from EM1 to EM0
tEM10
─
0
─
HFCORECLK cycles
Transition time from EM2 to EM0
tEM20
─
2
─
µs
Transition time from EM3 to EM0
tEM30
─
2
─
µs
Transition time from EM4 to EM0
tEM40
─
163
─
µs
4.7 Power Management
The EZR32WG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level.
For practical schematic recommendations, please see the application note, AN0002: EFM32 Hardware Design Considerations.
Table 4.7. Power Management
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
BOD threshold on falling external
supply voltage
VBODextthr-
1.74
─
1.96
V
BOD threshold on falling internally
regulated supply voltage
VBODintthr-
1.57
─
1.7
V
BOD threshold on rising external
supply voltage
VBODextthr+
─
1.85
1.98
V
Power-on Reset (POR) threshold
on rising external supply voltage
VPORthr+
─
─
1.98
V
Delay from reset is released until
program execution starts
tRESET
Applies to Power-on Reset, Brown-out Reset and
pin reset.
─
163
─
µs
Voltage regulator decoupling capacitor.
CDECOUPLE
X5R capacitor recommended. Apply between DECOUPLE pin and
GROUND
─
1
─
µF
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 15
EZR32WG230 Data Sheet
Electrical Specifications
4.8 Flash
Table 4.8. Flash
Parameter
Symbol
Flash erase cycles before failure
ECFLASH
Flash data retention
RETFLASH
Test Condition
Min
Typ
Max
Unit
20000
─
─
cycles
TAMB<150 °C
10000
─
─
h
TAMB<85 °C
10
─
─
years
TAMB<70 °C
20
─
─
years
Word (32-bit) programming time
tW_PROG
20
─
─
µs
Page erase time
tPERASE
20
20.4
20.8
ms
Device erase time
tDERASE
40
40.8
41.6
ms
Erase current
IERASE
─
─
71
mA
Write current
IWRITE
─
─
71
mA
Supply voltage during flash erase
and write
VFLASH
1.98
─
3.8
V
Note:
1. Measured at 25 ºC.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 16
EZR32WG230 Data Sheet
Electrical Specifications
4.9 General Purpose Input Output
Table 4.9. GPIO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input low voltage
VIOIL
─
─
0.30 VDD
V
Input high voltage
VIOIH
0.70 VDD
─
─
V
Sourcing 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
─
0.80 VDD
─
V
Sourcing 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
─
0.90 VDD
─
V
Sourcing 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
─
0.85 VDD
─
V
Sourcing 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
─
0.90 VDD
─
V
Sourcing 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.75 VDD
─
─
V
Sourcing 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.85 VDD
─
─
V
Sourcing 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.60 VDD
─
─
V
Sourcing 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.80 VDD
─
─
V
Output high voltage (Production
test condition = 3.0V, DRIVEMODE = STANDARD)
VIOOH
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 17
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VIOOL
Sinking 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
─
0.20 VDD
─
V
Sinking 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
─
0.10 VDD
─
V
Sinking 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
─
0.10 VDD
─
V
Sinking 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
─
0.05 VDD
Sinking 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
─
─
0.30 VDD
V
Sinking 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
─
─
0.20 VDD
V
Sinking 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
─
─
0.35 VDD
V
Sinking 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
─
─
0.25 VDD
V
High Impedance IO connected
to GROUND or Vdd
─
±0.1
±100
nA
Output low voltage (Production
test condition = 3.0 V, DRIVEMODE = STANDARD)
V
Input leakage current
IIOLEAK
I/O pin pull-up resistor
RPU
─
40
─
kOhm
I/O pin pull-down resistor
RPD
─
40
─
kOhm
RIOESD
─
200
─
Ohm
tIOGLITCH
10
─
─
ns
GPIO_Px_CTRL DRIVEMODE
= LOWEST and load capacitance CL=12.5-25 pF.
20+0.1 CL
─
250
ns
GPIO_Px_CTRL DRIVEMODE
= LOW and load capacitance
CL=350-600 pF
20+0.1 CL
─
250
ns
VDD = 1.98 - 3.8 V
0.10 VDD
─
─
V
Internal ESD series resistor
Pulse width of pulses to be removed by the glitch suppression
filter
tIOOF
Output fall time
I/O pin hysteresis (VIOTHR+ VIOTHR-)
VIOHYST
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 18
EZR32WG230 Data Sheet
Electrical Specifications
5
0.20
4
Low-Level Output Current [mA]
Low-Level Output Current [mA]
0.15
0.10
3
2
0.05
1
-40°C
25°C
85°C
0.00
0.0
0.5
1.0
Low-Level Output Voltage [V]
1.5
-40°C
25°C
85°C
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.0
Low-Level Output Voltage [V]
1.5
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
45
20
40
35
Low-Level Output Current [mA]
Low-Level Output Current [mA]
15
10
30
25
20
15
5
10
5
-40°C
25°C
85°C
0
0.0
0.5
1.0
Low-Level Output Voltage [V]
1.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2.0
0
0.0
-40°C
25°C
85°C
0.5
1.0
Low-Level Output Voltage [V]
1.5
2.0
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.1. Typical Low-Level Output Current, 2 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 19
EZR32WG230 Data Sheet
Electrical Specifications
0.0
0.00
-40°C
25°C
85°C
-40°C
25°C
85°C
–0.5
High-Level Output Current [mA]
High-Level Output Current [mA]
–0.05
–0.10
–1.0
–1.5
–0.15
–2.0
–0.20
0.0
0.5
1.0
High-Level Output Voltage [V]
1.5
2.0
–2.5
0.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.0
High-Level Output Voltage [V]
1.5
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
0
0
-40°C
25°C
85°C
-40°C
25°C
85°C
–10
High-Level Output Current [mA]
High-Level Output Current [mA]
–5
–10
–20
–30
–15
–40
–20
0.0
0.5
1.0
High-Level Output Voltage [V]
1.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2.0
–50
0.0
0.5
1.0
High-Level Output Voltage [V]
1.5
2.0
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.2. Typical High-Level Output Current, 2 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 20
EZR32WG230 Data Sheet
0.5
10
0.4
8
Low-Level Output Current [mA]
Low-Level Output Current [mA]
Electrical Specifications
0.3
0.2
0.1
6
4
2
-40°C
25°C
85°C
0.0
0.0
0.5
1.5
1.0
2.0
Low-Level Output Voltage [V]
2.5
-40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
2.0
Low-Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = LOW
50
40
35
40
Low-Level Output Current [mA]
Low-Level Output Current [mA]
30
25
20
15
30
20
10
10
5
0
0.0
-40°C
25°C
85°C
0.5
1.5
1.0
2.0
Low-Level Output Voltage [V]
2.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
-40°C
25°C
85°C
3.0
0
0.0
0.5
1.5
1.0
2.0
Low-Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.3. Typical Low-Level Output Current, 3 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 21
EZR32WG230 Data Sheet
Electrical Specifications
0.0
0
-40°C
25°C
85°C
-40°C
25°C
85°C
–1
High-Level Output Current [mA]
High-Level Output Current [mA]
–0.1
–0.2
–0.3
–2
–3
–4
–0.4
–5
–0.5
0.0
0.5
1.5
1.0
2.0
High-Level Output Voltage [V]
2.5
–6
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
2.0
High-Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = LOW
0
-40°C
25°C
85°C
0
-40°C
25°C
85°C
–10
High-Level Output Current [mA]
High-Level Output Current [mA]
–10
–20
–30
–20
–30
–40
–40
–50
0.0
0.5
1.5
1.0
2.0
High-Level Output Voltage [V]
2.5
3.0
–50
0.0
0.5
1.5
1.0
2.0
High-Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.4. Typical High-Level Output Current, 3 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 22
EZR32WG230 Data Sheet
Electrical Specifications
0.8
14
0.7
12
0.6
Low-Level Output Current [mA]
Low-Level Output Current [mA]
10
0.5
0.4
0.3
8
6
4
0.2
2
0.1
0.0
0.0
-40°C
25°C
85°C
0.5
1.5
1.0
2.0
2.5
Low-Level Output Voltage [V]
3.0
-40°C
25°C
85°C
0
0.0
3.5
50
50
40
40
30
20
10
1.5
1.0
2.0
2.5
Low-Level Output Voltage [V]
3.0
30
20
10
-40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOW
Low-Level Output Current [mA]
Low-Level Output Current [mA]
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
0.5
1.5
1.0
2.0
2.5
Low-Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
-40°C
25°C
85°C
0
0.0
0.5
1.5
1.0
2.0
2.5
Low-Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.5. Typical Low-Level Output Current, 3.8 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 23
EZR32WG230 Data Sheet
Electrical Specifications
0
0.0
–0.1
-40°C
25°C
85°C
–1
-40°C
25°C
85°C
–2
High-Level Output Current [mA]
High-Level Output Current [mA]
–0.2
–0.3
–0.4
–0.5
–3
–4
–5
–6
–0.6
–7
–0.7
–0.8
0.0
–8
0.5
1.5
1.0
2.0
2.5
High-Level Output Voltage [V]
3.0
–9
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOWEST
3.0
3.5
0
-40°C
25°C
85°C
-40°C
25°C
85°C
–10
High-Level Output Current [mA]
–10
High-Level Output Current [mA]
1.5
1.0
2.0
2.5
High-Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
2.5
High-Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
–50
0.0
0.5
1.5
1.0
2.0
2.5
High-Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = High
Figure 4.6. Typical High-Level Output Current, 3.8 V Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 24
EZR32WG230 Data Sheet
Electrical Specifications
4.10 Oscillators
4.10.1 LXFO
Table 4.10. LFXO
Parameter
Min
Typ
Max
Unit
fLFXO
─
32.768
─
kHz
ESRLFXO
─
30
120
kΩ
Supported crystal external load
range
CLFXOL
X1
─
25
pF
Duty cycle
DCLFXO
48
50
53.5
%
Supported nominal crystal frequency
Supported crystal equivalent
series resistance (ESR)
Symbol
Test Condition
Current consumption for core
and buffer after startup
ILFXO
ESR=30 kΩ, CL=10 pF, LFXOBOOST in CMU_CTRL is 1
─
190
─
nA
Start- up time
tLFXO
ESR=30 kΩ, CL=10 pF, 40% 60% duty cycle has been
reached, LFXOBOOST in
CMU_CTRL is 1
─
400
─
ms
Note:
1. See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio.
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application
note AN0016: EFM32 Oscillator Design Consideration.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 25
EZR32WG230 Data Sheet
Electrical Specifications
4.10.2 HFXO
Table 4.11. HFXO
Parameter
Supported nominal crystal
Frequency
Supported crystal equivalent
series resistance (ESR)
The transconductance of the
HFXO input transistor at crystal startup
Symbol
Test Condition
Min
Typ
Max
Unit
4
─
48
MHz
Crystal frequency 48 MHz
─
─
50
Ω
Crystal frequency 32 MHz
─
30
60
Ω
Crystal frequency 4 MHz
─
400
1500
Ω
HFXOBOOST in CMU_CTRL equals
0b11
20
─
─
ms
5
─
25
pF
46
50
54
%
4 MHz: ESR=400 Ohm, CL=20 pF,
HFXOBOOST in CMU_CTRL equals
0b11
─
85
─
µA
32 MHz: ESR=30 Ohm, CL=10 pF,
HFXOBOOST in CMU_CTRL equals
0b11
─
165
─
µA
32 MHz: ESR=30 Ohm, CL=10 pF,
HFXOBOOST in CMU_CTRL equals
0b11
─
400
─
µs
fHFXO
ESRHFXO
gmHFXO
Supported crystal external
load range
CHFXOL
Duty cycle
DCHFXO
Current consumption for
HFXO after startup
IHFXO
Startup time
tHFXO
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 26
EZR32WG230 Data Sheet
Electrical Specifications
4.10.3 LFRCO
Table 4.12. LFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency , VDD= 3.0
V, TAMB=25 °C
fLFRCO
31.29
32.768
34.28
kHz
Startup time not including software calibration
tLFRCO
─
150
─
µs
Current consumption
ILFRCO
─
300
─
nA
─
1.5
─
%
42
42
40
40
38
38
Frequency [kHz]
Frequency [kHz]
Frequency step for LSB change in
TUNETUNING value
STEPLFRCO
-40°C
25°C
85°C
36
34
34
32
32
30
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
3.8
2.0 V
3.0 V
3.8 V
36
30
–40
–15
5
25
Temperature [°C]
45
65
85
Figure 4.7. Calibrated LFRCO Frequency vs Temperature and Supply Voltage
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 27
EZR32WG230 Data Sheet
Electrical Specifications
4.10.4 HFRCO
Table 4.13. HFRCO
Parameter
Oscillation frequency, VDD=
3.0 V, TAMB=25 °C
Settling time after start-up
Symbol
fHFRCO
tHFRCO_set-
Test Condition
Min
Typ
Max
Unit
28 MHz frequency band
27.5
28.0
28.5
MHz
21 MHz frequency band
20.6
21.0
21.4
MHz
14 MHz frequency band
13.7
14.0
14.3
MHz
11 MHz frequency band
10.8
11.0
11.2
MHz
7 MHz frequency band
6.48
6.60
6.72
MHz
1 MHz frequency band
1.15
1.20
1.25
MHz
fHFRCO = 14 MHz
─
0.6
─
Cycles
fHFRCO = 28 MHz
─
165
215
µA
fHFRCO = 21 MHz
─
134
175
µA
fHFRCO = 14 MHz
─
106
140
µA
fHFRCO = 11 MHz
─
94
125
µA
fHFRCO = 6.6 MHz
─
77
105
µA
fHFRCO = 1.2 MHz
─
25
40
µA
fHFRCO = 14 MHz
48.5
50
51
%
─
0.31
─
%
tling
Current consumption
IHFRCO
Duty cycle
DCHFRCO
Frequency step for LSB
change in TUNING value
TUNESTEPHFRC
O
Note:
1. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature.
By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and
the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 28
EZR32WG230 Data Sheet
1.45
1.45
1.40
1.40
1.35
1.35
1.30
Frequency [MHz]
Frequency [MHz]
Electrical Specifications
-40°C
25°C
85°C
1.25
1.20
1.30
1.25
1.20
1.15
1.15
1.10
1.10
1.05
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
1.05
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Temperature [°C]
45
65
85
6.70
6.70
6.65
6.65
6.60
6.60
6.55
6.55
Frequency [MHz]
Frequency [MHz]
Figure 4.8. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature
6.50
6.45
6.40
6.45
6.40
-40°C
25°C
85°C
6.35
6.30
2.0
6.50
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
6.35
3.8
6.30
–40
–15
5
25
Temperature [°C]
45
65
85
Figure 4.9. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 29
EZR32WG230 Data Sheet
11.2
11.2
11.1
11.1
11.0
11.0
Frequency [MHz]
Frequency [MHz]
Electrical Specifications
10.9
10.8
10.8
10.7
10.6
2.0
10.9
10.7
-40°C
25°C
85°C
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
10.6
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Temperature [°C]
45
65
85
14.2
14.2
14.1
14.1
14.0
14.0
13.9
13.9
Frequency [MHz]
Frequency [MHz]
Figure 4.10. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature
13.8
13.7
13.6
13.7
13.6
-40°C
25°C
85°C
13.5
13.4
2.0
13.8
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
13.5
3.8
13.4
–40
–15
5
25
Temperature [°C]
45
65
85
Figure 4.11. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 30
EZR32WG230 Data Sheet
21.2
21.2
21.0
21.0
Frequency [MHz]
Frequency [MHz]
Electrical Specifications
20.8
20.6
20.4
20.8
20.6
20.4
-40°C
25°C
85°C
20.2
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
20.2
–40
3.8
–15
5
25
Temperature [°C]
45
65
85
Figure 4.12. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature
28.2
28.4
28.2
28.0
28.0
Frequency [MHz]
Frequency [MHz]
27.8
27.6
27.4
27.8
27.6
27.4
27.2
27.2
-40°C
25°C
85°C
27.0
26.8
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
27.0
3.8
26.8
–40
–15
5
25
Temperature [°C]
45
65
85
Figure 4.13. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 31
EZR32WG230 Data Sheet
Electrical Specifications
4.10.5 AUXHFRCO
Table 4.14. AUXHFRCO
Parameter
Oscillation frequency, VDD=
3.0 V, TAMB=25 °C
Settling time after start-up
Symbol
fAUXHFRCO
tAUXHFR-
Test Condition
Min
Typ
Max
Unit
28 MHz frequency band
27.5
28.0
28.5
MHz
21 MHz frequency band
20.6
21.0
21.4
MHz
14 MHz frequency band
13.7
14.0
14.3
MHz
11 MHz frequency band
10.8
11.0
11.2
MHz
7 MHz frequency band
6.481
6.601
6.721
MHz
1 MHz frequency band
1.152
1.202
1.252
MHz
fAUXHFRCO = 14 MHz
─
0.6
─
Cycles
─
0.33
─
%
CO_settling
Frequency step for LSB
change in TUNING value
TUNESTEPAUXHFR
CO
Note:
1. For devices with prod. rev. < 19, Typ = 7 MHz and Min/Max values not applicable.
2. For devices with prod. rev. < 19, Typ = 1 MHz and Min/Max values not applicable.
3. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz
across operating conditions.
4.10.6 ULFRCO
Table 4.15. ULFRCO
Parameter
Symbol
Test Condition
Min
Oscillation frequency
fULFRCO
25 °C, 3 V
0.7
Typ
Max
Unit
1.75
kHz
Temperature coefficient
TCULFRCO
─
0.05
─
%/°C
Supply voltage coefficient
VCULFRCO
─
-18.2
─
%/V
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 32
EZR32WG230 Data Sheet
Electrical Specifications
4.11 Analog Digital Converter (ADC)
Table 4.16. ADC
Parameter
Symbol
Input voltage range
VADCIN
Input range of external reference voltage, single ended
and differential
VADCREFIN
Input range of external negative reference voltage on
channel 7
VADCRE-
Input range of external positive reference voltage on
channel 6
VADCRE-
Common mode input range
VADCCMIN
Input current
Analog input common mode
rejection ratio
Average active current
Test Condition
Min
Typ
Max
Unit
Single ended
0
─
VREF
V
Differential
-VREF/2
─
VREF/2
V
1.25
─
VDD
V
See VADCREFIN
0
─
VDD - 1.1
V
See VADCREFIN
0.625
─
VDD
V
0
─
VDD
V
─
<100
─
nA
─
65
─
dB
1 MSamples/s, 12 bit, external reference
─
351
─
µA
10 kSamples/s 12 bit, internal 1.25 V
reference, WARMUPMODE in
ADCn_CTRL set to 0b00
─
67
─
µA
10 kSamples/s 12 bit, internal 1.25 V
reference, WARMUPMODE in
ADCn_CTRL set to 0b01
─
63
─
µA
10 kSamples/s 12 bit, internal 1.25 V
reference, WARMUPMODE in
ADCn_CTRL set to 0b10
─
64
─
µA
Internal voltage reference
─
65
─
µA
FIN_CH7
FIN_CH6
IADCIN
2 pF sampling capacitors
CMRRADC
IADC
Current consumption of internal voltage reference
IADCREF
Input capacitance
CADCIN
─
2
─
pF
Input ON resistance
RADCIN
1
─
─
MOhm
Input RC filter resistance
RADCFILT
─
10
─
kOhm
Input RC filter/decoupling capacitance
CADCFILT
─
250
─
fF
ADC Clock Frequency
fADCCLK
─
─
13
MHz
6 bit
7
─
─
ADCCLK
Cycles
8 bit
11
─
─
ADCCLK
Cycles
12 bit
13
─
─
ADCCLK
Cycles
Programmable
1
─
256
ADCCLK
Cycles
Conversion time
Acquisition time
tADCCONV
tADCACQ
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 33
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Required acquisition time for
VDD/3 reference
Startup time of reference generator and ADC core in NORMAL mode
Startup time of reference generator and ADC core in KEEPADCWARM mode
Signal to Noise Ratio (SNR)
Symbol
Test Condition
Min
Typ
Max
Unit
2
─
─
µs
─
5
─
µs
─
1
─
µs
1 MSamples/s, 12 bit, single ended,
internal 1.25 V reference
─
59
─
dB
1 MSamples/s, 12 bit, single ended,
internal 2.5 V reference
─
63
─
dB
1 MSamples/s, 12 bit, single ended,
VDD reference
─
65
─
dB
1 MSamples/s, 12 bit, differential, internal 1.25 V reference
─
60
─
dB
1 MSamples/s, 12 bit, differential, internal 2.5 V reference
─
65
─
dB
1 MSamples/s, 12 bit, differential, 5 V
reference
─
54
─
dB
1 MSamples/s, 12 bit, differential,
VDD reference
─
67
─
dB
1 MSamples/s, 12 bit, differential,
2xVDD reference
─
69
─
dB
200 kSamples/s, 12 bit, single
ended, internal 1.25V reference
─
62
─
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
63
─
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
─
67
─
dB
200 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
63
─
dB
200 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
66
─
dB
200 kSamples/s, 12 bit, differential, 5
V reference
─
66
─
dB
200 kSamples/s, 12 bit, differential,
VDD reference
63
66
─
dB
200 kSamples/s, 12 bit, differential,
2xVDD reference
─
70
─
dB
tADCACQVDD3
tADCSTART
SNRADC
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 34
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
SIgnal-to-Noise And Distortion-ratio (SINAD)
Symbol
SINADADC
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
1 MSamples/s, 12 bit, single ended,
internal 1.25 V reference
─
58
─
dB
1 MSamples/s, 12 bit, single ended,
internal 2.5 V reference
─
62
─
dB
1 MSamples/s, 12 bit, single ended,
VDD reference
─
64
─
dB
1 MSamples/s, 12 bit, differential, internal 1.25 V reference
─
60
─
dB
1 MSamples/s, 12 bit, differential, internal 2.5 V reference
─
64
─
dB
1 MSamples/s, 12 bit, differential, 5V
reference
─
54
─
dB
1 MSamples/s, 12 bit, differential,
VDD reference
─
66
─
dB
1 MSamples/s, 12 bit, differential,
2xVDD reference
─
68
─
dB
200 kSamples/s, 12 bit, single
ended, internal 1.25 V reference
─
61
─
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
65
─
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
─
66
─
dB
200 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
63
─
dB
200 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
66
─
dB
200 kSamples/s, 12 bit, differential,
5V reference
─
66
─
dB
200 kSamples/s, 12 bit, differential,
VDD reference
62
66
─
dB
200 kSamples/s, 12 bit, differential,
2xVDD reference
─
69
─
dB
Rev. 1.1 | 35
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Test Condition
Min
Typ
Max
Unit
1 MSamples/s, 12 bit, single ended,
internal 1.25 V reference
─
64
─
dBc
1 MSamples/s, 12 bit, single ended,
internal 2.5 V reference
─
76
─
dBc
1 MSamples/s, 12 bit, single ended,
VDD reference
─
73
─
dBc
1 MSamples/s, 12 bit, differential, internal 1.25 V reference
─
66
─
dBc
1 MSamples/s, 12 bit, differential, internal 2.5 V reference
─
77
─
dBc
1 MSamples/s, 12 bit, differential,
VDD reference
─
76
─
dBc
1 MSamples/s, 12 bit, differential,
2xVDD reference
─
75
─
dBc
1 MSamples/s, 12 bit, differential, 5V
reference
─
69
─
dBc
200 kSamples/s, 12 bit, single
ended, internal 1.25 V reference
─
75
─
dBc
200 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
75
─
dBc
200 kSamples/s, 12 bit, single
ended, VDD reference
─
76
─
dBc
200 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
79
─
dBc
200 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
79
─
dBc
200 kSamples/s, 12 bit, differential, 5
V reference
─
78
─
dBc
200 kSamples/s, 12 bit, differential,
VDD reference
68
79
─
dBc
200 kSamples/s, 12 bit, differential,
2xVDD reference
─
79
─
dBc
VADCOFF-
After calibration, single ended
-3.5
0.3
3
mV
SET
After calibration, differential
─
0.3
─
mV
─
-1.92
─
mV/°C
CTH
─
-6.3
─
ADC Codes/°C
Differential non-linearity (DNL)
DNLADC
-1
±0.7
4
LSB
Integral non-linearity (INL),
End point method
INLADC
─
±1.2
±3
LSB
No missing codes
MCADC
11.9991
12
─
bits
GAINED
1.25 V reference
─
0.012
0.0333
%/°C
Gain error drift
2.5 V reference
─
0.012
0.033
%/°C
Spurious-Free Dynamic
Range (SFDR)
Offset voltage
Thermometer output gradient
Symbol
SFDRADC
TGRADAD
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 36
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Symbol
OFFSETED
Offset error drift
Test Condition
Min
Typ
Max
Unit
1.25 V reference
─
0.22
0.73
LSB/°C
2.5 V reference
─
0.22
0.623
LSB/°C
Note:
1. On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78 dBc for a full scale
input for chips that have the missing code issue.
2. Typical numbers given by abs(Mean) / (85 - 25).
3. Max number given by (abs(Mean) + 3x stddev) / (85 - 25).
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.14 (p. 33) and Figure 3.15 (p. 33) ,
respectively.
Digital ouput code
4095
4094
4093
4092
INL=|[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N - 1
Actual ADC
tranfer function
before offset and
gain correction
Actual ADC
tranfer function
after offset and
gain correction
INL Error
(End Point INL)
3
Ideal transfer
curve
2
1
VOFFSET
0
Analog Input
Figure 4.14. Integral Non-Linearity (INL)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 37
EZR32WG230 Data Sheet
Electrical Specifications
Digital
ouput
code
DNL=|[(VD+1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N - 2
Full Scale Range
4095
4094
Example: Adjacent
input value VD+1
corrresponds to digital
output code D+1
4093
4092
Code width =2 LSB
DNL=1 LSB
Ideal transfer
curve
5
Actual transfer
function with one
missing code.
Example: Input value
VD corrresponds to
digital output code D
0.5
LSB
Ideal spacing
between two
adjacent codes
VLSBIDEAL=1 LSB
4
3
2
1
Ideal 50%
Transition Point
Ideal Code Center
0
Analog Input
Figure 4.15. Differential Non-Linearity (DNL)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 38
EZR32WG230 Data Sheet
Electrical Specifications
4.11.1 Typical Performance
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 39
EZR32WG230 Data Sheet
Electrical Specifications
VDD Reference
Figure 4.16. ADC Frequency Spectrum, VDD = 3 V, Temp = 25 °C
1.25V Reference
silabs.com | Smart. Connected. Energy-friendly.
2.5V Reference
Rev. 1.1 | 40
EZR32WG230 Data Sheet
Electrical Specifications
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
Figure 4.17. ADC Integral Linearity Error vs Code, VDD = 3 V, Temp = 25 °C
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 41
EZR32WG230 Data Sheet
Electrical Specifications
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 42
EZR32WG230 Data Sheet
Electrical Specifications
VDD Reference
Figure 4.18. ADC Differential Linearity Error vs Code, VDD = 3 V, Temp = 25 °C
5
2.0
Vref=1V25
Vref=2V5
Vref=2XVDDVSS
Vref=5VDIFF
Vref=VDD
4
3
1.5
1.0
Actual Offset [LSB]
2
Actual Offset [LSB]
VRef=1V25
VRef=2V5
VRef=2XVDDVSS
VRef=5VDIFF
VRef=VDD
1
0
–1
0.5
0.0
–2
–0.5
–3
–4
2.0
2.2
2.4
2.6
2.8
3.0
Vdd (V)
3.2
3.4
3.6
Offset vs Supply Voltage, Temp = 25 °C
3.8
–1.0
–40
–15
5
25
Temp (C)
45
65
85
Offset vs Temperature, VDD = 3 V
Figure 4.19. ADC Absolute Offset, Common Mode = VDD/2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 43
EZR32WG230 Data Sheet
Electrical Specifications
79.4
71
2XVDDVSS
70
1V25
79.2
Vdd
69
79.0
67
5VDIFF
2V5
66
SFDR [dB]
SNR [dB]
68
Vdd
2V5
78.8
78.6
2XVDDVSS
78.4
65
78.2
64
63
–40
–15
5
25
Temperature [°C]
45
65
1V25
85
5VDIFF
78.0
–40
Signal to Noise Ratio (SNR)
–15
5
25
Temperature [°C]
45
65
85
Spurious-Free Dynamic Range (SFDR)
Figure 4.20. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V
2600
Vdd=2.0
Vdd=3.0
Vdd=3.8
Sensor readout
2500
2400
2300
2200
2100
–40
–25 –15
–5
5
15 25 35
Temperature [°C]
45
55
65
75
85
Figure 4.21. ADC Temperature Sensor Readout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 44
EZR32WG230 Data Sheet
Electrical Specifications
4.12 Digital Analog Converter (DAC)
Table 4.17. DAC
Parameter
Symbol
Output voltage range
VDACOUT
Output common mode voltage
range
VDACCM
Active current including references for 2 channels
Sample rate
DAC clock frequency
Clock cyckles per conversion
Test Condition
Min
Typ
Max
Unit
VDD voltage reference, single ended
0
─
VDD
V
VDD voltage reference, differential
-VDD
─
VDD
V
0
─
VDD
V
500 kSamples/s, 12 bit
─
4001
─
µA
100 kSamples/s, 12 bit
─
200
─
µA
1 kSamples/s 12 bit NORMAL
─
17
─
µA
─
─
500
ksamples/s
Continuous Mode
─
─
1000
kHz
Sample/Hold Mode
─
─
250
kHz
Sample/Off Mode
─
─
250
kHz
─
2
─
tDACCONV
2
─
─
µs
tDACSETTLE
─
5
─
µs
500 kSamples/s, 12 bit, single
ended, internal 1.25 V reference
─
58
─
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
59
─
dB
500 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
58
─
dB
500 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
58
─
dB
500 kSamples/s, 12 bit, differential,
VDD reference
─
59
─
dB
500 kSamples/s, 12 bit, single
ended, internal 1.25 V reference
─
57
─
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
54
─
dB
500 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
56
─
dB
500 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
53
─
dB
500 kSamples/s, 12 bit, differential,
VDD reference
─
55
─
dB
IDAC
SRDAC
fDAC
CYCDACCONV
Conversion time
Settling time
Signal to Noise Ratio (SNR)
Signal to Noise-pulse Distortion Ratio (SNDR)
SNRDAC
SNDRDAC
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 45
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Spurious-Free Dynamic
Range(SFDR)
Offset voltage
Symbol
Test Condition
Min
Typ
Max
Unit
500 kSamples/s, 12 bit, single
ended, internal 1.25 V reference
─
62
─
dBc
500 kSamples/s, 12 bit, single
ended, internal 2.5 V reference
─
56
─
dBc
500 kSamples/s, 12 bit, differential,
internal 1.25 V reference
─
61
─
dBc
500 kSamples/s, 12 bit, differential,
internal 2.5 V reference
─
55
─
dBc
500 kSamples/s, 12 bit, differential,
VDD reference
─
60
─
dBc
VDACOFF-
After calibration, single ended
─
2
9
mV
SET
After calibration, differential
─
2
─
mV
SFDRDAC
Differential non-linearity
DNLDAC
─
±1
─
LSB
Integral non-linearity
INLDAC
─
±5
─
LSB
No missing codes
MCDAC
─
12
─
bits
Note:
1. Measured with a static input code and no loading on the output.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 46
EZR32WG230 Data Sheet
Electrical Specifications
4.13 Operational Amplifier (OPAMP)
The electrical characteristics for the Operational Amplifiers are based on simulations.
Table 4.18. OPAMP
Parameter
Active Current
Open Loop Gain
Gain Bandwidth Product
Phase Margin
Symbol
IOPAMP
Test Condition
Min
Typ
Max
Unit
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, Unity Gain
─
370
460
µA
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, Unity Gain
─
95
135
µA
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, Unity Gain
─
13
25
µA
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
─
101
─
dB
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
─
98
─
dB
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
─
91
─
dB
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
─
6.1
─
MHz
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
─
1.8
─
MHz
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
─
0.25
─
MHz
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, CL=75 pF
─
64
─
°
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, CL=75 pF
─
58
─
°
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, CL=75 pF
─
58
─
°
GOL
GBWOPA
MP
PMOPAM
P
Input Resistance
RINPUT
─
100
─
MΩ
Load Resistance
RLOAD
200
─
─
Ω
DC Load Current
ILOAD_DC
─
─
11
mA
OPAxHCMDIS=0
VSS
─
VDD
V
OPAxHCMDIS=1
VSS
─
VDD-1.2
V
VSS
─
VDD
V
Unity Gain, VSS<Vin<VDD,
OPAxHCMDIS=0
-13
0
11
mV
Unity Gain, VSS<Vin<VDD-1.2,
OPAxHCMDIS=1
─
1
─
mV
─
─
0.02
mV/°C
Input Voltage
Output Voltage
Input Offset Voltage
Input Offset Voltage Drift
VINPUT
VOUTPUT
VOFFSET
VOFFSET_DRIF
T
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 47
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Slew Rate
Voltage Noise
Symbol
Test Condition
Min
Typ
Max
Unit
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
─
3.2
─
V/µs
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
─
0.8
─
V/µs
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
─
0.1
─
V/µs
Vout=1 V, RESSEL=0, 0.1 Hz<f<10
kHz, OPAxHCMDIS=0
─
101
─
µVRMS
Vout=1 V, RESSEL=0, 0.1 Hz<f<10
kHz, OPAxHCMDIS=1
─
141
─
µVRMS
Vout=1 V, RESSEL=0, 0.1 Hz<f<1
MHz, OPAxHCMDIS=0
─
196
─
µVRMS
Vout=1 V, RESSEL=0, 0.1 Hz<f<1
MHz, OPAxHCMDIS=1
─
229
─
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=0
─
1230
─
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=1
─
2130
─
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=0
─
1630
─
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=1
─
2590
─
µVRMS
SROPAM
P
NOPAMP
Figure 4.22. OPAMP Common Mode Rejection Ratio
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 48
EZR32WG230 Data Sheet
Electrical Specifications
Figure 4.23. OPAMP Positive Power Supply Rejection Ratio
Figure 4.24. OPAMP Negative Power Supply Rejection Ratio
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 49
EZR32WG230 Data Sheet
Electrical Specifications
Figure 4.25. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout = 1 V
Figure 4.26. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 50
EZR32WG230 Data Sheet
Electrical Specifications
4.14 Analog Comparator (ACMP)
Table 4.19. ACMP
Parameter
Symbol
Input voltage range
ACMP Common Mode
voltage range
Test Condition
Min
Typ
Max
Unit
VACMPIN
0
─
VDD
V
VACMPCM
0
─
VDD
V
BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in
ACMPn_CTRL register
─
0.1
0.4
µA
IACMP
BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
─
2.87
15
µA
IACMPREF
VACMPOFFSET
BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in
ACMPn_CTRL register
─
195
520
µA
Current consumption of
internal voltage reference
VACMPHYST
Internal voltage reference off. Using external voltage reference
─
0
─
µA
RCSRES
Internal voltage reference
─
5
─
µA
Offset voltage
tACMPSTART
BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
-12
0
12
mV
Programmable
─
17
─
mV
CSRESSEL=0b00 in ACMPn_INPUTSEL
─
39
─
kΩ
CSRESSEL=0b01 in ACMPn_INPUTSEL
─
71
─
kΩ
CSRESSEL=0b10 in ACMPn_INPUTSEL
─
104
─
kΩ
CSRESSEL=0b11 in ACMPn_INPUTSEL
─
136
─
kΩ
─
─
10
µs
Active current
ACMP hysteresis
Capacitive Sense Internal Resistance
Startup time
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given below. IACMPREF is
zero if an external voltage reference is used: IACMPTOTAL = IACMP = IACMPREF
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 51
EZR32WG230 Data Sheet
Electrical Specifications
4.5
2.5
HYSTSEL=0.0
HYSTSEL=2.0
HYSTSEL=4.0
HYSTSEL=6.0
4.0
3.5
Response Time [us]
Current [uA]
2.0
1.5
1.0
3.0
2.5
2.0
1.5
1.0
0.5
0.5
0.0
4
8
ACMP_CTRL_BIASPROG
0
12
Current Consumption, HYSTEL = 4
0.0
0
2
4
6
8
10
ACMP_CTRL_BIASPROG
12
14
Response Time
100
BIASPROG=0.0
BIASPROG=4.0
BIASPROG=8.0
BIASPROG=12.0
Hysteresis [mV]
80
60
40
20
0
0
1
2
4
3
ACMP_CTRL_HYSTSEL
5
6
7
Hysteresis
Figure 4.27. ACMP Characteristics, Vdd = 3 V, Temp = 25 °C, FULLBIAS = 0, HALFBIAS = 1
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 52
EZR32WG230 Data Sheet
Electrical Specifications
4.15 Voltage Comparator (VCMP)
Table 4.20. VCMP
Parameter
Symbol
Input voltage range
VCMP Common Mode
voltage range
Active current
Startup time reference
generator
Offset voltage
VCMP hysteresis
Test Condition
Min
Typ
Max
Unit
VVCMPIN
─
VDD
─
V
VVCMPC
─
VDD
─
V
BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register
─
0.3
0.6
µA
IVCMP
BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register.
LPREF=0.
─
22
35
µA
tVCMPRE
NORMAL
─
10
─
µs
VVCMPOF
Single ended
─
10
─
mV
FSET
Differential
─
10
─
mV
─
61
210
mV
─
─
10
µs
M
F
VVCMPHY
ST
Startup time
tVCMPST
ART
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following
equation: VDD Trigger Level=1.667 V+0.034 ×TRIGLEVEL
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 53
EZR32WG230 Data Sheet
Electrical Specifications
4.16 I2C
Table 4.21. I2C Standard-Mode (Sm)
Parameter
Symbol
Min
Typ
Max
Unit
SCL clock frequency
fSCL
0
─
100 1
kHz
SCL clock low time
tLOW
4.7
─
─
µs
SCL clock high time
tHIGH
4.0
─
─
µs
SDA set-up time
tSU,DAT
250
─
─
ns
SDA hold time
tHD,DAT
8
─
34502, 3
ns
Repeated START condition set-up time
tSU,STA
4.7
─
─
µs
(Repeated) START condition hold time
tHD,STA
4.0
─
─
µs
STOP condition set-up time
tSU,STO
4.0
─
─
µs
tBUF
4.7
─
─
µs
Bus free time between a STOP and a START
condition
Note:
1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EZR32WG Reference Manual.
2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450 * 10-9 [s] * fHFPERCLK [Hz]) - 4).
Table 4.22. I2C Fast-Mode (Fm)
Parameter
Symbol
Min
Typ
Max
Unit
SCL clock frequency
fSCL
0
─
4001
kHz
SCL clock low time
tLOW
1.3
─
─
µs
SCL clock high time
tHIGH
0.6
─
─
µs
SDA set-up time
tSU,DAT
100
─
─
ns
SDA hold time
tHD,DAT
8
─
9002 , 3
ns
Repeated START condition set-up time
tSU,STA
0.6
─
─
µs
(Repeated) START condition hold time
tHD,STA
0.6
─
─
µs
STOP condition set-up time
tSU,STO
0.6
─
─
µs
tBUF
1.3
─
─
µs
Bus free time between a STOP and a START condition
Note:
1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EZR32WG Reference Manual.
2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900 * 10-9 [s] * fHFPERCLK [Hz]) - 4).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 54
EZR32WG230 Data Sheet
Electrical Specifications
Table 4.23. I2C Fast-mode Plus (Fm+)
Parameter
Symbol
Min
Typ
Max
Unit
SCL clock frequency
fSCL
0
─
10001
kHz
SCL clock low time
tLOW
0.5
─
─
µs
SCL clock high time
tHIGH
0.26
─
─
µs
SDA set-up time
tSU,DAT
50
─
─
ns
SDA hold time
tHD,DAT
8
─
─
ns
Repeated START condition set-up time
tSU,STA
0.26
─
─
µs
(Repeated) START condition hold time
tHD,STA
0.26
─
─
µs
STOP condition set-up time
tSU,STO
0.26
─
─
µs
tBUF
0.5
─
─
µs
Bus free time between a STOP and a START
condition
Note:
1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EZR32WG Reference Manual.
4.17 Radio
All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to
+85 °C unless otherwise stated. All typical values apply at V DD = 3.3 V and 25 °C unless otherwise stated. The data was collected while
running off the internal RC oscillator (HFRCO).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 55
EZR32WG230 Data Sheet
Electrical Specifications
4.17.1 EZRadioPRO (R6x) DC Electrical Characteristics
Measured on direct-tie RF evaluation board.
Table 4.24. EZRadioPro DC Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Ishutdown
RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator
OFF
—
30
4000
nA
Istandby
Register values maintained and RC
oscillator/WUT OFF
—
40
9000
nA
ISleepRC
RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator
OFF
—
740
10000
nA
ISleepXO
Sleep current using an external 32
kHz crystal
—
1.7
—
μA
ISensor-LBD
Low battery detector ON, register
values maintained, and all other
blocks OFF
—
1
—
μA
IReady
Crystal Oscillator and Main Digital
Regulator ON, all other blocks OFF
—
1.8
—
mA
Duty cycing during preamble search,
1.2 kbps, 4 byte preamble
—
6
—
mA
Fixed 1s wakeup interval, 50 kbps, 5
byte preamble
—
10
—
μA
ITuneRX
RX Tune, High Performance Mode
—
7.6
—
mA
ITuneTX
TX Tune, High Performance Mode
—
7.8
—
mA
IRXH
High Performance Mode, 868 MHz,
40 kbps
—
13.7
22
mA
IRXL
Low Power Mode, 868 MHz, 40 kbps
—
11.1
—
mA
+20 dBm output power, class-E
match, 915 MHz, 3.3 V
—
88
108
mA
+20 dBm output power, square-wave
match, 169 MHz, 3.3 V
—
69
80
mA
+13 dBm output power, class-E
match, 915 MHz, 3.3 V
—
44.5
60
mA
ITX+10
+10 dBm output power, class-E
match, 868/915 MHz, 3.3 V
—
19.7
—
mA
ITX_+10
+10 dBm output power, class-E
match, 169 MHz, 3.3 V
—
18
—
mA
ITX_+13
+13 dBm output power, class-E
match, 868/915 MHz, 3.3 V
—
22
—
mA
ITX_+16
+16 dBm output power, class-E
match, 868 MHz, 3.3 V
—
43
55
mA
ITX_+13
+13 dBm output power, switchedcurrent match, 868 MHz, 3.3 V
—
33.5
40
mA
Power Saving Modes
Preamble Sense Mode Current
TUNE Mode Current
Ipsm
RX Mode Current
TX Mode Current (R63, R68)
TX Mode Current (R60, R67)
TX Mode Current (R61)
ITX+20
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 56
EZR32WG230 Data Sheet
Electrical Specifications
4.17.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics
Table 4.25. EZRadioPro Synthensizer
Parameter
Synthesizer Frequency
Range
Synthesizer Frequency
Resolution
Synthesizer Settling Time
Symbol
Test Condition
FSYN
Min
Typ
Max
Unit
850
—
1050
MHz
350
—
525
MHz
284
—
350
MHz
142
—
175
MHz
FRES-1050
850–1050 MHz
—
28.6
—
Hz
FRES-525
420–525 MHz
—
14.3
—
Hz
FRES-350
283–350 MHz
—
9.5
—
Hz
FRES-175
142–175 MHz
—
4.7
—
Hz
tLOCK
Measured from exiting Ready
mode with XOSC running to any
frequency. Including VCO Calibration.
—
50
—
μs
ΔF = 10 kHz, 169 MHz, High Perf
—
–117
–108
dBc/Hz
—
–120
–115
dBc/Hz
—
–138
–135
dBc/Hz
—
–148
–143
dBc/Hz
—
–102
–94
dBc/Hz
—
–105
–97
dBc/Hz
—
–125
–122
dBc/Hz
—
–138
–135
dBc/Hz
Mode
ΔF = 100 kHz, 169 MHz, High
Perf Mode
ΔF = 1 MHz, 169 MHz, High Perf
Mode
ΔF = 10 MHz, 169 MHz, High
Phase Noise
L Φ(fM)
Perf Mode
ΔF = 10 kHz, 915 MHz, High Perf
Mode
ΔF = 100 kHz, 915 MHz, High
Perf Mode
ΔF = 1 MHz, 915 MHz, High Perf
Mode
ΔF = 10 MHz, 915 MHz, High
Perf Mode
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 57
EZR32WG230 Data Sheet
Electrical Specifications
4.17.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics
For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used.
Measured over 50000 bits using PN9 data sequence and data and clock on GPIOs. Sensitivity is expected to be better if reading data
from packet handler FIFO especially at higher data rates.
Table 4.26. EZRadioPro Receiver AC Electrical Characteristics
Parameter
RX Frequency Range
Symbol
Test Condition
FRX
Min
Typ
Max
Unit
850
—
1050
MHz
350
—
525
MHz
350
MHz
284
142
—
175
MHz
RX Sensitivity 169 MHz (R68,
R67)3
PRX_0.1
(BER < 0.1%) (100 bps, GFSK, BT =
0.5, Δf = ±100 Hz)
—
–133
—
dBm
RX Sensitivity 169 MHz (R60,
R61, R63)3
PRX_0.5
(BER < 0.1%) (500 bps, GFSK, BT =
0.5, Δf = ±250 Hz)
—
–129
—
dBm
PRX_40
(BER < 0.1%) (40 kbps, GFSK, BT =
0.5, Δf = ±20 kHz)
—
–110.7
–108
dBm
PRX_100
(BER < 0.1%) (100 kbps, GFSK, BT
= 0.5, Δf = ±50 kHz)
—
–106
–104
dBm
(BER < 0.1%) (500 kbps, GFSK, BT
= 0.5, Δf = ±250 kHz)
—
–99
–96
dBm
PRX_9.6
(PER 1%) (9.6 kbps, 4GFSK, BT =
0.5, Δf = ±2.4 kHz)
—
–110
—
dBm
PRX_1M
(PER 1%) (1 Mbps, 4GFSK, BT =
0.5, inner deviation = 83.3 kHz)
—
–89
—
dBm
(BER < 0.1%, 4.8 kbps, 350 kHz
BW, OOK, PN15 data)
—
–110
–107
dBm
(BER < 0.1%, 40 kbps, 350 kHz BW,
OOK, PN15 data)
—
–103
–100
dBm
(BER < 0.1%, 120 kbps, 350 kHz
BW, OOK, PN15 data)
—
–97
–93
dBm
PRX_125
RX Sensitivity 169 MHz (R60,
R61, R63, R67, R68)3
PRX_OOK
RX Sensitivity 915/868 MHz
(R68, R67)3
PRX_0.1
(BER < 0.1%) (100 bps, GFSK, BT =
0.5, Δf = ±100 Hz)
—
–132
—
dBm
RX Sensitivity 915/868 MHz
(R60, R61, R63)3
PRX_0.5
(BER < 0.1%) (500 bps, GFSK, BT =
0.5, Δf = ±250 Hz)
—
–127
—
dBm
(BER < 0.1%) (40 kbps, GFSK, BT =
0.5, Δf = ±20 kHz)
—
–109.9
—
dBm
(BER < 0.1%) (40 kbps, GFSK, BT =
0.5, Δf = ±20 kHz)
—
–109.4
—
dBm
RX Sensitivity 868 MHz (R60,
R61, R63, R67, R68)3
RX Sensitivity 915 MHz (R60,
R61, R63, R67, R68)3
PRX_40
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 58
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
PRX_100
(BER < 0.1%) (100 kbps, GFSK, BT
= 0.5, Δf = ±50 kHz)
—
–104
–102
dBm
(BER < 0.1%) (500 kbps, GFSK, BT
= 0.5, Δf = ±250 kHz)
—
–97
–92
dBm
PRX_9.6
(PER 1%) (9.6 kbps, 4GFSK, BT =
0.5, Δf = ±2.4 kHz)
—
–110.6
—
dBm
PRX_1M
(PER 1%) (1 Mbps, 4GFSK, BT =
0.5, inner deviation = 83.3 kHz)
—
–88.7
—
dBm
(BER < 0.1%, 4.8 kbps, 350 kHz
BW, OOK, PN15 data)
—
–108
–104
dBm
(BER < 0.1%, 40 kbps, 350 kHz BW,
OOK, PN15 data)
—
–101
–97
dBm
(BER < 0.1%, 120 kbps, 350 kHz
BW, OOK, PN15 data)
—
–96
–91
dBm
1.1
—
850
kHz
0.2
—
850
kHz
PRX_125
RX Sensitivity 915/868 MHz
(R60, R61, R63, R67, R68)3
PRX_OOK
RX Channel Bandwidth (R60,
R61, R63)
RX Channel Bandwidth (R68,
R67)
RSSI Resolution
BW
RESRSSI
Valid from –110 dBm to -90 dBm
—
±0.5
—
dB
—
–69
–59
dB
C/I1-CH
Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW
and desired is modulated with 2.4
kbps ΔF = 1.2 kHz GFSK with BT =
0.5, RX channel BW = 4.8 kHz,
channel spacing = 12.5 kHz
±1-Ch Offset Selectivity, 450
MHz
—
–60
–50
dB
±1-Ch Offset Selectivity, 868 /
915 MHz
—
–52.5
–45
dB
—
–79
–68
dB
—
–86
–75
dB
±1-Ch Offset Selectivity, 169
MHz
Blocking 1 MHz Offset
1MBLOCK
Blocking 8 MHz Offset
8MBLOCK
silabs.com | Smart. Connected. Energy-friendly.
Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW
and desired is modulated with 2.4
kbps ΔF = 1.2 kHz GFSK with BT =
0.5, RX channel BW = 4.8 kHz
Rev. 1.1 | 59
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Image Rejection (IF = 468.75
kHz)
Symbol
ImREJ
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
No image rejection calibration. Rejection at the image frequency. RF =
460 MHz
30
40
—
dB
With image rejection calibration. Rejection at the image frequency. RF =
460 MHz
40
55
—
dB
No image rejection calibration. Rejection at the image frequency. RF =
915 MHz
30
45
—
dB
With image rejection calibration. Rejection at the image frequency. RF =
915 MHz
40
52
—
dB
No image rejection calibration. Rejection at the image frequency. RF =
169 MHz
35
45
—
dB
With image rejection calibration. Rejection at the image frequency. RF =
169 MHz
45
60
—
dB
Rev. 1.1 | 60
EZR32WG230 Data Sheet
Electrical Specifications
4.17.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics
The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60,
where Fxtal is the XTAL frequency (typically 30 MHz).
Default API setting for modulation deviation resolution is double the typical value specified.
Output power is dependent on matching components and board layout.
Table 4.27. EZRadioPro Transmitter AC Electrical Characteristics
Parameter
TX Frequency Range
Symbol
Test Condition
FTX
Min
Typ
Max
Unit
850
—
1050
MHz
350
—
525
MHz
284
—
350
MHz
142
—
175
MHz
(G)FSK Data Rate
DRFSK
0.1
—
500
kbps
4(G)FSK Data Rate
DR4FSK
0.2
—
1000
kbps
OOK Data Rate
DROOK
0.1
—
120
kbps
Δf960
850–1050 MHz
—
1.5
—
MHz
Δf525
420–525 MHz
—
750
—
kHz
Δf420
350–420 MHz
—
600
—
kHz
Δf350
283–350 MHz
—
500
—
kHz
Δf175
142–175 MHz
—
250
—
kHz
FRES-1050
850–1050 MHz
—
28.6
—
Hz
FRES-525
420–525 MHz
—
14.3
—
Hz
FRES-420
350–420 MHz
—
11.4
—
Hz
FRES-350
283–350 MHz
—
9.5
—
Hz
FRES-175
142–175 MHz
—
4.7
—
Hz
Output Power Range (R63)
PTX63
Typical Output Power Range at 3.3
V with Class E mtch optimized for
best PA efficiency
–20
—
+20
dBm
Typical Output Power Range
(R61)
Typical Output Power Range at 3.3
V with Class E mtch optimized for
best PA efficiency
–40
+16
dBm
PTX61
Modulation Deviation Range
Modulation Deviation Resolution
Typical Output Power Range
at (R60)
PTX60
Typical Output Power Range at 3.3
V with Class E mtch optimized for
best PA efficiency
–20
—
+12.5
dBm
Typical Output Power Range
at (R68)
PTX68
Typical Output Power Range at 3.3
V with Class E mtch optimized for
best PA efficiency
–20
—
+20
dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 61
EZR32WG230 Data Sheet
Electrical Specifications
Parameter
Test Condition
Min
Typ
Max
Unit
Typical Output Power Range
at (R67)
Typical Output Power Range at 3.3
V with Class E mtch optimized for
best PA efficiency
–20
—
+12.5
dBm
Output Power Variation (R63,
R68)
At 20 dBm PA power setting, 915
MHz, Class E match, 3.3 V, 25 °C
19
20
21
dBm
At 10 dBm PA power setting, 915
MHz, Class E match, 3.3 V, 25 °C
9
10
11
dBm
Output Power Variation (R63,
R68)
At 20 dBm PA power setting, 169
MHz, Square Wave match, 3.3 V, 25
°C
18.5
20
21
dBm
Output Power Variation (R60,
R67)
At 10 dBm PA power setting, 169
MHz, Square Wave match, 3.3 V, 25
°C
9.5
10
10.5
dBm
Output Power Variation (R60,
R67)
Symbol
PTX67
TX RF Output Steps
ΔPRF_OUT
Using switched current match within
6 dB of max power
—
0.25
0.4
dB
TX RF Output Level Variation
vs. Temperature
ΔPRF_TEMP
–40 to +85 °C
—
2.3
3
dB
TX RF Output Level Variation
vs. Frequency
ΔPRFFREQ
Measured across 902–928 MHz
—
0.6
1.7
dB
Transmit Modulation Filtering
B×T
Gaussian Filtering Bandwith Time
Product
—
0.5
—
4.17.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications
Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench
characterization.
XTAL Range tested in production using an external clock source (similar to using a TCXO).
Table 4.28. EZRadioPro Auxiliary Block Specifications
Parameter
Min
Typ
Max
Unit
25
─
32
MHz
─
300
─
uS
30MRES
─
70
─
fF
32 kHz XTAL Start-Up Time
t32K
─
2
─
sec
32 kHz Accuracy using Internal RC Oscillator
32KRCRES
─
2500
─
ppm
tPOR
─
─
6
ms
XTAL Range
Symbol
Test Condition
XTALRANG
E
30 MHz XTAL Start-Up Time
30 MHz XTAL Cap Resolution
POR Reset Time
t30M
silabs.com | Smart. Connected. Energy-friendly.
Using XTAL and board layout in reference design. Start-up time will vary
with XTAL type and board layout.
Rev. 1.1 | 62
EZR32WG230 Data Sheet
Electrical Specifications
4.17.6 EZRadio (R55) DC Electrical Characteristics
Table 4.29. EZRadio DC Characteristics
Parameter
Power Saving Modes
TUNE Mode Current
RX Mode Current
TX Mode Current
Symbol
Test Condition
Min
Typ
Max
Unit
Ishutdown
RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator
OFF
─
30
─
nA
Istandby
Register values maintained
─
40
─
nA
IReady
Crystal Oscillator and Main Digital
Regulator ON, all other blocks OFF
─
1.8
─
mA
ISPIActive
SPI active state
─
1.5
─
mA
ITuneRX
RX Tune
─
6.8
─
mA
ITuneTX
TX Tune
─
7.1
─
mA
IRX
Measured at 40 kbps, 20 kHz deviation, 315 MHz
─
10.9
─
mA
+10 dBm output power, measured on
direct tie RF evaluation board at 868
MHz
─
19
─
mA
+13 dBm output power, measured on
direct tie RF evaluation board at 868
MHz
─
24
─
mA
Min
Typ
Max
Unit
284
─
350
MHz
350
─
525
MHz
850
─
960
MHz
ITX
4.17.7 EZRadio (R55) Synthesizer AC Electrical Characteristics
Table 4.30. EZRadio Synthensizer
Parameter
Synthesizer Frequency Range
Synthesizer Frequency Resolution
Phase Noise
Symbol
Test Condition
FSYN
FRES-960
850-960 MHz
─
114.4
─
Hz
FRES-525
420-525 MHz
─
57.2
─
Hz
FRES-420
420-525 MHz
─
57.2
─
Hz
FRES-350
283-350 MHz
─
38.1
─
Hz
ΔF = 10 kHz, 915 MHz
─
100
─
dBc/Hz
ΔF = 100 kHz, 915 MHz
─
102.1
─
dBc/Hz
ΔF = 1 MHz, 915 MHz
─
123.5
─
dBc/Hz
ΔF = 10 MHz, 915 MHz
─
136.6
─
dBc/Hz
L Φ(fM)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 63
EZR32WG230 Data Sheet
Electrical Specifications
4.17.8 EZRadio (R55) Receiver AC Electrical Characteristics
Table 4.31. EZRadio Receiver AC Electrical Characteristics
Parameter
RX Frequency Range
Symbol
PRX_40
PRX_128
PRX_OOK
RX Channel Bandwidth
RSSI Resolution
Min
Typ
Max
Unit
284
─
350
MHz
350
─
525
MHz
850
─
960
MHz
(BER < 0.1%) (2.4 kbps, GFSK, BT
= 0.5, Δf = ±30 kHz, 114 kHz RX
BW)
─
-115
─
dBm
(BER < 0.1%) (40 kbps, GFSK, BT =
0.5, Δf = ±25 kHz, 114 kHz RX BW)
─
-107.6
─
dBm
(BER < 0.1%) (128 kbps, GFSK, BT
= 0.5, Δf = ±70 kHz, 305 kHz RX
BW)
─
-102.4
─
dBm
(BER < 0.1%, 1 kbps, 185 kHz Rx
BW, OOK, PN15 data)
─
-113.5
─
dBm
(BER < 0.1%, 40 kbps, 185 kHz BW,
OOK, PN15 data)
─
-102.7
─
dBm
40
─
850
kHz
FRX
PRX_2
RX Sensitivity 915 MHz
Test Condition
BW
RESRSSI
Valid from -110 dBm to -90 dBm
─
±0.5
─
dB
±1-Ch Offset Selectivity
C/I1-CH
Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW
and desired is modulated with 1.2
kbps ΔF = 5.2 kHz GFSK with BT =
0.5, RX channel BW = 58 kHz, channel spacing = 100 kHz
─
-50
─
dB
±2-Ch Offset Selectivity
C/I2-CH
─
-56
─
dB
─
-56
─
dB
Blocking 200 kHz−1 MHz
200KBLOCK Desired Ref Signal 3 dB above sensitivity, BER, <0.1%. Interferer is CW
and desired is modulated with 1.2
kbps ΔF = 5.2 kHz GFSK with BT =
0.5, RX channel BW = 58 kHz
Blocking 1 MHz Offset
1MBLOCK
─
-71
─
dB
Blocking 8 MHz Offset
8MBLOCK
─
-71
─
dB
─
40
─
dB
Image Rejection
ImREJ
silabs.com | Smart. Connected. Energy-friendly.
Rejection at the image frequency IF
= 468 kHz
Rev. 1.1 | 64
EZR32WG230 Data Sheet
Electrical Specifications
4.17.9 EZRadio (R55) Transmitter AC Electrical Characteristics
The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60,
where Fxtal is the XTAL frequency (typically 30 MHz).
Conducted measurements based on RF evaluation board. Output power and emissions specifications are dependent on transmit frequency, matching components, and board layout.
Table 4.32. EZRadio Transmitter AC Electrical Characteristics
Parameter
TX Frequency Range
Symbol
Test Condition
FTX
Min
Typ
Max
Unit
284
─
350
MHz
350
─
525
MHz
850
─
960
MHz
(G)FSK Data Rate
DRFSK
1.0
─
500
kbps
OOK Data Rate
DROOK
0.5
─
120
kbps
Δf960
850-960 MHz
─
─
500
kHz
Δf525
350-525 MHz
─
─
500
kHz
Δf350
284-350 MHz
─
─
500
kHz
FRES-960
850-960 MHz
─
114.4
─
Hz
FRES-525
420-525 MHz
─
57.2
─
Hz
FRES-420
350-420 MHz
─
45.6
─
Hz
FRES-350
284-350 MHz
─
38.1
─
Hz
Output Power Range
PTX
Measured at 434 MHz, 3.3 V, Class
E match
-20
─
+13
dBm
TX RF Output Steps
ΔPRF_OUT
Using switched current match within
6 dB of max power
─
0.25
─
dB
TX RF Output Level Variation
vs. Temperature
ΔPRF_TEMP
-40 to +85 °C
─
2.3
─
dB
TX RF Output Level Variation
vs. Frequency
ΔPRFFREQ
Measured across 902-928 MHz
─
0.6
─
dB
Transmit Modulation Filtering
B×T
Gaussian Filtering Bandwith Time
Product
─
0.5
─
Modulation Deviation Range
Modulation Deviation Resolution
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 65
EZR32WG230 Data Sheet
Electrical Specifications
4.17.10 EZRadio (R55) Radio Auxiliary Block Specifications
XTAL Range tested in production using an external clock source (similar to using a TCXO).
Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested by bench
characterization.
Table 4.33. EZRadio Auxilliary Block Specifications
Parameter
XTAL Range
Symbol
Test Condition
XTALRANG
Min
Typ
25
Max
Unit
32
MHz
E
30 MHz XTAL Start-Up Time
30 MHz XTAL Cap Resolution
POR Reset Time
t30M
─
300
─
us
30MRES
─
70
─
Ff
tPOR
─
─
6
ms
silabs.com | Smart. Connected. Energy-friendly.
Using XTAL and board layout in reference design. Start-up time will vary
with XTAL type and board layout.
Rev. 1.1 | 66
EZR32WG230 Data Sheet
Electrical Specifications
4.17.11 Radio Digital I/O Specification
6.7 ns is typical for GPIO0 rise time.
Assuming VDD = 3.3 V, drive strength is specified at VOH (min) = 2.64 V and Vol(max) = 0.66 V at room temperature.
2.4 ns is typical for GPIO0 fall time.
Table 4.34. EZRadio/Pro Digital I/O Specification
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Rise Time
TRISE
0.1 x VDD to 0.9 x VDD, CL = 10 pF,
DRV<1:0> = LL
─
2.3
─
ns
Fall Time
TFALL
0.9 x VDD to 0.1 x VDD, CL = 10 pF,
DRV<1:0> = LL
─
2
─
ns
Input Capacitance
CIN
─
2
─
pF
Logic High Level Input Voltage
VIH
VDD_RF x
0.7
─
─
V
Logic Low Level Input Voltage
VIL
─
─
VDD_RF x
0.3
V
Input Current
IIN
0<VIN< VDD
-1
─
1
uA
Input Current If Pullup is Activated
IINP
VIL = 0 V
1
─
4
uA
IOmaxLL
DRV[1:0] = LL
─
6.66
─
mA
IOmaxLH
DRV[1:0] = LH
─
5.03
─
mA
IOmaxHL
DRV[1:0] = HL
─
3.16
─
mA
IOmaxHH
DRV[1:0] = HH
─
1.13
─
mA
IOmaxLL
DRV[1:0] = LL
─
5.75
─
mA
IOmaxLH
DRV[1:0] = LH
─
4.37
─
mA
IOmaxHL
DRV[1:0] = HL
─
2.73
─
mA
IOmaxHH
DRV[1:0] = HH
─
0.96
─
mA
IOmaxLL
DRV[1:0] = LL
─
2.53
─
mA
IOmaxLH
DRV[1:0] = LH
─
2.21
─
mA
IOmaxHL
DRV[1:0] = HL
─
1.7
─
mA
IOmaxHH
DRV[1:0] = HH
─
0.80
─
mA
Logic High Level Output
Voltage
VOH
DRV[1:0] = HL
VDD_RF x
0.8
─
─
V
Logic Low Level Output Voltage
VOL
DRV[1:0] = HL
─
─
VDD_RF x
0.2
V
Drive Strength for Output
Low Level3
Drive Strength for Output
High Level3
Drive Strength for Output
High Level for GPIO3
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 67
EZR32WG230 Data Sheet
Electrical Specifications
4.18 Digital Peripherals
Table 4.35. Digital Peripherals
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
USART current
IUSART
USART idle current, clock enabled
─
4.0
─
µA/MHz
UART current
IUART
UART idle current, clock enabled
─
3.8
─
µA/MHz
ILEUART
LEUART idle current, clock enabled
─
194
─
nA
II2C
I2C idle current, clock enabled
─
7.6
─
µA/MHz
ITIMER
TIMER_0 idle current, clock enabled
─
6.5
─
µA/MHz
ILETIMER
LETIMER idle current, clock enabled
─
86
─
nA
PCNT current
IPCNT
PCNT idle current, clock enabled
─
91
─
nA
RTC current
IRTC
RTC idle current, clock enabled
─
55
─
nA
AES current
IAES
AES idle current, clock enabled
─
1.8
─
µA/MHz
GPIO current
IGPIO
GPIO idle current, clock enabled
─
3.4
─
µA/MHz
PRS current
IPRS
PRS idle current
─
3.9
─
µA/MHz
DMA current
IDMA
Clock enable
─
10.9
─
µA/MHz
LEUART current
I2C current
TIMER current
LETIMER current
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 68
EZR32WG230 Data Sheet
Pinout and Package
5. Pinout and Package
Note: Please refer to the application note AN0002: EFM32 Hardware Design Considerations for guidelines on designing Printed Circuit
Boards (PCB's) for the EZR32WG230.
5.1 Pinout
The EZR32WG230 pinout is shown in below. Alternate locations are denoted by "#" followed by the location number (Multiple locations
on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.
Figure 5.1. Pinout (top view, not to scale)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 69
EZR32WG230 Data Sheet
Pinout and Package
5.2 Pin Descriptions
Table 5.1. Device Pinout
QFN64 Pin# and Name
Pin
#
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Other
0
VSS
Ground.
1
NC
No connect.
2
RXP
Differential RF Input Pin of the LNA. See application schematic for example matching network.
3
RXN
Differential RF Input Pin of the LNA. See application schematic for example matching network.
4
TX_13/16
5
TX_20
6
NC
7
RFVDD_2
+1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply
voltage is +3.3 V.
8
TXRAMP
Programmable Bias Output with Ramp Capability for External FET PA.
9
RFVDD_1
+1.8 to +3.6 V Supply Voltage Input to Internal Regulators for the Radio. The recommended VDD supply
voltage is +3.3 V.
10
PA01
TIM0_CC0 #0/1/4
LEU0_RX #4 I2C0_SDA
#0
PRS_CH0 #0
GPIO_EM4WU0
RF_GPIO0
11
PA11
TIM0_CC1 #0/1
I2C0_SCL #0
CMU_CLK1 #0
PRS_CH1 #0
RF_GPIO1
12
IOVDD_0
13
PB3
PCNT1_S0IN #1
US2_TX #1
14
PB4
PCNT1_S1IN #1
US2_RX #1
15
PB5
US2_CLK #1
16
PB6
US2_CS #1
17
PB7
LFXTAL_P
TIM1_CC0 #3
USRF0_TX #4
18
PB8
LFXTAL_N
TIM1_CC1 #3
USRF0_RX #4
19
PA12
TIM2_CC0 #1
20
PA13
TIM2_CC1 #1
21
PA14
TIM2_CC2 #1
22
RESETn
23
PB11
24
AVDD_1
25
PB13
Transmit Output Pin (+13 dBm or +16 dBm) for R55, R60, R61, R67 and R69 variants. The PA output is
an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. Pin is DNC
on the +20 dBm parts.
Transmit Output Pin (+20 dBm) for R63, R68 and R69 variants. The PA output is an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. Pin is DNC on the +13 dBm
parts.
No connect.
Digital IO power supply 0.
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
TIM1_CC2 #3 LETIM0_OUT0 #1
Analog power supply 1.
HFXTAL_P
silabs.com | Smart. Connected. Energy-friendly.
LEU0_TX #1
Rev. 1.1 | 70
EZR32WG230 Data Sheet
Pinout and Package
QFN64 Pin# and Name
Pin
#
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Other
26
PB14
HFXTAL_N
27
IOVDD_3
Digital IO power supply 3.
28
AVDD_0
Analog power supply 0.
29
PD0
ADC0_CH0
OPAMP_OUT2 #1
PCNT2_S0IN #0
US1_TX #1
30
PD1
ADC0_CH1
DAC0_OUT1ALT #4/
OPAMP_OUT1ALT
TIM0_CC0 #3
PCNT2_S1IN #0
US1_RX #1
DBG_SWO #2
31
PD2
ADC0_CH2
TIM0_CC1 #3
US1_CLK #1
DBG_SWO #3
32
PD3
ADC0_CH3 OPAMP_N2
TIM0_CC2 #3
US1_CS #1
ETM_TD1 #0/2
33
PD4
ADC0_CH4 OPAMP_P2
LEU0_TX #0
ETM_TD2 #0/2
34
PD5
ADC0_CH5
OPAMP_OUT2 #0
LEU0_RX #0
ETM_TD3 #0/2
35
PD6
ADC0_CH6 DAC0_P1 /
OPAMP_P1
TIM1_CC0 #4 LETIM0_OUT0 #0
PCNT0_S0IN #3
US1_RX #2 I2C0_SDA
#1
ACMP0_O #2 ETM_TD0
#0 BOOT_RX
36
PD7
ADC0_CH7 DAC0_N1 /
OPAMP_N1
TIM1_CC1 #4 LETIM0_OUT1 #0
PCNT0_S1IN #3
US1_TX #2 I2C0_SCL
#1
CMU_CLK0 #2
ACMP1_O #2
ETM_TCLK #0
BOOT_TX
37
PD8
BU_VIN
38
PC6
ACMP0_CH6
LEU1_TX #0 I2C0_SDA
#2
LES_CH6 #0
ETM_TCLK #2
39
PC7
ACMP0_CH7
LEU1_RX #0 I2C0_SCL
#2
LES_CH7 #0 ETM_TD0
#2
40
VDD_DREG
41
DEC_0
42
PE0
TIM3_CC0 #1
PCNT0_S0IN #1
U0_TX #1 I2C1_SDA #2
43
PE1
TIM3_CC1 #1
PCNT0_S1IN #1
U0_RX #1 I2C1_SCL #2
44
PE2
BU_VOUT
TIM3_CC2 #1
U1_TX #3
ACMP0_O #1
45
PE3
BU_STAT
U1_RX #3
ACMP1_O #1
46
PC12
ACMP1_CH4
DAC0_OUT1ALT #0/
OPAMP_OUT1ALT
U1_TX #0
CMU_CLK0 #1
LES_CH12 #0
47
PC13
ACMP1_CH5
DAC0_OUT1ALT #1/
OPAMP_OUT1ALT
TIM0_CDTI0 #1/3
TIM1_CC0 #0
TIM1_CC2 #4
PCNT0_S0IN #0
U1_RX #0
LES_CH13 #0
48
PC14
ACMP1_CH6
DAC0_OUT1ALT #2/
OPAMP_OUT1ALT
TIM0_CDTI1 #1/3
TIM1_CC1 #0
PCNT0_S1IN #0
U0_TX #3
LES_CH14 #0
LEU0_RX #1
CMU_CLK1 #1
Power supply for on-chip voltage regulator.
Decouple output for on-chip voltage regulator.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 71
EZR32WG230 Data Sheet
Pinout and Package
QFN64 Pin# and Name
Pin
#
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Other
49
PC15
ACMP1_CH7
DAC0_OUT1ALT #3/
OPAMP_OUT1ALT
TIM0_CDTI2 #1/3
TIM1_CC2 #0
U0_RX #3
LES_CH15 #0
DBG_SWO #1
50
PF0
TIM0_CC0 #5 LETIM0_OUT0 #2
US1_CLK #2 LEU0_TX
#3 I2C0_SDA #5
DBG_SWCLK #0/1/2/3
51
PF1
TIM0_CC1 #5 LETIM0_OUT1 #2
US1_CS #2 LEU0_RX
#3 I2C0_SCL #5
DBG_SWDIO #0/1/2/3
GPIO_EM4WU3
52
PF2
TIM0_CC2 #5
LEU0_TX #4
ACMP1_O #0
DBG_SWO #0
GPIO_EM4WU4
53
PF3
TIM0_CDTI0 #2/5
PRS_CH0 #1
54
PF4
TIM0_CDTI1 #2/5
PRS_CH1 #1
55
PF12
56
PF5
TIM0_CDTI2 #2/5
PRS_CH2 #1
57
IOVDD_5
58
PF6
TIM0_CC0 #2
59
PF7
TIM0_CC1 #2
60
PF8
TIM0_CC2 #2
61
XOUT
EZRadio peripheral crystal oscillator output. Connect to an external 26/30 MHz crystal or leave floating if
driving the XIN pin with an external signal source.
62
XIN
EZRadio peripheral crystal oscillator input. Connect to an external 26/30 MHz crystal or to an external
clock source. If using an external clock source with no crystal, DC coupling with a nominal 0.8 VDC level
is recommended with a minimum AC amplitude of 700 mVpp. Refer to AN785 for more details about using an external clock source.
63
GPIO2
General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc.
64
GPIO3
General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFO Status, POR, Wake-up Timer, TRSW, AntDiversity control, etc.
Digital IO power supply 5.
Note:
1. General Purpose Digital I/O for the radio. May be configured to perform various EZRadio functions, including Clock Output, FIFOStatus, POR, Wake-up Timer, TRSW, AntDiversity control, etc.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 72
EZR32WG230 Data Sheet
Pinout and Package
5.3 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the table. The table shows the
name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do no have alternate settings or a LOCATION bitfield. In these cases, the pinout is
shown in the column corresponding to the LOCATION 0.
Table 5.2. Alternate functionality overview
Alternate
LOCATION
Functionality
0
ACMP0_CH6
PC6
Analog comparator ACMP0, channel 6.
ACMP0_CH7
PC7
Analog comparator ACMP0, channel 7.
ACMP0_O
1
PE2
2
PD6
3
4
5
Description
Analog comparator ACMP0, digital output.
ACMP1_CH4
PC12
Analog comparator ACMP1, channel 4.
ACMP1_CH5
PC13
Analog comparator ACMP1, channel 5.
ACMP1_CH6
PC14
Analog comparator ACMP1, channel 6.
ACMP1_CH7
PC15
Analog comparator ACMP1, channel 7.
ACMP1_O
PF2
ADC0_CH0
PD0
Analog to digital converter ADC0, input channel number
0.
ADC0_CH1
PD1
Analog to digital converter ADC0, input channel number
1.
ADC0_CH2
PD2
Analog to digital converter ADC0, input channel number
2.
ADC0_CH3
PD3
Analog to digital converter ADC0, input channel number
3.
ADC0_CH4
PD4
Analog to digital converter ADC0, input channel number
4.
ADC0_CH5
PD5
Analog to digital converter ADC0, input channel number
5.
ADC0_CH6
PD6
Analog to digital converter ADC0, input channel number
6.
ADC0_CH7
PD7
Analog to digital converter ADC0, input channel number
7.
BOOT_RX
PD6
Bootloader RX.
BOOT_TX
PD7
Bootloader TX.
BU_STAT
PE3
Backup Power Domain status, whether or not the system is in backup mode
BU_VIN
PD8
Battery input for Backup Power Domain
BU_VOUT
PE2
Power output for Backup Power Domain
CMU_CLK0
PE3
PC12
CMU_CLK1
PA1
DAC0_N1 /
OPAMP_N1
PD7
PD7
PD7
PD8
silabs.com | Smart. Connected. Energy-friendly.
Analog comparator ACMP1, digital output.
Clock Management Unit, clock output number 0.
Clock Management Unit, clock output number 1.
Operational Amplifier 1 external negative input.
Rev. 1.1 | 73
EZR32WG230 Data Sheet
Pinout and Package
Alternate
Functionality
OPAMP_N2
LOCATION
0
1
2
3
4
5
PD3
Description
Operational Amplifier 2 external negative input.
DAC0_OUT1ALT /
OPAMP_OUT1AL PC12
T
PC13
OPAMP_OUT2
PD5
PD0
DAC0_P1 /
OPAMP_P1
PD6
Operational Amplifier 1 external positive input.
OPAMP_P2
PD4
Operational Amplifier 2 external positive input.
PC14
PC15
Digital to Analog Converter DAC0_OUT1ALT /OPAMP
alternative output for channel 1.
PD1
Operational Amplifier 2 output.
Debug-interface Serial Wire clock input.
DBG_SWCLK
PF0
PF0
PF0
PF0
Note that this function is enabled to pin out of reset, and
has a built-in pull down.
Debug-interface Serial Wire data input / output.
DBG_SWDIO
PF1
PF1
PF1
PF1
Note that this function is enabled to pin out of reset, and
has a built-in pull up.
Debug-interface Serial Wire viewer Output.
DBG_SWO
PF2
PC15
PD1
PD2
ETM_TCLK
PD7
PC6
Embedded Trace Module ETM clock .
ETM_TD0
PD6
PC7
Embedded Trace Module ETM data 0.
ETM_TD1
PD3
PD3
Embedded Trace Module ETM data 1.
ETM_TD2
PD4
PD4
Embedded Trace Module ETM data 2.
ETM_TD3
PD5
PD5
Embedded Trace Module ETM data 3.
GPIO_EM4WU0
PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
PF2
Pin can be used to wake the system up from EM4
HFXTAL_N
PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
PB13
High Frequency Crystal positive pin.
I2C0_SCL
PA1
PD7
PC7
PF1
I2C0 Serial Clock Line input / output.
I2C0_SDA
PA0
PD6
PC6
PF0
I2C0 Serial Data input / output.
Note that this function is not enabled after reset, and
must be enabled by software to be used.
I2C1_SCL
PE1
I2C1 Serial Clock Line input / output.
I2C1_SDA
PE0
I2C1 Serial Data input / output.
LES_CH6
PC6
LESENSE channel 6.
LES_CH7
PC7
LESENSE channel 7.
LES_CH12
PC12
LESENSE channel 12.
LES_CH13
PC13
LESENSE channel 13.
LES_CH14
PC14
LESENSE channel 14.
LES_CH15
PC15
LESENSE channel 15.
LETIM0_OUT0
PD6
PB11
PF0
silabs.com | Smart. Connected. Energy-friendly.
Low Energy Timer LETIM0, output channel 0.
Rev. 1.1 | 74
EZR32WG230 Data Sheet
Pinout and Package
Alternate
Functionality
LOCATION
0
1
2
3
4
5
PF1
Description
LETIM0_OUT1
PD7
Low Energy Timer LETIM0, output channel 1.
LEU0_RX
PD5
PB14
PF1
PA0
LEUART0 Receive input.
LEU0_TX
PD4
PB13
PF0
PF2
LEUART0 Transmit output. Also used as receive input
in half duplex communication.
LEU1_RX
PC7
LEUART1 Receive input.
LEU1_TX
PC6
LEUART1 Transmit output. Also used as receive input
in half duplex communication.
LFXTAL_N
PB8
Low Frequency Crystal (typically 32.768 kHz) negative
pin. Also used as an optional external clock input pin.
LFXTAL_P
PB7
Low Frequency Crystal (typically 32.768 kHz) positive
pin.
PCNT0_S0IN
PC13
PE0
PD6
Pulse Counter PCNT0 input number 0.
PCNT0_S1IN
PC14
PE1
PD7
Pulse Counter PCNT0 input number 1.
PCNT1_S0IN
PB3
Pulse Counter PCNT1 input number 0.
PCNT1_S1IN
PB4
Pulse Counter PCNT1 input number 1.
PCNT2_S0IN
PD0
Pulse Counter PCNT2 input number 0.
PCNT2_S1IN
PD1
Pulse Counter PCNT2 input number 1.
PRS_CH0
PA0
PF3
Peripheral Reflex System PRS, channel 0.
PRS_CH1
PA1
PF4
Peripheral Reflex System PRS, channel 1.
PF5
Peripheral Reflex System PRS, channel 2.
PRS_CH2
RF_GPIO0
PA0
RF GPIO0.
RF_GPIO1
PA1
RF GPIO1.
TIM0_CC0
PA0
PA0
PF6
PD1
TIM0_CC1
PA1
PA1
PF7
TIM0_CC2
PA0
PF0
Timer 0 Capture Compare input / output channel 0.
PD2
PF1
Timer 0 Capture Compare input / output channel 1.
PF8
PD3
PF2
Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0
PC13
PF3
PC13
PF3
Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1
PC14
PF4
PC14
PF4
Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2
PC15
PF5
PC15
PF5
Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0
PC13
PB7
PD6
Timer 1 Capture Compare input / output channel 0.
TIM1_CC1
PC14
PB8
PD7
Timer 1 Capture Compare input / output channel 1.
TIM1_CC2
PC15
PB11
PC13
Timer 1 Capture Compare input / output channel 2.
TIM2_CC0
PA12
Timer 2 Capture Compare input / output channel 0.
TIM2_CC1
PA13
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
PA14
Timer 2 Capture Compare input / output channel 2.
TIM3_CC0
PE0
Timer 3 Capture Compare input / output channel 0.
TIM3_CC1
PE1
Timer 3 Capture Compare input / output channel 1.
TIM3_CC2
PE2
Timer 3 Capture Compare input / output channel 2.
U0_RX
PE1
silabs.com | Smart. Connected. Energy-friendly.
PC15
UART0 Receive input.
Rev. 1.1 | 75
EZR32WG230 Data Sheet
Pinout and Package
Alternate
Functionality
LOCATION
0
U0_TX
1
2
PE0
3
4
5
Description
PC14
UART0 Transmit output. Also used as receive input in
half duplex communication.
U1_RX
PC13
PE3
UART1 Receive input.
U1_TX
PC12
PE2
UART1 Transmit output. Also used as receive input in
half duplex communication.
US1_CLK
PD2
PF0
USART1 clock input / output.
US1_CS
PD3
PF1
USART1 chip select input / output.
USART1 Asynchronous Receive.
US1_RX
PD1
PD6
USART1 Synchronous mode Master Input / Slave Output (MISO).
USART1 Asynchronous Transmit.Also used as receive
input in half duplex communication.
US1_TX
PD0
PD7
US2_CLK
PB5
USART2 clock input / output.
US2_CS
PB6
USART2 chip select input / output.
USART1 Synchronous mode Master Output / Slave Input (MOSI).
USART2 Asynchronous Receive.
US2_RX
US2_TX
PB4
USART2 Synchronous mode Master Input / Slave Output (MISO).
USART2 Asynchronous Transmit.Also used as receive
input in half duplex communication.
PB3
USART2 Synchronous mode Master Output / Slave Input (MOSI).
USARTRF0 Asynchronous Receive.
USRF0_RX
USRF0_TX
silabs.com | Smart. Connected. Energy-friendly.
PB8
PB7
USARTRF0 Synchronous mode Master Input / Slave
Output (MISO).
USARTRF0 Asynchronous Transmit.Also used as receive input in half duplex communication.
USARTRF0 Synchronous mode Master Output / Slave
Input (MOSI).
Rev. 1.1 | 76
EZR32WG230 Data Sheet
Pinout and Package
5.4 GPIO Pinout Overview
The specific GPIO pins available in EZR32WG230 are shown in the GPIO pinout table. Each GPIO port is organized as 16-bit ports
indicated by letters A through F, and the individual pin on this port in indicated by a number from 15 down to 0.
Table 5.3. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Port A
PA14 PA13 PA12
Port B
PB14 PB13
Port C
PC15 PC14 PC13 PC12
Pin
11
Pin
10
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
PB11
PB8
Port D
PD8
PB7
PB6
PC7
PC6
PD7
PD6
PB5
PB4
PB3
PD5
PD4
PD3
PD2
PD1
PD0
PE3
PE2
PE1
PE0
PF3
PF2
PF1
PF0
Port E
Port F
PF12
PF8
PF7
PF6
PF5
PF4
5.5 Opamp Pinout Overview
The specific opamp terminals available in EZR32WG230 are shown in Opamp pinout figure.
PC4
PC5
PD4
PD3
PD6
PD7
OUT0ALT
+
OPA0
OUT0
+
OPA2
OUT2
OUT1ALT
+
OPA1
OUT1
-
PB11
PB12
PC0
PC1
PC2
PC3
PC12
PC13
PC14
PC15
PD0
PD1
PD5
Figure 5.2. Opamp Pinout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 77
EZR32WG230 Data Sheet
Pinout and Package
5.6 QFN64 Package
Figure 5.3. QFN64
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220 except for custom features D2, E2, L, Z, and Y which are toleranced per supplier
designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Table 5.4. QFN64 (Dimensions in mm)
Symbol
A
A1
Min
0.80
0.00
Nom
0.85
0.02
Max
0.90
0.05
A3
0.20
REF
b
D/E
D2/E2
0.18
8.90
6.80
0.25
9.00
6.90
0.30
9.10
7.00
e
0.50
BSC
L
R
K
0.30
0.09
0.20
0.40
─
─
0.50
0.14
─
aaa
bbb
ccc
ddd
eee
fff
0.15
0.10
0.10
0.05
0.08
0.10
The QFN64 Package uses Matte Tin plated leadframe. All EZR32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 78
EZR32WG230 Data Sheet
PCB Layout and Soldering
6. PCB Layout and Soldering
6.1 Recommended PCB Layout
Figure 6.1. PCB Land Pattern
Table 6.1. PCB Land Pattern Dimensions (Dimensions in mm)
Symbol
Dimension (mm)
S1
7.93
S
7.93
L1
7.00
W1
7.00
e
0.50
W
0.26
L
0.84
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 79
EZR32WG230 Data Sheet
PCB Layout and Soldering
Symbol
Dimension (mm)
Note:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm
minimum, all the way around the pad.
Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
4. A 4x4 array of 1.45 mm square openings on a 1.25 mm pitch should be used for the center ground pad.
Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
6.2 Soldering Information
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033 standard for MSL description
and level 3 bake conditions. Place as many and as small as possible vias underneath each of the solder patches under the ground pad.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 80
EZR32WG230 Data Sheet
Top Marking
7. Top Marking
The top marking is illustrated and explained below.
Mark Method:
Laser
Logo Size:
Top center
Font Size:
0.71 mm
Left-Justified
Line 1 Marking:
FFFFFFFFFF = Family Part Number (EZR32)
Line 2 Marking:
PPPPPPPPPP = Part Number
• P1P2: WG = Wonder Gecko
• P3P4P5: 230 (non USB)
• P6P7: Flash Size
• FE = 64
• FF = 128
• FG = 256
Refer to the line marking instruction from assembly PO.
• P8P9: Radio
• 55 = EZRadio +13 dBm, -116 sensitivity
• 60 = EZRadioPRO +13 dBm, -129 sensitivity
• 61 = EZRadioPRO +16 dBm, -129 sensitivity
• 63 = EZRadioPRO +20 dBm, -129 sensitivity
• 67 = EZRadioPRO +13 dBm, -133 sensitivity
• 68 = EZRadioPRO +20 dBm, -133 sensitivity
• 69 = EZRadioPRO +13 & 20 dBm, -133 sensitivity
• P10: Temperature Range
• G = -40 — 85 °C
Line 3 Marking:
Line 4 Marking:
YY = Year
Assigned by the Assembly House.
WW = Work Week
Corresponds to the year and work week of the mold
date.
TTTTTT = Mfg Code
Manufacturing Code from the Assembly Purchase Order
from assembly PO.
Circle = 1.3 mm diameter; center justified
"e3" Pb-Free Symbol
Gecko Logo; right justified
Gecko Logo height = 1.90 mm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 81
EZR32WG230 Data Sheet
Revision History
8. Revision History
8.1 Revision History
Revision 1.1
• Updated OPNs in Ordering section.
• USART0 in Configuarion Summary table changed to USARTRF0.
• Sleep current corrected from 40 nA to 20 nA.
• Number of operational amplifiers corrected from 3 to 2.
• Added "EZRadio and EZRadioPRO Transceivers GPIO Configuration" section.
• Updated Table 5.1 Device Pinout: Revised Pin 10, Pin 11, Pin 61, and Pin 62
• Updated Table 5.2 Alternate Functionality Overview: Removed GPIO0 and GPIO1
• Revised Top Marking Table: Corrected Line 2 Marking row
• Updated Section 5.6 (QFN64 Package) and Table 5.4 (QFN64 package dimensions)*
• Updated Section 6.1—PCB Land Pattern Dimensions*
* This revision reflects the actual package dimension that is in production and affects the documentation only. There is no change to the
package/product.
Revision 1.0
• Initial full production revision
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.1 | 82
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . .
3.1.1 ARM Cortex-M4 Core . . . . . . . . . . . . . . . . .
3.1.2 Debugging . . . . . . . . . . . . . . . . . . . . .
3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . .
3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . .
3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . .
3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . .
3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . .
3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . .
3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . .
3.1.10 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.1.12 Pre-Programmed UART Bootloader . . . . . . . . . . . .
3.1.13 Universal Asynchronous Receiver/Transmitter (UART) . . . . . .
3.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.1.15 Timer/Counter (TIMER) . . . . . . . . . . . . . . . .
3.1.16 Real Time Counter (RTC) . . . . . . . . . . . . . . . .
3.1.17 Backup Real Time Counter (BURTC) . . . . . . . . . . . .
3.1.18 Low Energy Timer (LETIMER) . . . . . . . . . . . . . .
3.1.19 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . .
3.1.20 Analog Comparator (ACMP) . . . . . . . . . . . . . . .
3.1.21 Voltage Comparator (VCMP) . . . . . . . . . . . . . . .
3.1.22 Analog to Digital Converter (ADC) . . . . . . . . . . . . .
3.1.23 Digital to Analog Converter (DAC) . . . . . . . . . . . . .
3.1.24 Operational Amplifier (OPAMP) . . . . . . . . . . . . . .
3.1.25 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
3.1.26 Backup Power Domain . . . . . . . . . . . . . . . . .
3.1.27 Advanced Encryption Standard Accelerator (AES) . . . . . . .
3.1.28 General Purpose Input/Output (GPIO) . . . . . . . . . . .
3.1.29 EZRadio® and EZRadioPro® Transceivers . . . . . . . . . .
3.1.29.1 EZRadio® and EZRadioPRO® Transceivers GPIO Configuration . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.2 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
3.3 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
11
.
.
.
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
7
8
4.1 Test Conditions . . . . . . .
4.1.1 Typical Values . . . . . . .
4.1.2 Minimum and Maximum Values .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.11
4.2 Absolute Maximum Ratings .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
4.3 Thermal Characteristics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
4.4 General Operating Conditions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
Table of Contents
83
.
4.5 Current Consumption .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
4.6 Transitions between Energy Modes
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
4.7 Power Management .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
4.8 Flash .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.16
4.9 General Purpose Input Output .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.17
4.10 Oscillators. .
4.10.1 LXFO . .
4.10.2 HFXO . .
4.10.3 LFRCO . .
4.10.4 HFRCO . .
4.10.5 AUXHFRCO
4.10.6 ULFRCO .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.25
.25
.26
.27
.28
.32
.32
4.11 Analog Digital Converter (ADC)
4.11.1 Typical Performance . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.33
.39
4.12 Digital Analog Converter (DAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.45
4.13 Operational Amplifier (OPAMP)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.47
4.14 Analog Comparator (ACMP)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.51
4.15 Voltage Comparator (VCMP) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.53
4.16 I2C .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.54
4.17 Radio . . . . . . . . . . . . . . . . . . . .
4.17.1 EZRadioPRO (R6x) DC Electrical Characteristics . . . . .
4.17.2 EZRadioPRO (R6x) Synthesizer AC Electrical Characteristics
4.17.3 EZRadioPRO (R6x) Receiver AC Electrical Characteristics .
4.17.4 EZRadioPRO (R6x) Transmitter AC Electrical Characteristics.
4.17.5 EZRadioPRO (R6x) Radio Auxillary Block Specifications . .
4.17.6 EZRadio (R55) DC Electrical Characteristics . . . . . .
4.17.7 EZRadio (R55) Synthesizer AC Electrical Characteristics . .
4.17.8 EZRadio (R55) Receiver AC Electrical Characteristics . . .
4.17.9 EZRadio (R55) Transmitter AC Electrical Characteristics . .
4.17.10 EZRadio (R55) Radio Auxiliary Block Specifications . . .
4.17.11 Radio Digital I/O Specification . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.55
.56
.57
.58
.61
.62
.63
.63
.64
.65
.66
.67
4.18 Digital Peripherals .
.
.
.
.
.
.
.
.
.
.
.
.68
5. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
5.1 Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.69
5.2 Pin Descriptions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.70
5.3 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.73
5.4 GPIO Pinout Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.77
5.5 Opamp Pinout Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.77
5.6 QFN64 Package .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.78
6. PCB Layout and Soldering . . . . . . . . . . . . . . . . . . . . . . . . .
79
.
.
.
6.1 Recommended PCB Layout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.79
6.2 Soldering Information .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.80
Table of Contents
84
.
.
7. Top Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
8.1 Revision History .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.82
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
Table of Contents
85
Simplicity Studio
One-click access to MCU tools,
documentation, software, source
code libraries & more. Available
for Windows, Mac and Linux!
www.silabs.com/simplicity
MCU Portfolio
www.silabs.com/mcu
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com
86