BTS41k0S-ME-N Smart High-Side NMOS-Power Switch Datasheet Rev 1.1, 2012-05-08 Automotive Power BTS41k0S-ME-N Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Typical Performance Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 7.1 7.2 7.3 7.4 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Application Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package outlines and footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Datasheet 2 6 6 7 7 14 14 15 16 17 Rev 1.1, 2012-05-08 Smart High-Side NMOS-Power Switch 1 BTS41k0S-ME-N Overview Features • • • • • • • • • • • • • • • Current controlled input Capable of driving all kind of loads (inductive, capacitive and resitive) Negative voltage clamped at output with inductive loads Current limitation Very low standby current Thermal shutdown with restart Overload protection Short circuit protection Overvoltage protection (including load dump) Reverse battery protection Loss of GND and loss of Vbb protection ESD-Protection Improved electromagnetic compatibility (EMC) Green Product (RoHS compliant) AEC Qualified PG-SOT223-4 Description The BTS41k0S-ME-N is a protected 1 Ω single channel Smart High-Side NMOS-Power Switch in a PG-SOT2234 package with charge pump and current controlled input, monolithically integrated in a smart power technology. Product Summary Overvoltage protection VS(AZ) = min.62V Operating voltage range 4,9V < VS < 45V On-state resistance RON typ 1Ω Operating Temperature range Tj = -40°C to 150°C Application • • • • All types of resistive, inductive and capacitive loads in automotive applications Current controlled power switch for 12V, 24V and 45V DC automotive and industrial applications Driver for electromagnetic relays Signal amplifier Type Package Marking BTS41k0S-ME-N PG-SOT223-4 41k0SN Datasheet 3 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Block Diagram and Terms 2 Block Diagram and Terms BTS41k0S-ME-N 2, 4 VS Control Circuit Temperature Sensor RIN 3 OUT 1 IN Figure 1 Block diagram Voltage- and Current-Definitions: Switching Times and Slew Rate Definitions: IIN BTS41k0S-ME-N 2, 4 IIN(ON) 0 VS VOUT IS IIN(OFF ) VDS 90% VON Control Circuit dV/tOFF Temperature Sensor 3 1 40% 30% dV/t ON IL 10% 0 RL I IN OUT VOUT IN 70% VS RIN VIN Datasheet t ON t tOFF IL 0 GND Figure 2 t +VS OFF ON OFF t Terms - parameter definition 4 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Pin Configuration 3 Pin Configuration 3.1 Pin Assignment 4 1 2 Figure 3 Pin configuration top view, PG-SOT223-4 3.2 Pin Definitions and Functions Pin Symbol Function 3 1 IN Input, activates the power switch in case of connection to GND 2 VS Supply voltage 3 OUT Output to the load 4 VS Supply voltage Datasheet 5 Rev 1.1, 2012-05-08 BTS41k0S-ME-N General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute maximum ratings 1)Tj = -40°C to 150°C all voltages with respect to ground, currents flowing into the device unless otherwise specified in “Terms” Pos. Parameter Symbol Limit values Min. Unit Conditions Max. Supply voltage VS 4.1.1 Voltage 60 VS V Output stage OUT 4.1.2 Output Current; (Short circuit current see electrical characteristics) I OUT Input Current I IN -15 15 mA A self limited Input IN 4.1.3 Temperatures 4.1.4 Junction Temperature Tj -40 150 °C 4.1.5 Storage Temperature Tstg -55 150 °C 1.7 W 1000 mJ 93.5 127 V V -1 1 kV HBM2) -5 5 kV HBM2) Power dissipation 4.1.6 P tot Ta = 25 °C Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70mm thick) copper area for Vbb connection. PCB is vertical without blown air Inductive load switch-off energy dissipation 4.1.7 Tj = 150 °C; IL=0.15A; single pulse 1) EAS Load dump protection 4.1.8 VLoadDump =VA + VS RL=2Ω; td = 400ms; VIN = H or L IL=0.15A; VS= 13.5V VLoadDump VS= 27V VLoadDump VLoadDump is set up without the device under test connected to the generator per ISO 7637-1 and DIN 40839 ESD Susceptibility 4.1.9 ESD susceptibility (input pin) 4.1.10 ESD susceptibility (all other pins) VESD VESD 1) Not subject to production test, specified by design 2) ESD susceptibility HBM according to EIA/JESD 22-A 114. Note: Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” the normal operating range. Protection functions are not designed for continuous or repetitive operation. Datasheet 6 Rev 1.1, 2012-05-08 BTS41k0S-ME-N General Product Characteristics 4.2 Pos. Functional Range Parameter 4.2.1 Nominal Operating Voltage 4.2.2 Standby Current Symbol Limit values VS IS(off) Unit Conditions Min. Max. 4.9 45 V VS increasing 2 10 uA IN open Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance This thermal data was generated in accordance to JEDEC JESD51 standards. More information on www.jedec.org. Thermal Resistance1) Table 1 Pos. Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition 4.3.1 Thermal Resistance - Junction to Rthj-pin4 soldering point, pin4 15 K/W 4.3.2 Thermal Resistance - Junction to RthJA_1s0p Ambient - 1s0p, minimal footprint 86 K/W 2) 4.3.3 Thermal Resistance - Junction to RthJA_1s0p_600mm Ambient - 1s0p, 600mm2 60 K/W 3) 1) Not subject to production test, specified by design 2) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, footprint; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu. 3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, 600mm2; the Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu. Datasheet 7 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Electrical Characteristics 5 Electrical Characteristics VS = 9V to 45V; Tj = -40°C to 150°C; all voltages with respect to ground, currents flowing into the device unless otherwise specified in chapter “Block Diagram and Terms”); typical values at Vs = 13.5V, Tj = 25°C Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions Powerstage (PMOS and Diode to GND) 5.0.1 NMOS ON Resistance RDSON 0.8 1.5 Ω IOUT= 150mA; Tj = 25°C; 5.0.2 NMOS ON Resistance RDSON 1.5 3.0 Ω IOUT= 150mA; Tj = 150°C; IN conected to GND IN conected to GND 5.0.3 NMOS ON Resistance RDSON 5.0.4 Nominal Load Current 1); device on PCB 2) IL(nom) 2 5 Ω IOUT= 50mA; Tj = 25°C; VS = 6V; IN conected to GND 0.2 A Ta = 85°C; Tj = 150°C; Timings of Power Stages 5.0.5 Turn ON Time 3) (to 90% of Vout); VS to GND transition of VIN tON 125 4) 5.0.6 Turn ON Time 3) (to 90% of Vout); VS to GND transition of VIN tON 5.0.7 Turn OFF Time 3) (to 10% of Vout); GND to VS transition of VIN tOFF 5.0.8 Turn OFF Time 3) (to 10% of Vout); GND to VS transition of VIN tOFF 5.0.9 ON-Slew Rate 3) (10 to 30% of Vout); dVOUT / dtON VS to GND transition of VIN 5.0.10 ON-Slew Rate 3) (10 to 30% of Vout); dVOUT / VS to GND transition of VIN dtON 5.0.11 OFF-Slew Rate 3) ; (70 to 40% of Vout); GND to VS transition of VIN dVOUT / dtOFF 5.0.12 OFF-Slew Rate 3) ; (70 to 40% of Vout); GND to VS transition of VIN dVOUT / dtOFF 1.7 4.0 V / μs VS=13.5V; RL = 270Ω Tj = 25°C IS(off) 2 10 μA 45 100 175 4) 40 140 6 4) 1.3 4.0 8 4) μs VS=13.5V; RL = 270Ω μs VS=13.5V; RL = 270Ω; Tj = 25°C μs VS=13.5V; RL = 270Ω μs VS=13.5V; RL = 270Ω; Tj = 25°C V / μs VS=13.5V; RL = 270Ω V / μs VS=13.5V; RL = 270Ω Tj = 25°C V / μs VS=13.5V; RL = 270Ω Standby current consumption 5.0.13 Standby current Datasheet 8 IN open Rev 1.1, 2012-05-08 BTS41k0S-ME-N Electrical Characteristics VS = 9V to 45V; Tj = -40°C to 150°C; all voltages with respect to ground, currents flowing into the device unless otherwise specified in chapter “Block Diagram and Terms”); typical values at Vs = 13.5V, Tj = 25°C Pos. Parameter Symbol Limit Values Min. Protection functions Conditions A Tj = -40°C; VS = 13.5V tm = 100µs Tj = 25°C; VS = 13.5V tm = 100µs Tj =150°C; VS = 13.5V tm = 100µs Max. 5) 5.0.14 Initial peak short circuit current limit IL(SCp) IN conected to GND 5.0.15 Initial peak short circuit current limit IL(SCp) IN conected to GND 5.0.16 Initial peak short circuit current limit IL(SCp) IN conected to GND 5.0.17 Repetitive short circuit current limit IL(SCr) IN conected to GND 5.0.18 Typ. Unit Output clamp at VOUT = VS - VON(CL) 1.2 0.9 A 0.2 A 0.7 VON(CL) 60 VS(AZ) 62 150 A V IS = 4mA V IS = 1mA (inductive load switch off) 5.0.19 Overvoltage protection VOUT = VS - VON(CL) 5.0.20 Thermal overload trip temperature 4) TjTrip 5.0.21 Thermal hysteresis 4) THYS 68 °C 10 °C Input interface 5.0.22 Off state input current IIN(off) 0.05 mA 5.0.23 Off state input current IIN(off) 0.04 mA 5.0.24 On state input current; IN connected to GND 6) IIN(on) 0.3 1.0 mA 5.0.25 Input resistance RIN 1.0 2.5 kΩ 0.2 A 0.5 Tj = -25°C; RL = 270Ω VOUT =< 0.1V Tj = 150°C; RL = 270Ω VOUT =< 0.1V Reverse Battery 5.0.26 5.0.27 IDRev Forward voltage of the drain-source VFDS Continuous reverse drain current 770 reverse diode mV IFDS = 200mA IIN =< 0.05mA 1) Nominal Load Current is limited by the current limitation; see protection function data 2) Device on 50mm x 50mm x 1,5mm epoxy FR4 PCB with 6cm² (one layer copper 70um thick) copper area for supply voltage connection. PCB in vertical position with blown air 3) Timing values only with high input slewrates (trIN = tfIN <= 50ns); otherwise slower 4) Not tested in production 5) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 6) Driver circuit must be able to sink currents > 1mA Datasheet 9 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Typical Performance Graphs 6 Typical Performance Graphs Transient Thermal Impedance ZthJA versus Pulse Time tp @ 6cm² heatsink area (D= tp/T) Transient Thermal Impedance ZthJA versus Pulse Time tp @ min footprint (D= tp/T) On-Resistance RDSONversus Junction Temperature Tj @ VS = 9V; IL =150mA On-Resistance RDSON versus Supply Voltage VS = Vbb @ IL = 150mA; Tj= par. Datasheet 10 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Typical Performance Graphs Switch ON Time tON versus Junction Temperature Tj @ RL = 270Ω; VS= par. Switch OFF Time tOFFversus Junction Temperature Tj @ RL = 270Ω; VS= par. ON Slewrate SRON versus Junction Temperature Tj @ RL = 270Ω; VS= par. OFF Slewrate SROFF versus Junction Temperature Tj @ RL = 270Ω; VS= par. Datasheet 11 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Typical Performance Graphs Initial Peak Short Circuit Current Limt IL(SCp) versus Initial Short Circuit Shutdown Time toff(SC) versus Junction Temperature Tj @ VS=13,5V; tm=100μs Junction Start-Temperature Tj start ; VS= parameter Initial Peak Short Circuit Current Limt IL(SCp) versus Current Limtation Characteristic IL(SC) versus Supply Voltage VS = Vbb @ Tj= parameter; tm=100μs Drain Source Voltage Drop VON @ VS=13,5V Datasheet 12 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Typical Performance Graphs Stand By Current Consumption Is(off) versus Junction Temperature Tj @ pin IN open ) Datasheet 13 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Application Information 7 Application Information 7.1 Application Diagram The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty for a certain functionality, condition or quality of the device. Electronic Control Unit BTS41k0S-ME-N Wire Harness VS complexLOAD 2, 4 CS 220nF Control Circuit RIN Chassis 3 Temperature Sensor 3 Vc trl ON t Vctrl OUT 1 OFF Wire Harness COUT complex LOAD IN 1nF Infineon BCR 1xx Chassis 2 Chassis 1 Figure 4 Application Diagram The BTS41k0S-ME-N can be connected directly to the battery of a supply network. It is recommended to place a ceramic capacitor (e.g. CS = 220nF) between supply and GND of the ECU to avoid line disturbances. Wire harness inductors/resistors are sketched in the application circuit above. The complex load (resistive, capacitive or inductive) must be connected to the output pin OUT. A built-in current limit protects the device against destruction. The BTS41k0S-ME-N can be switched on and off with a low power levelshifter switch e.g. Infineon BCR1xx. The IN pin must be pulled down to GND potential to switch the BTS41k0S-ME-N on. If no current is pulled down, the IN-node will float up to VS potential by an internal pull up. In this mode the BTS41k0S-ME-N is deactivated with very low current consumption. The output voltage slope is controlled during on and off transistion to minimize emissions. Only a small Cercap COUT =1nF is recommended to attenuate RF noise. In the following chapters the main features, some typical waverforms and the protection behaviour of the BTS41k0S-ME-N is shown. For further details please refer to application notes on the Infineon homepage. Datasheet 14 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Application Information Special features BTS41k0S-ME-N 2, 4 ZD 1 BTS41k0S-ME-N VS 2, 4 ZD2 ZD1 D1 V ON D1 Control circuit V B att Temperature Sensor RIN M1 3 Temperature Sensor R IN OUT VF M1 Control circuit IRev ZD2 V FZD 1 M1 3 1 OUT IRev1 1 IN ZL ZL V ESD V OU T IN VS V Rev 7.2 IRev2 If Over-Voltage is applied to the V S-Pin: Voltage is limited to VZD1; Current can be calculated : IZD1 = (VS – VZD1) / RIN In case of ESD Pulse on the input pin there is in both polarities a peak current IINpeak ~ VESD / RIN The control unit is protected in both cases by the Zenerdiode ZD1 BTS41k0S-ME-N 2, 4 ZD 1 If reverse Voltage is applied to the device : 1.) Current via Load Resistance RL : IRev1 = (VRev – VFM1) / RL 2.) Current via Input Resistance RIN : IREV2 = (V Rev – VFZD1) / RIN Both currents will sum up to: IRev = IRev1+ IREV2 BTS41k0S-ME-N VS 2, 4 ZD2 ZD1 M1 3 3 V OUT OFF Datasheet EL LL ER RL ON t OFF t When an inductive load is switched off a current path must be established until the current is sloped down to zero (all energy removed from the inductive load ). For that purpose the series combination ZD 2 and D1 is connceted between Gate and Drain of the power DMOS. When the device is switched off, the voltage at OUT turns negative until V ON(CL) is reached. The Voltage on the incutive load is the difference between V ON(CL) and VS. Figure 5 OUT 1 IN LL ON ELoad Temperature Sensor R IN OUT IL V ON(CL ) Control circuit V Batt Temperature Sensor 1 D1 V ON(CL ) D1 Control circuit IN EBatt ZD2 M1 RIN VS Energy stored in the load inductance is given by : EL= IL²*L/2 While demagnetizing the load inductance the energy dissipated by the Power -DMOS is: EAS = ES + EL – ER With an approximate solution for R L > 0Ω: EAS = (IL*L) / (2*RL)*(VS+VON(CL))*ln((1+(IL*RL) / VON(CL)) Special Feature descriptions 15 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Application Information 7.3 Typical Application Waveforms General Input Output waveforms: IIN Waveforms switching a resistive load: IIN IIN(ON) 0 IIN(OFF ) IIN(ON ) 0 t VS I IN(OFF) VOUT +VS VDS 90% 70% t VOUT t dV/t OFF 40% 30% dV/tON 10% 0 0 t IL tON t t OFF IL 0 0 t ON OFF ON OFF Waveforms switching a capacitive load: IIN IIN IIN(OFF ) V OUT IL(SC) 0 t Figure 6 Datasheet OFF t IL 0 ON t ~ VS 0 t OFF IIN(OFF) VOUT ~ VS IL IIN(ON) 0 t 0 OFF Waveforms switching an inducitive load : IIN(ON) 0 ON VON(CL) OFF t ON t OFF ON OFF ON Typical application waveforms 16 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Application Information 7.4 Protection behavior Overtemperature concept: Overtemperature behavior IIN TjRestart ON 0 TjTrip Toggling t Tj THYS Normal t 0 TJ cooling down Device Status IIN(OFF) VOUT heating up OFF IIN(ON ) TjTrip THYS Overtemperature t ON OFF Waveforms turn on into a short circuit : IIN IIN IIN(OFF) ON OFF Waveforms short circuit during on state : I IN(ON) 0 OFF IIN(ON ) 0 t VOUT IIN(OFF) t VOUT 0 0 t t IL IL IL(SCp) IL(SCr) IL(SCr) tm 0 OFF Overloaded 0 t toff(SC) OFF Shut down by overtemperature and restart by cooling (toggling ) Figure 7 Datasheet t OFF Normal operation OUT shorted to GND Shut down by overtemperature and restart by cooling (toggling ) Protective behaviour waveforms of the BTS41k0S-ME-N 17 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Package outlines and footprint 8 Package outlines and footprint 1.6±0.1 6.5 ±0.2 3 ±0.1 A 0.1 MAX. B 1 0.25 M A 2 3 2.3 0.7 ±0.1 4.6 3.5 ±0.2 0.5 MIN. 7 ±0.3 4 0.28 ±0.04 0.25 M B 0...10˚ SOT223-PO V04 Figure 8 PG-SOT223-4 (Plastic Dual Small Outline Package, RoHS-Compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020 Datasheet 18 Rev 1.1, 2012-05-08 BTS41k0S-ME-N Revision History 9 Revision History Revision Date Changes V 1.1 12-05-08 Page 9: Line 5.0.27 changed from max 600mV to typ. 770mV Page 13: Graph EAS vs IOUT deleted Datasheet 19 Rev 1.1, 2012-05-08 Edition 2012-05-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2011-11-23 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.