Download Datasheet

STPA003
4 x 52 W quad bridge power amplifier with high side driver and
low voltage operation
Datasheet - production data
– No external compensation
– No bootstrap capacitors
 On board 0.4 A high side driver
Flexiwatt25
 Protections:
– Output short circuit to GND, to Vs, across
the load
– Very inductive loads
– Overrating chip temperature with soft
thermal limiter
– Output DC offset detection
– Load dump voltage
– Fortuitous open GND
– Reversed battery
– ESD
'!0'03
'!0'03
Flexiwatt27
Features
 High output power capability:
– 4 x 52 W/4 Ω max.
– 4 x 30 W/4 Ω @ 14.4 V, 1 kHz, 10 %
– 4 x 85 W/2 Ω max.
– 4 x 55 W/2 Ω @ 14.4V, 1 kHz, 10 %
Description
 MOSFET output power stage
 Capable to operate in low voltage conditions
(e.g.: “Start - Stop”)
 Excellent GSM noise immunity
 Excellent 2 Ω driving capability
 Hi-Fi class distortion
 Low output noise
 Standby function and mute function
 Automute at min. supply voltage detection
 Low external component count:
– Internally fixed gain (26 dB)
The STPA003 is a MOSFET class AB audio
power amplifier, designed for high-power car
radio. In addition to the outstanding output current
capability and distortion performance, the
STPA003 is extremely robust against several
kinds of fortuitous misconnection.
It is compliant to the most recent OEM
specifications for low voltage operation (the so
called 'start-stop' battery profile during engine
stop).
It includes a DC offset detector and, in
Flexiwatt27 package, a high side driver or a
clipping detector.
Table 1. Device summary
Order code
Package
Packing
STPA003OD-4WX
Flexiwatt25 (with OD)
Tube
STPA003CD-48X
Flexiwatt27 (with CD)
Tube
STPA003HSD-48X
Flexiwatt27 (with HSD)
Tube
July 2014
This is information on a product in full production.
DocID026688 Rev 1
1/25
www.st.com
Contents
STPA003
Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1
Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Electrical characteristics typical curves . . . . . . . . . . . . . . . . . . . . . . . . 13
5
General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
Battery variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3
5.4
5.5
5.2.1
Low voltage operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2
Cranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3
Advanced battery management (hybrid vehicles) . . . . . . . . . . . . . . . . . 18
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1
Short circuits and open circuit operation . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2
Over-voltage and load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1
DC offset detection (OD pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.2
Clipping detection and diagnostics (CD-DIAG pin) . . . . . . . . . . . . . . . . 20
Heat sink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
DocID026688 Rev 1
STPA003
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID026688 Rev 1
3/25
3
List of figures
STPA003
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
4/25
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Standard test and application circuit (Flexiwatt25 with OD) . . . . . . . . . . . . . . . . . . . . . . . . . 6
Standard test and application circuit (Flexiwatt25 with HSD) . . . . . . . . . . . . . . . . . . . . . . . . 6
Standard test and application circuit (Flexiwatt27 with CD) . . . . . . . . . . . . . . . . . . . . . . . . . 7
Standard test and application circuit (Flexiwatt27 with HSD) . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. frequency (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. frequency (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Distortion vs. output power (4 Ω, Vs = 6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Distortion vs. output power (2 Ω, Vs = 6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Crosstalk vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Total power dissipation & efficiency vs. Po (4 Ω, Sine) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power dissipation vs. average output power (4 Ω, audio program simulation). . . . . . . . . . 15
Power dissipation vs. average output power (2 Ω, audio program simulation). . . . . . . . . . 15
ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 15
SVR charge diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Battery cranking curve example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Battery cranking curve example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Load dump protection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Thermal protection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Audio section waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Flexiwatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 22
Flexiwatt27 (Vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 23
DocID026688 Rev 1
STPA003
1
Overview
Overview
The STPA003 is a complementary quad audio power amplifier. It is available in two different
packages, Flexiwatt25 and Flexiwatt27. It embeds four independent amplifiers working in
class AB, a standby, a mute pin and an offset detector output. In the Flexiwatt27 package
also a high side driver or a clipping detection pin with diagnostics information is present. In
Flexiwatt25, the user can choose to have the offset detector or the high side driver on
pin 25. The amplifier is fully operational down to a battery voltage of 6 V, without producing
pop noise and continuing to play during battery transitions.
The STPA003 can drive 2 ohm loads and has a very high immunity to disturbs without need
of external components or compensation. It is protected against any kind of short or open
circuit, over-voltage and over-temperature.
1.1
Block diagram and application circuit
Figure 1. Block diagram
6CC
6CC
—&
34"9
—&
/$
-54%
(3$
).
(3$#$$)!'
(3$/$
/54
/54
07'.$
M&
/54
/54
).
M&
07'.$
/54
).
/54
M&
07'.$
/54
).
/54
M&
07'.$
!#'.$
X—&
362
4!"
M&
3'.$
ONLYIN&LEXIWATT
ONLYIN&LEXIWATT
DocID026688 Rev 1
'!0'03
5/25
24
Overview
STPA003
Figure 2. Standard test and application circuit (Flexiwatt25 with OD)
2))6(7
'(7(&725287
&
—)
&
—)
5
9
9FF
.
9FF
5
67%<
.
5
&
—)
087(
.
&
&
—)
,1
673$2'
:;
&—)
,1
287
&—)
,1
&—)
287
—)
,1
287
6*1'
287
$&*1'
695
7$%
&
—)
&[—)
'!0'03
Figure 3. Standard test and application circuit (Flexiwatt27 with CD)
2))6(7
'(7(&725287
&
M)
&
M)
5
9
9FF
9FF
5
67%<
.
.
5
&
—)
087(
.
&
&
—)
,1
M)
673$&'
;
&M)
,1
287
&M)
,1
&M)
287
,1
287
6*1'
$&*1'
&[M)
287
695
&
M)
7$%
5
9
.
&'287
6/25
DocID026688 Rev 1
*$3*36
STPA003
Overview
Figure 4. Standard test and application circuit (Flexiwatt27 with HSD)
2))6(7
'(7(&725287
&
M)
&
M)
5
9
9FF
9FF
5
.
67%<
.
5
&
—)
087(
.
&
&
—)
,1
673$+6'
;
&M)
,1
287
&M)
,1
&M)
287
M)
,1
287
6*1'
$&*1'
&[M)
287
695
7$%
&
M)
+6'
DocID026688 Rev 1
*$3*36
7/25
24
Pin description
2
STPA003
Pin description
Figure 5. Pin connections (top view)
4!"
07'.$
/54
34"9
/54
6##
/54
07'.$
/54
362
).
).
&LEXIWATT
340!/$78
3'.$
).
).
!#'.$
/54
07'.$
/54
6##
/54
-54%
/54
07'.$
/$
'!0'03
4!"
4!"
/$
/$
07'.$
07'.$
/54
/54
34"9
34"9
/54
/54
6##
6##
/54
/54
07'.$
07'.$
/54
/54
362
362
).
).
).
&LEXIWATT
340!(3$8
3'.$
).
).
&LEXIWATT
340!#$8
3'.$
).
).
).
!#'.$
!#'.$
/54
/54
07'.$
07'.$
/54
/54
6##
6##
/54
/54
-54%
-54%
/54
/54
07'.$
07'.$
(3$
#$$)!'
4!"
4!"
'!0'03
8/25
DocID026688 Rev 1
STPA003
Pin description
Table 2. Pin functions
Pin #
FW27
Pin #
FW25
Pin name
1
1
TAB
2
25
OD/HSD
3
2
PW-GND2
4
3
5
Description
Device slug connection
Offset detector output or high side driver output
Type
Output (open
collector)
Channel 2 power ground
Ground
OUT2-
Channel 2 negative output
Output
4
ST-BY
Standby
6
5
OUT2+
Channel 2 positive output
Output
7
6
VCC
Supply voltage
Supply
8
7
OUT1-
Channel 1 negative output
Output
9
8
PW-GND1
Channel 1 power ground
Ground
10
9
OUT1+
Channel 1 positive output
Output
11
10
SVR
Supply voltage rejection pin
Supply
12
11
IN1
Channel 1 input
Input
13
12
IN2
Channel 2 input
Input
14
13
S-GND
15
14
IN4
Channel 4 input
Input
16
15
IN3
Channel 3 input
Input
17
16
AC-GND
18
17
19
Signal ground
-
Ground
AC ground
Ground
OUT3+
Channel 3 positive output
Output
18
PW-GND3
Channel 3 power ground
Ground
20
19
OUT3-
Channel 3 negative output
Output
21
20
VCC
Supply voltage
Supply
22
21
OUT4+
Channel 4 positive output
Output
23
22
MUTE
Mute pin
24
23
OUT4-
Channel 4 negative output
Output
25
24
PW-GND4
Channel 4 power ground
Ground
26
n.a
HSD / CD-DIAG
27
n.a
TAB
High side driver or clipping detector and
diagnostics output
Device slug connection
DocID026688 Rev 1
Input
Output (open
collector)
-
9/25
24
Electrical specifications
STPA003
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3. Absolute maximum ratings
Symbol
Value
Unit
Operating supply voltage
18
V
VS (DC)
DC supply voltage
28
V
VS (pk)
Peak supply voltage (for t = 50 ms)
50
V
Output peak current
Non repetitive (t = 100 μs)
Repetitive (duty cycle 10 % at f = 10 Hz)
10
9
A
A
Power dissipation Tcase = 70 °C
85
W
Tj
Junction temperature
150
°C
Tstg
Storage temperature
-55 to 150
°C
Ground pin voltage
-0.3 to 0.3
V
-0.3 to 8
V
-0.3 to Vs(pk)
V
-0.3 to 6
V
-40 to 105
°C
Value
Unit
1
°C/W
VS
IO
Ptot
GNDmax
Parameter
Vin max
Input pin max voltage
VSB max
ST-BY pin max voltage
Vmute max Mute pin max voltage
Top
3.2
Operating ambient temperature
Thermal data
Table 4. Thermal data
Symbol
Rth j-case
10/25
Parameter
Thermal resistance junction-to-case
DocID026688 Rev 1
Max.
STPA003
3.3
Electrical specifications
Electrical characteristics
Refer to the test and application diagram, VS = 14.4 V; RL = 4 Ω; Rg = 600 Ω; f = 1 kHz;
Tamb = 25 °C; unless otherwise specified.
Table 5. Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
6
-
18
V
General characteristics
VS
Supply voltage range
-
Iq1
Quiescent current
RL = 
100
200
400
mA
Output offset voltage
Mute mode
-80
-
+80
mV
-10
-
+10
mV
-10
-
+10
mV
50
55
60
kΩ
VSt-by = 0.8 V
-
0.2
2
μA
VSt-by = 0
-
0.1
1
μA
VS = 14.4 V; THD = 10 %
VS = 14.4 V; THD = 1 %
-
30
24
-
W
W
55
43
-
W
W
VOS
dVOS
Output offset voltage when mute
moves from ON to OFF
Output offset voltage when standby moves from ON to OFF
Ri
Input impedance
ISB
Standby current consumption
ITU R-ARM weighted
Figure 20
-
Audio performances
Po
Output power
VS = 14.4 V; THD = 10 %, 2 Ω
VS = 14.4 V; THD = 1 %, 2 Ω
-
50
85
52
W
W
W
Max. output power(1)
VS = 14.4 V; RL = 4 Ω
VS = 14.4 V; RL = 2 Ω
VS = 15.2 V; RL = 4 Ω(square
wave input (2 Vrms))
-
Distortion
Po = 4 W
-
0.01
0.02
%
Gv
Voltage gain
-
25.5
26
26.5
dB
dGv
Channel gain unbalance
-
-1
-
+1
dB
eNo
Output Noise
"A" Weighted
Bw = 20 Hz to 20 kHz
-
40
50
70
μV
μV
SVR
Supply voltage rejection
f = 100 Hz; Vr = 1 Vrms
50
70
-
dB
fch
High cut-off frequency
PO = 0.5 W
100
300
-
kHz
CT
Cross talk
f = 1 kHz PO = 4 W
f = 10 kHz PO = 4 W
60
50
80
60
-
dB
dB
AM
Mute attenuation
POref = 4 W
80
100
-
dB
-
-
0.5
μA
2.2
-
-
V
Po max.
THD
-
Control pin characteristics
Ipin5
VSB out
Standby pin current
VSt-by = 0.8 V to 2.2 V
Standby out threshold voltage
(Amp: ON)
DocID026688 Rev 1
11/25
24
Electrical specifications
STPA003
Table 5. Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
VSB in
Standby in threshold voltage
(Amp: OFF)
-
-
0.8
V
VM out
Mute out threshold voltage
(Amp: Play)
2.3
-
-
V
VM in
Mute in threshold voltage
(Amp: Mute)
-
-
0.8
V
(Amp: Mute)
Att  80 dB; POref = 4 W
4.5
5
5.5
V
(Amp: Play)
Att < 0.1 dB; PO = 0.5 W
-
-
6
V
VMUTE = 0.8 V
(Sourced current)
-
9
14
μA
Dropout voltage
IO = 0.35 A
-
0.25
0.3
V
Current limits
-
400
-
800
mA
-
±2.3
±3
±3.7
V
Vo > ±3 V, Ioff Det = 1 mA
0 V < Voff Det < 18 V
-
0.05
0.1
V
Vo < ±1 V
-
0
15
μA
VAM in
Ipin23
VS automute threshold
Muting pin current
HSD section
Vdropout
Iprot
Offset detector
VOFF
Detected differential output offset
VOFF_SAT Off detector saturation voltage
VOFF_LK
Off detector leakage current
Clipping detector
CDLK
Clip detector high leakage current
Cd off
-
0
1
μA
CDSAT
Clip detector saturation voltage
DC On; ICD = 1 mA
-
0.2
0.4
V
CDTHD
Clip detector THD level
-
-
1
-
%
1. Saturated square wave output
12/25
DocID026688 Rev 1
STPA003
Electrical characteristics typical curves
4
Electrical characteristics typical curves
Figure 6. Quiescent current vs. supply voltage Figure 7. Output power vs. supply voltage (4 Ω)
,TP$
9LQ 5/ ȍ
9V9
5/ 7
I N+]
3RPD[
7+' 7+' *$3*36
Figure 9. Distortion vs. output power (4 Ω)
3R:
5/ 7
I N+]
9V9
*$3*36
Figure 8. Output power vs. supply voltage (2 Ω)
3R:
7+'
9V 9
5/ 7
3RPD[
I N +]
7+' 7+' I N+]
9V9
Figure 10. Distortion vs. output power (2 Ω)
3R:
Figure 11. Distortion vs. frequency (4 Ω)
7+'
7+'
9V 9
5/ 7
*$3*36
*$3*36
9V 9
5/ Ÿ
3R :
I N +]
I N+]
3R:
I+]
*$3*36
DocID026688 Rev 1
*$3*36
13/25
24
Electrical characteristics typical curves
STPA003
Figure 12. Distortion vs. frequency (2 Ω)
Figure 13. Distortion vs. output
power (4 Ω, Vs = 6 V)
7+'
7+'
9V 9
5/ Ÿ
3R :
9V 9
5/ Ÿ
I N+]
I N+]
I+]
3R:
*$3*36
Figure 14. Distortion vs. output
power (2 Ω, Vs = 6 V)
*$3*36
Figure 15. Supply voltage rejection vs.
frequency
7+'
695G%
9V 9
5/ Ÿ
5J Ÿ
9ULSSOH 9UPV
I
N+]
I
N+]
3R:
*$3*36
Figure 16. Crosstalk vs. frequency
*$3*36
H
3GLVV:
5/ Ÿ
3R :
5J Ÿ
Figure 17. Total power dissipation & efficiency
vs. Po (4 Ω, Sine)
&52667$/.G%
I+]
H
9V 9
5/ [7
[ I N+]
3GLVV
I+]
*$3*36
14/25
DocID026688 Rev 1
3R:
'!0'03
STPA003
Electrical characteristics typical curves
Figure 18. Power dissipation vs. average output Figure 19. Power dissipation vs. average output
power (4 Ω, audio program simulation)
power (2 Ω, audio program simulation)
3GLVV:
9V 9
5/ [Ÿ
3,1.12,6(
3GLVV:
9V 9
5/ [Ÿ
3,1.12,6(
&/,367$57
&/,367$57
3RDYJ:
'!0'03
3RDYJ:
'!0'03
Figure 20. ITU R-ARM frequency response,
weighting filter for transient pop
/UTPUTATTENUATIOND"
(Z
'!0'03
DocID026688 Rev 1
15/25
24
General information
STPA003
5
General information
5.1
Operation
The STPA003's inputs are ground-compatible. If the standard value for the input capacitors
(0.22 μF) is adopted, the low frequency cut-off will amount to 16 Hz. For optimum pop
performances, the capacitor connected to AC-GND should be four times bigger than input
capacitors (see Figure 2: Standard test and application circuit (Flexiwatt25 with OD)).
Standby and mute pins are 3.3 V and 5 V compatible.
RC cells at both mute and stand-by pins have always to be used in order to smooth the
transitions for preventing any audible transient noise. A time constant slower than 2.5 V/ms
is suggested for the stand-by pin and 0.5 V/ms for the mute pin.
In case the standby function is not used, it could steadily be connected to Vs through a
470 kΩ resistor.
The capacitance on SVR sets the start-up and shut-down times and helps to have pop-noise
free transitions. Its minimum recommended value is 10 μF. However, to have a fast start-up
time, the internal resistor on SVR pin, used to set the time constant, is reduced from 100 kΩ
to 3 kΩ till voltage on SVR reaches VCC/4 -2VBE and then released. In this way the
capacitor on SVR is charged very quickly to VCC/4, as shown in the following figure.
Figure 21. SVR charge diagram
6##
6##n 6"%
4IME
'!0'03
SVR pin accomplishes multiple functions:

it is used as a reference voltage for input pins (VCC/4)

the capacitor connected to SVR helps the supply voltage ripple rejection

it is used as a reference to generate the half supply voltage for the output
When the amplifier goes in stand-by mode or goes out from this condition, it is suggested to
put the amplifier in mute to ensure the absence of audible noise. Then the standby pin can
be set to the appropriate value (ground or > 2.2 V) and the capacitance on SVR pin is
discharged or charged consequently.
16/25
DocID026688 Rev 1
STPA003
General information
5.2
Battery variations
5.2.1
Low voltage operation
Most recent OEM specifications require automatic stop for car engine at traffic lights, in
order to reduce emissions of polluting substances. The STPA003, thanks to its innovating
design, allows a continuous operation when battery falls down. At 6 V it is still fully
operational, only the maximum output power is reduced according to the available voltage
supply.
If the battery voltage drops below the minimum operating voltage of 6 V the amplifier is fast
muted, the capacitor on SVR is discharged and the amplifier restarts when the battery
voltage returns to the correct voltage.
5.2.2
Cranks
STPA003 can sustain worst case cranks from 16 V to 6 V, continuing to play and without
producing any pop noise.
Examples of battery cranking curves are shown below, indicating the shape and duration of
allowed battery transitions.
Figure 22. Battery cranking curve example 1
9EDWW9
9
9
9
9
W
W
W
W W
W
W
WV
*$3*36
V1 = 16 V; V2 = 6 V; V3 = 7 V; V4 = 8 V
t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms
DocID026688 Rev 1
17/25
24
General information
STPA003
Figure 23. Battery cranking curve example 2
9EDWW 9
9
9
9
W
W
W
W
W
WV
*$3*36
V1 = 16 V; V2 = 6 V; V3 = 7 V
t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms
5.2.3
Advanced battery management (hybrid vehicles)
In addition to compatibility with low Vbatt, the STPA003 is able to sustain upwards fast
battery transitions without causing unwanted audible effects, like pop noise, and without any
sound interruption thanks to the innovative circuit topology. In fact, in hybrid vehicles, the
engine ignition causes a fast increase of battery voltage which can reach 16 V in less than
10 ms.
Figure 24. Upwards fast battery transitions diagram
'!0'03
18/25
DocID026688 Rev 1
STPA003
General information
5.3
Protections
5.3.1
Short circuits and open circuit operation
When the IC detects a short circuit to ground, to Vsupply or across the load, the output of the
amplifier is put in three-state (high impedance condition). The power stage remains in this
condition until the short is removed.
In case of short circuit to ground or Vcc, the amplifier exits from the three-state condition
only when the output returns inside the limits imposed by an internal voltage comparator.
When a short across the load is present, the power stage sees an over-current and is
brought in protection mode for 100 μs. After this time, if the short circuit condition is removed
the amplifier returns to play, otherwise the high impedance state is maintained and the
check is repeated every 100 μs.
Disconnection of load (open load condition) doesn't damage the amplifier, which continues to play.
5.3.2
Over-voltage and load dump protection
When the battery voltage is higher than 19 V, the amplifier is switched to a high impedance
state. It stops playing till the supply voltage returns in the permitted range.
The amplifier is protected against load dump surges having amplitude as high as 50 V and a
rising time lower than 5 ms (see Figure 25).
Figure 25. Load dump protection diagram
66DUMP
66CC
MS
MS
'!0'03
Thermal protection
If the junction temperature of the IC reaches Tj = 150 °C, a smooth mute is applied to reduce
output power and limit power dissipation. If this is not enough and the junction temperature
continues to increase, the amplifier is switched off when reaches the maximum temperature
of 170 °C.
Figure 26. Thermal protection diagram
/UTPUTPOWER
5.3.3
#
*UNCTIONTEMPERATURE #
DocID026688 Rev 1
#
'!0'03
19/25
24
General information
STPA003
5.4
Warnings
5.4.1
DC offset detection (OD pin)
The STPA003 integrates a DC offset detector to avoid that an anomalous input DC offset is
multiplied by the amplifier gain producing a dangerous large offset at the output. In fact an
output offset may lead to speakers damage for overheating. To correctly detect a DC offset,
the power amplifier has to be un-muted with no input signal.
When the differential output voltage is out of a window comparator with thresholds ± 3 V
(typ), the OD pin is pulled down.
5.4.2
Clipping detection and diagnostics (CD-DIAG pin)
When clipping occurs, the output signal is distorted. If the signal distortion on one of the
output channels exceeds 1 %, the CD-DIAG pin is pulled down. This information can be
sent to an audio processor in order to reduce the input signal of the amplifier and reduce the
clipping.
A short to ground and short to Vcc is signaled by CD-DIAG. This pin is pulled down to 0 V till
these shorts are present to inform the user a protection occurred.
CD-DIAG acts also as thermal warning. In fact every time Tj exceeds 140 °C, it is pulled
down to notify this occurrence.
Figure 27. Audio section waveforms
34"90).
6/,4!'%
T
-54%0).
6/,4!'%
T
6S
/54054
7!6%&/2T
$)!'PIN
7!6%&/2T
#,)00).'
3(/244/'.$
/24/6S
4(%2-!,
02/8)-)49
'!0'03
20/25
DocID026688 Rev 1
STPA003
5.5
General information
Heat sink definition
Assuming we have a maximum dissipated power of 26 W (e.g. in the worst case situation of
frequent clipping occurrence), considering Tj max is 150 °C and assuming ambient
temperature is 70 °C, the available temperature gap for a correct dissipation is 80 °C.
This means the thermal resistance of the system Rth has to be 80 °C/26 W = 3 °C/W.
The junction to case thermal resistance is 1 °C/W. So the heat sink thermal resistance
should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even
after long-term and full-volume operation.
DocID026688 Rev 1
21/25
24
Package information
6
STPA003
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 28. Flexiwatt25 (vertical) mechanical data and package dimensions
$)-
!
"
#
$
%
&
'
'
(
(
(
(
,
,
,
,
,
,
-
.
/
2
2
2
2
2
6
6
6
6
-).
MM
490
-!8
-).
INCH
490
-!8
/54,).%!.$
-%#(!.)#!,$!4!
&LEXIWATTVERTICAL
ƒ7\S
ƒ7\S
ƒ7\S
ƒ7\S
DAMBARPROTUSIONNOTINCLUDED
MOLDINGPROTUSIONINCLUDED
6
#
"
6
(
(
6
!
(
/
(
2
,
2
6
2
,
.
,
2
,
,
6
6
2
$
2
,
0IN
2
2
%
'
'
&
&,%8-%
-
-
'!0'03
22/25
DocID026688 Rev 1
STPA003
Package information
Figure 29. Flexiwatt27 (Vertical) mechanical data and package dimensions
',0
0,1
$
%
&
'
(
)
*
*
+
+
+
+
/ /
/
/
/
/
0
0
1
2
5
5
5
5
5
9
9
9
9
PP
7<3
0$;
0,1
LQFK
7<3
0$;
287/,1($1'
0(&+$1,&$/'$7$
ƒ7\S
ƒ7\S
ƒ7\S
ƒ7\S
)OH[LZDWWYHUWLFDO
GDPEDUSURWXVLRQQRWLQFOXGHGPROGLQJSURWXVLRQLQFOXGHG
6
#
"
6
(
(
6
!
(
/
(
2
,
2
6
2
,
.
,
2
,
,
6
6
2
,
0IN
$
2
2
2
%
'
'
&
-
-
%
'!0'03
DocID026688 Rev 1
23/25
24
Revision history
7
STPA003
Revision history
Table 6. Document revision history
24/25
Date
Revision
11-Jul-2014
1
Changes
Initial release.
DocID026688 Rev 1
STPA003
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID026688 Rev 1
25/25
25