US2884 DataSheet DownloadLink 4819

US2884
Bipolar Hall Switch – Very High Sensitivity
Features and Benefits
Application Examples
Wide operating voltage range from 3.5V to 24V
Very high magnetic sensitivity
CMOS technology
Chopper-stabilized amplifier stage
Low current consumption
Open drain output
Thin SOT23 3L RoHS Compliant package
Automotive, Consumer and Industrial
Solid-state switch
Brushless DC motor commutation
Speed detection
Linear position detection
Angular position detection
Proximity detection
Ordering Information
Part No.
US2884
1 Functional Diagram
Temperature Code
L (-40°C to 150°C)
Package Code
SE (TSOT-3L)
2 General Description
The Melexis US2884 is a bipolar Hall-effect switch
designed in mixed signal CMOS technology.
The device integrates a voltage regulator, Hall
sensor with dynamic offset cancellation system,
Schmitt trigger and an open-drain output driver, all
in a single package.
Due to its wide operating voltage range and
temperature range it is particularly suitable for use
in automotive and BLDC motor applications.
The device is delivered in a Thin Small Outline
Transistor (TSOT) RoHS compliant 3-lead
package.
3901002884
Rev 004
Page 1 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
Table of Contents
1 Functional Diagram ........................................................................................................ 1
2 General Description........................................................................................................ 1
3 Glossary of Terms .......................................................................................................... 3
4 Absolute Maximum Ratings ........................................................................................... 3
5 Pin Definitions and Descriptions................................................................................... 3
6 General Electrical Specifications .................................................................................. 4
7 Magnetic Specifications ................................................................................................. 4
8 Output Behaviour versus Magnetic Pole ...................................................................... 4
9 Detailed General Description ......................................................................................... 5
10 Unique Features............................................................................................................ 5
11 Performance Graphs .................................................................................................... 6
11.1 Magnetic parameters vs. TA.....................................................................................................................6
11.2 Magnetic parameters vs. VDD...................................................................................................................6
11.3 VDSon vs. TA ..............................................................................................................................................6
11.4 VDSon vs. VDD ............................................................................................................................................6
11.5 IDD vs. TA ..................................................................................................................................................6
11.6 IDD vs. VDD ................................................................................................................................................6
11.7 IOFF vs. TA .................................................................................................................................................7
11.8 IOFF vs. VDD ...............................................................................................................................................7
12 Test Conditions............................................................................................................. 7
12.1 Supply Current .........................................................................................................................................7
12.2 Output Saturation Voltage .......................................................................................................................7
12.3 Output Leakage Current ..........................................................................................................................7
12.4 Magnetic Thresholds ...............................................................................................................................7
13 Application Information................................................................................................ 8
13.1 Typical Three-Wire Application Circuit ....................................................................................................8
13.2 Two-Wire Circuit ......................................................................................................................................8
13.3 Automotive and Harsh, Noisy Environments Three-Wire Circuit ............................................................8
14 Application Comments ................................................................................................. 8
15 Standard information regarding manufacturability of Melexis products with
different soldering processes........................................................................................... 9
16 ESD Precautions ........................................................................................................... 9
17 SE Package Information (TSOT23-3L)....................................................................... 10
18 Disclaimer.................................................................................................................... 11
3901002884
Rev 004
Page 2 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
3 Glossary of Terms
MilliTesla (mT), Gauss
RoHS
TSOT
ESD
BLDC
Units of magnetic flux density:
1mT = 10 Gauss
Restriction of Hazardous Substances
Thin Small Outline Transistor (TSOT package) – also referred with the Melexis
package code “SE”
Electro-Static Discharge
Brush-Less Direct-Current
4 Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
VDD
Supply Current
IDD
Output Voltage
VOUT
Output Current
IOUT
Operating Temperature Range
TA
Storage Temperature Range
TS
Maximum Junction Temperature
TJ
Table 1: Absolute maximum ratings
Value
28
50
28
50
-40 to 150
-50 to 150
165
Units
V
mA
V
mA
°C
°C
°C
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximumrated conditions for extended periods may affect device reliability.
5 Pin Definitions and Descriptions
Pin №
Name
Type
1
VDD
Supply
2
OUT
Output
3
GND
Ground
Table 2: Pin definitions and descriptions
3901002884
Rev 004
Function
Supply Voltage pin
Open Drain Output pin
Ground pin
Page 3 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
6 General Electrical Specifications
o
DC Operating Parameters TA = 25 C, VDD = 3.5V to 24V (unless otherwise specified)
Parameter
Symbol
Supply Voltage
VDD
Supply Current
IDD
Output Saturation Voltage
VDSon
Output Leakage Current
IOFF
Output Rise Time
tr
Output Fall Time
tf
Maximum Switching Frequency FSW
Package Thermal Resistance
RTH
Table 3: Electrical specifications
Test Conditions
Operating
B < BRP
IOUT = 20mA, B > BOP
B < BRP, VOUT = 24V
VDD=12V, RL = 1kΩ, CL = 20pF
VDD=12V, RL = 1kΩ, CL = 20pF
Min
3.5
Typ
0.01
0.25
0.25
10
301
Single layer (1S) Jedec board
Max
24
5
0.5
10
Units
V
mA
V
µA
µs
µs
KHz
°C/W
7 Magnetic Specifications
o
o
DC Operating Parameters TA = -40 C to 150 C, VDD = 4V to 24V (unless otherwise specified)
Parameter
Symbol
Operating Point
BOP
Release Point
BRP
Hysteresis
BHYST
Table 4: Magnetic specifications
Test Conditions
Min
-2
-6
1
Typ
Max
6
2
6
Units
mT
mT
mT
Note 1: For typical values, please refer to the performance graphs in section 11
8 Output Behaviour versus Magnetic Pole
o
o
DC Operating Parameters TA = -40 C to 150 C, VDD = 3.5V to 24V (unless otherwise specified)
Parameter
Test Conditions
OUT
South pole
B > BOP
Low
North pole
B < BRP
High
Table 5: Output behaviour versus magnetic pole
Note 1: The magnetic pole is applied facing the branded side of the package
South pole
North pole
OUT = low (VDSon)
OUT = high
3901002884
Rev 004
Page 4 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
9 Detailed General Description
Based on mixed signal CMOS technology, Melexis US2884 is a Hall-effect device with very high magnetic
sensitivity. It allows using generic magnets, weak magnets or larger air gap.
The chopper-stabilized amplifier uses switched capacitor technique to suppress the offset generally observed
with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible and
contributes to smaller chip size and lower current consumption than bipolar technology. The small chip size is
also an important factor to minimize the effect of physical stress.
This combination results in more stable magnetic characteristics and enables faster and more precise design.
The wide operating voltage from 3.5V to 24V, wide operating temperature according to “L” specification and
low current consumption make this device especially suitable for automotive and BLDC motor applications.
The output signal is open-drain type. Such output allows simple connectivity with TTL or CMOS logic by using
a pull-up resistor tied between a pull-up voltage and the device output.
10 Unique Features
The US2884 exhibits bipolar magnetic switching characteristics. Therefore, it operates with both south and
north poles.
Typically, the device behaves as a latch with symmetric
operating and release switching points (BOP=|BRP|). This means
magnetic fields with equivalent strength and opposite direction
drive the output high and low.
Removing the magnetic field (B→0) keeps the output in its
previous state. This latching property defines the device as a
magnetic memory.
Latch characteristic
Depending on the magnetic switching points, the device may also behave as a unipolar positive switch (BOP
and BRP strictly positive) or negative switch (BOP and BRP strictly negative). That is the output can be set high
and low by only using one magnetic pole. In such case, removing the magnetic field changes the output level.
Unipolar positive switch characteristic
Unipolar negative switch characteristic
In latch, positive or negative switch behaviour, a magnetic hysteresis BHYST keeps BOP and BRP separated by
a minimal value. This hysteresis prevents output oscillation near the switching point.
3901002884
Rev 004
Page 5 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
11 Performance Graphs
11.2 Magnetic parameters vs. VDD
6
6
3
3
Magnetic field (mT)
Magnetic field (mT)
11.1 Magnetic parameters vs. TA
0
-3
Bop, VDD=4V
Bop, VDD=24V
Brp, VDD=4V
Brp, VDD=24V
Bhyst, VDD=4V
Bhyst, VDD=24V
0
-3
-6
Bop, Ta=25°C
Bop, Ta=150°C
Brp, Ta=25°C
Brp, Ta=150°C
Bhyst, Ta=25°C
Bhyst, Ta=150°C
-6
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100 110 120 130 140 150
3
4
5
6
7
8
9
10
11
Ta (°C)
12
13
14
15
16
17
18
19
20
21
22
23
24
21
22
23
24
VDD (Volts)
11.3 VDSon vs. TA
11.4 VDSon vs. VDD
0.5
Ta = -40°C
0.4
Ta = 25°C
0.4
VDD = 3.5V
Ta = 85°C
VDD = 12V
Ta = 150°C
VDSon (Volts)
VDSon (Volts)
VDD = 24V
0.2
0.3
0.2
0.1
0
0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100 110 120 130 140 150
3
4
5
6
7
8
9
10
11
12
Ta (°C)
13
14
15
16
17
18
19
20
VDD (Volts)
11.5 IDD vs. TA
11.6 IDD vs. VDD
5
5
4.5
4.5
VDD = 3.5V
VDD = 12V
4
4
VDD = 24V
3.5
3
IDD (mA)
IDD (mA)
3.5
2.5
3
2.5
2
2
1.5
1.5
1
1
Ta = 25°C
0.5
0.5
Ta = 85°C
Ta = -40°C
Ta = 150°C
0
0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100 110 120 130 140 150
3
Ta (°C)
3901002884
Rev 004
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
VDD (Volts)
Page 6 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
11.7 IOFF vs. TA
11.8 IOFF vs. VDD
60
60
VDD = 3.5V
50
Ta = 25°C
50
VDD = 12V
Ta = 85°C
VDD = 24V
40
Ioff (µA)
Ioff (µA)
40
30
Ta = 150°C
30
20
20
10
10
0
0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
VDD (Volts)
Ta (°C)
12 Test Conditions
Note : DUT = Device Under Test
12.1 Supply Current
12.2 Output Saturation Voltage
12.3 Output Leakage Current
12.4 Magnetic Thresholds
3901002884
Rev 004
Page 7 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
13 Application Information
13.1 Typical Three-Wire Application Circuit
13.3 Automotive and Harsh, Noisy Environments
Three-Wire Circuit
13.2 Two-Wire Circuit
Note:
With this circuit, precise ON and OFF
currents can be detected using only
two connecting wires.
The resistors RL and Rb can be used
to bias the input current. Refer to the
part specifications for limiting values.
BRP :
BOP :
IOFF = IR + IDD = VDD/Rb + IDD
ION = IOFF + IOUT = IOFF + VDD/RL
14 Application Comments
For proper operation, a 100nF bypass capacitor should be placed as close as possible to the device between
the VDD and ground pin.
For reverse voltage protection, it is recommended to connect a resistor or a diode in series with the VDD pin.
When using a resistor, three points are important:
- the resistor has to limit the reverse current to 50mA maximum (VCC / R1 ≤ 50mA)
- the resulting device supply voltage VDD has to be higher than VDD min (VDD = VCC – R1.IDD)
2
- the resistor has to withstand the power dissipated in reverse voltage condition (PD = VCC / R1)
When using a diode, a reverse current cannot flow and the voltage drop is almost constant (≈0.7V).
Therefore, a 100Ω/0.25W resistor for 5V application and a diode for higher supply voltage are recommended.
Both solutions provide the required reverse voltage protection.
When a weak power supply is used or when the device is intended to be used in noisy environment, it is
recommended that figure 13.3 from the Application Information section is used.
The low-pass filter formed by R1 and C1 and the zener diode Z1 bypass the disturbances or voltage spikes
occurring on the device supply voltage VDD. The diode D1 provides additional reverse voltage protection.
3901002884
Rev 004
Page 8 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
15 Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity
level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of
adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of
the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.asp
16 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901002884
Rev 004
Page 9 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
17 SE Package Information (TSOT23-3L)
2.75 BSC
1.10 MAX
1.60 BSC
0.88 +0.02
- 0.03
SEATING PLANE
see note 2
0.075 +0.025
- 0.050
Notes:
1. All dimensions are in millimeters
2. Outermost plastic extreme width does not include mold flash or
protrusions. Mold flash and protrusions shall not exceed
0.15mm per side.
3. Outermost plastic extreme length does not include mold flash
or protrusions. Mold flash and protrusions shall not exceed
0.25mm per side.
4. The lead width dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.07mm total in excess
of the lead width dimension at maximum material condition.
5. Dimension is the length of terminal for soldering to a substrate.
0.50 BSC
TOP VIEW
7. Formed lead shall be planar with respect to one another with
0.076mm at seating plane.
SIDE VIEW
12° REF.
TYP.
6. Dimension on SECTION B-B’ are apply to the flat section of
the lead between 0.08mm and 0.15mm from the lead tip.
BASE METAL
WITH PLATING
Marking:
Top side : 2884 - Name of the Device
Bottom side : xyww
0.10 R.
MIN.
~
0.10 R.
MIN.
B’
SEATING PLANE
4°+/-4
x = last digit of lot number
y = last digit of year
ww = week
0.35 +0.05
- 0.10
B
0.40+/-0.10
0.30
0.45
see note 5
0.575 REF.
SECTION B-B’
see note 6
END VIEW
Hall plate location
1.417+/-0.05
Notes:
1. All dimensions are in millimeters
0.275 TYP
END VIEW
TOP VIEW
3901002884
Rev 004
Package line
Page 10 of 11
Data Sheet
Jan/06
US2884
Bipolar Hall Switch – Very High Sensitivity
18 Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with Melexis for current information. This
product is intended for use in normal commercial applications. Applications requiring extended temperature
range, unusual environmental requirements, or high reliability applications, such as military, medical lifesupport or life-sustaining equipment are specifically not recommended without additional processing by
Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2005 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: [email protected]
America:
Phone: +1 603 223 2362
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901002884
Rev 004
Page 11 of 11
Data Sheet
Jan/06