US3881 DataSheet DownloadLink 4820

US3881
Hall Latch
Low Voltage & High Sensitivity
Features and Benefits
Application Examples
Operating voltage range from 2.2V to 18V
High magnetic sensitivity – Multi-purpose
CMOS technology
Chopper-stabilized amplifier stage
Low current consumption
Open drain output
Thin SOT23 3L and flat TO-92 3L
both RoHS Compliant packages
Automotive, Consumer and Industrial
Solid-state switch
Brushless DC motor commutation
Speed detection
Linear position detection
Angular position detection
Proximity detection
Ordering Information
Part No.
Temperature Code
Package Code
US3881
US3881
E (-40°C to 85°C)
E (-40°C to 85°C)
SE (TSOT-3L)
UA (TO-92)
US3881
US3881
K (-40°C to 125°C)
K (-40°C to 125°C)
SE (TSOT-3L)
UA (TO-92)
US3881
US3881
L (-40°C to 150°C)
L (-40°C to 150°C)
SE (TSOT-3L)
UA (TO-92)
1 Functional Diagram
2 General Description
The Melexis US3881 is a Hall-effect latch
designed in mixed signal CMOS technology.
The device integrates a voltage regulator, Hall
sensor with dynamic offset cancellation system,
Schmitt trigger and an open-drain output driver, all
in a single package.
The low operating voltage and extended choice of
temperature range make it suitable for use in
automotive, industrial and consumer low voltage
applications.
The devices are delivered in a Thin Small Outline
Transistor (TSOT) for surface mount process and
in a Plastic Single In Line (TO-92 flat) for throughhole mount.
Both 3-lead packages are RoHS compliant.
3901003881
Rev 014
Page 1 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
Table of Contents
1 Functional Diagram ........................................................................................................ 1
2 General Description........................................................................................................ 1
3 Glossary of Terms .......................................................................................................... 3
4 Absolute Maximum Ratings ........................................................................................... 3
5 Pin Definitions and Descriptions................................................................................... 3
6 General Electrical Specifications .................................................................................. 4
7 Magnetic Specifications ................................................................................................. 4
8 Output Behaviour versus Magnetic Pole ...................................................................... 4
9 Detailed General Description ......................................................................................... 5
10 Unique Features............................................................................................................ 5
11 Performance Graphs .................................................................................................... 6
12 Application Information................................................................................................ 7
12.1 Typical Three-Wire Application Circuit ....................................................................................................7
12.2 Two-Wire Circuit ......................................................................................................................................7
12.3 Automotive and Harsh, Noisy Environments Three-Wire Circuit ............................................................7
13 Application Comments ................................................................................................. 7
14 Standard information regarding manufacturability of Melexis products with
different soldering processes........................................................................................... 8
15 ESD Precautions ........................................................................................................... 8
16 Package Information..................................................................................................... 9
16.1 SE Package (TSOT-3L)...........................................................................................................................9
16.2 UA Package (TO-92 flat) .......................................................................................................................10
17 Disclaimer.................................................................................................................... 11
3901003881
Rev 014
Page 2 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
3 Glossary of Terms
MilliTesla (mT), Gauss
RoHS
TSOT
ESD
BLDC
Units of magnetic flux density:
1mT = 10 Gauss
Restriction of Hazardous Substances
Thin Small Outline Transistor (TSOT package) – also referred with the Melexis
package code “SE”
Electro-Static Discharge
Brush-Less Direct-Current
4 Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
VDD
Supply Current
IDD
Output Voltage
VOUT
Output Current
IOUT
Storage Temperature Range
TS
Maximum Junction Temperature
TJ
Table 1: Absolute maximum ratings
Value
20
50
20
50
-50 to 150
165
Units
V
mA
V
mA
°C
°C
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximumrated conditions for extended periods may affect device reliability.
Operating Temperature Range
Temperature Suffix “E”
Temperature Suffix “K”
Temperature Suffix “L”
Symbol
TA
TA
TA
Value
-40 to 85
-40 to 125
-40 to 150
Units
°C
°C
°C
5 Pin Definitions and Descriptions
SE Pin № UA Pin № Name
1
1
VDD
2
3
OUT
3
2
GND
Table 2: Pin definitions and descriptions
SE package
3901003881
Rev 014
Type
Supply
Output
Ground
Function
Supply Voltage pin
Open Drain Output pin
Ground pin
UA package
Page 3 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
6 General Electrical Specifications
o
DC Operating Parameters TA = 25 C, VDD = 12V (unless otherwise specified)
Parameter
Symbol
Supply Voltage
VDD
Supply Current
IDD
Output Saturation Voltage
VDSon
Output Leakage Current
IOFF
Output Rise Time
tr
Output Fall Time
tf
Maximum Switching Frequency
FSW
SE Package Thermal Resistance
RTH
UA Package Thermal Resistance
RTH
Table 3: Electrical specifications
Test Conditions
Operating
B < BRP
IOUT = 20mA, B > BOP
B < BRP, VOUT = 24V
RL = 1kΩ, CL = 20pF
RL = 1kΩ, CL = 20pF
Min
2.2
1.5
Typ
Max
18
5
0.5
10
2.5
0.4
0.01
0.25
0.25
10
301
200
Single layer (1S) Jedec board
Units
V
mA
V
µA
µs
µs
KHz
°C/W
°C/W
7 Magnetic Specifications
o
DC Operating Parameters TA = 25 C, VDD = 2.2V to 18V (unless otherwise specified)
Parameter
Symbol
Operating Point
BOP
Release Point
BRP
Hysteresis
BHYST
Operating Point
BOP
Release Point
BRP
Hysteresis
BHYST
Table 4: Magnetic specifications
Test Conditions
E spec., TA = 85°C
L spec., TA = 150°C
Min
1
-9
5.5
1
-9
5.5
Typ
5
-5
10
5
-5
10
Max
9
-1
12
9
-1
12
Units
mT
mT
mT
mT
mT
mT
8 Output Behaviour versus Magnetic Pole
o
o
DC Operating Parameters TA = -40 C to 150 C, VDD = 2.2V to 18V (unless otherwise specified)
Parameter
Test Conditions (SE) OUT (SE) Test Conditions (UA)
South pole
B < BRP
High
B > BOP
North pole
B > BOP
Low
B < BRP
Table 5: Output behaviour versus magnetic pole
South pole
North pole
North pole
OUT = high
3901003881
Rev 014
OUT (UA)
Low
High
OUT = low (VDSon)
SE package
OUT = high
South pole
OUT = low (VDSon)
UA package
Page 4 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
9 Detailed General Description
Based on mixed signal CMOS technology, Melexis US3881 is a Hall-effect device with high magnetic
sensitivity. This multi-purpose latch suits most of the application requirements.
The chopper-stabilized amplifier uses switched capacitor techniques to suppress the offset generally
observed with Hall sensors and amplifiers. The CMOS technology makes this advanced technique possible
and contributes to smaller chip size and lower current consumption than bipolar technology. The small chip
size is also an important factor to minimize the effect of physical stress.
This combination results in more stable magnetic characteristics and enables faster and more precise design.
The operating voltage from 2.2V to 18V, low current consumption and large choice of operating temperature
range according to “L”, “K” and “E” specification make this device suitable for automotive, industrial and
consumer low voltage applications.
The output signal is open-drain type. Such output allows simple connectivity with TTL or CMOS logic by using
a pull-up resistor tied between a pull-up voltage and the device output.
10 Unique Features
The US3881 exhibits latch magnetic switching characteristics. Therefore, it requires both south and north
poles to operate properly.
SE package - Latch characteristic
UA package - Latch characteristic
The device behaves as a latch with symmetric operating and release switching points (BOP=|BRP|). This
means magnetic fields with equivalent strength and opposite direction drive the output high and low.
Removing the magnetic field (B→0) keeps the output in its previous state. This latching property defines the
device as a magnetic memory.
A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents
output oscillation near the switching point.
3901003881
Rev 014
Page 5 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
11 Performance Graphs
3901003881
Rev 014
Page 6 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
12 Application Information
12.1 Typical Three-Wire Application Circuit
12.2 Two-Wire Circuit
12.3 Automotive and Harsh, Noisy Environments
Three-Wire Circuit
Note:
With this circuit, precise ON and OFF
currents can be detected using only two
connecting wires.
The resistors RL and Rb can be used to
bias the input current. Refer to the part
specifications for limiting values.
BRP :
BOP :
IOFF = IR + IDD = VDD/Rb + IDD
ION = IOFF + IOUT = IOFF + VDD/RL
13 Application Comments
For proper operation, a 100nF bypass capacitor should be placed as close as possible to the device between
the VDD and ground pin.
For reverse voltage protection, it is recommended to connect a resistor or a diode in series with the VDD pin.
When using a resistor, three points are important:
- the resistor has to limit the reverse current to 50mA maximum (VCC / R1 ≤ 50mA)
- the resulting device supply voltage VDD has to be higher than VDD min (VDD = VCC – R1.IDD)
2
- the resistor has to withstand the power dissipated in reverse voltage condition (PD = VCC / R1)
When using a diode, a reverse current cannot flow and the voltage drop is almost constant (≈0.7V).
Therefore, a 100Ω/0.25W resistor for 5V application and a diode for higher supply voltage are recommended.
Both solutions provide the required reverse voltage protection.
When a weak power supply is used or when the device is intended to be used in noisy environment, it is
recommended that figure 13.3 from the Application Information section is used.
The low-pass filter formed by R1 and C1 and the zener diode Z1 bypass the disturbances or voltage spikes
occurring on the device supply voltage VDD. The diode D1 provides additional reverse voltage protection.
3901003881
Rev 014
Page 7 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
14 Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity
level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of
adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of
the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.asp
15 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901003881
Rev 014
Page 8 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
16 Package Information
0.127 +0.023
- 0.007
0.891+/-0.05
0.20
0.15
0.20
1.90 BSC
0.30
0.45
0.95 BSC
see note 3
2.90 BSC
16.1 SE Package (TSOT-3L)
3901003881
Rev 014
Page 9 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
10.50+/-0.5
2.5 min
see note 4
1.65+/-0.10
3.00+/-0.20
16.2 UA Package (TO-92 flat)
3901003881
Rev 014
Page 10 of 11
Data Sheet
Feb/06
US3881
Hall Latch
Low Voltage & High Sensitivity
17 Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with Melexis for current information. This
product is intended for use in normal commercial applications. Applications requiring extended temperature
range, unusual environmental requirements, or high reliability applications, such as military, medical lifesupport or life-sustaining equipment are specifically not recommended without additional processing by
Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2005 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
Phone: +32 1367 0495
E-mail: [email protected]
America:
Phone: +1 603 223 2362
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901003881
Rev 014
Page 11 of 11
Data Sheet
Feb/06