MIC5373/83 Triple 200mA µCap LDO in 2.5mm x 2.5mm Thin MLF® General Description Features The MIC5373/83 is a triple output device with three 200mA LDOs which is ideal for application processor support in mobile platforms. The MIC5373 provides independent control active high enables for each of the 200mA LDOs. The MIC5383 provides active low enables. Both the MIC5373 and MIC5383 are available in the tiny 2.5mm x 2.5mm Thin MLF® package. The MIC5373/83 is designed for high input ripple rejection (high PSRR) and provides low output noise making it ideal for powering sensitive RF circuitry such as GPS, WiFi and Bluetooth applications. The MIC5373/83 also incorporates a power-on-reset (POR) supervisor with adjustable delay time set by an external capacitor, and an independent input pin to monitor any voltage level. Once high, the POR output can be asserted low again by enabling the manual reset (MR) pin. When the MR pin is restored low, the POR output will re-time the delay set by the external delay capacitor. The MIC5373/83 operates with very small ceramic output capacitors to reduce board space and component cost. It is available in various fixed output voltages. The MIC5373/83 has a junction temperature range from −40°C to 125°C. Datasheets and support documentation can be found on Micrel’s web site at: www.micrel.com. • • • • • • • • • • 1.7V to 5.5V input supply voltage range Output current - 200mA LDO1/2/3 High output accuracy (±2%) Independent enable pins POR with user-defined voltage monitoring − POR voltage input − Adjustable delay time − Manual reset pin Low dropout voltage – 170mV at 150mA High PSRR - 55dB at 1kHz on each LDO Stable with tiny ceramic output capacitors 2.5mm x 2.5mm Thin MLF16-pin package Thermal-shutdown and current-limit protection Applications • • • • Mobile phones GPS receivers Application co-processors PDAs and handheld devices Typical Application Typical MIC5373-xxxYMT Circuit (Active High Enable) Typical MIC5383-xxxYMT Circuit (Active Low Enable) MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com September 2012 M9999-091712 Micrel, Inc. MIC5373/83 Ordering Information Part Number Mark Code Output Voltage(1) Junction Temperature Range Package Lead Finish MIC5373-MG4YMT MG4 2.8V/1.8V/1.2V –40° to +125°C 16-Pin 2.5mm x 2.5mm Thin MLF Pb-free MIC5373-SJGYMT SJG 3.3V/2.5V/1.8V –40° to +125°C 16-Pin 2.5mm x 2.5mm Thin MLF Pb-free MIC5383-MG4YMT Z1T 2.8V/1.8V/1.2V –40° to +125°C 16-Pin 2.5mm x 2.5mm Thin MLF Pb-free MIC5383-SJGYMT Z5T 3.3V/2.5V/1.8V –40° to +125°C 16-Pin 2.5mm x 2.5mm Thin MLF Pb-free Note: 1. Other voltage options available. Contact Micrel for details. 2. Lead finish is NiPdAu. Mold compound material is halogen free. Pin Configuration MIC5373 16-Pin 2.5mm x 2.5mm Thin MLF (MT) (Top View) September 2012 MIC5383 16-Pin 2.5mm x 2.5mm Thin MLF (MT) (Top View) 2 M9999-091712 Micrel, Inc. MIC5373/83 Pin Description Pin Number Pin Name 1 OUT1 Pin Function 2 INLDO1/2 3 OUT2 Regulator Output – LDO2. 4 BIAS Internal Bias Supply Voltage. Must be de-coupled to ground with a 0.1µF capacitor. 5 POR_IN 6 POR Power-on Reset Output. Open drain. 7 DLY POR Delay. Connect capacitor to ground to set POR delay time. 8 MR Manual Reset Input. Manually resets output of POR and delay generator. Do not leave floating. Regulator Output - LDO1. Supply Input (LDO1/2). Input to POR. Connect directly to output voltage or input voltage that is to be monitored for a 0.9V reference, or connect a resistor divider network to this pin to program the POR monitoring voltage. 9 NC Not internally connected. 10 NC Not internally connected. 11 INLDO3 12 OUT3 Regulator Output – LDO3. 13 GND Ground. 14 EN3 or /EN3 15 EN2 or /EN2 16 EN1 or /EN1 HS Pad EPAD September 2012 Supply Input (LDO3). LDO3 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off; /EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. LDO2 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off; /EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. LDO1 Enable Input. EN (MIC5373): Active High Input. Logic High = On; Logic Low = Off; /EN (MIC5383): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. Exposed Heat Sink Pad. Connect to GND. 3 M9999-091712 Micrel, Inc. MIC5373/83 Absolute Maximum Ratings(1) Operating Ratings(4) Supply Voltage (VINLDO1/2, INLDO3) ...................... −0.3V to +6V Bias Supply Voltage (VBIAS)............................. −0.3V to +6V Enable Input Voltage (VEN1, EN2, EN3)................. −0.3V to +6V POR Output Voltage (POR) ............................ −0.3V to +6V POR Input Voltage (POR_IN) ......................... −0.3V to +6V MR Voltage (MR) ............................................ −0.3V to +6V DLY Voltage (DLY).......................................... −0.3V to +6V Power Dissipation .................................. Internally Limited(2) Lead Temperature (soldering, 10s)............................ 260°C Storage Temperature (Ts) .........................–60°C to +150°C ESD Rating(3) ................................................. ESD Sensitive Supply Voltage(5) (VINLDO1/2, INLDO3) .................. +1.7V to VBIAS Bias Supply Voltage (VBIAS).......................... +2.5V to +5.5V Enable Input Voltage (VEN1, EN2, EN3)..................... 0V to VBIAS POR Output Voltage (POR) .............................. 0V to +5.5V POR Input Voltage (POR_IN) ............................. 0V to VBIAS MR Voltage (MR) ................................................ 0V to VBIAS DLY Voltage (DLY).............................................. 0V to VBIAS Junction Temperature (TJ) ........................ –40°C to +125°C Junction Thermal Resistance 2.5mm x 2.5mm Thin MLF-16L (θJA) ...............100°C/W Electrical Characteristics(6) (MIC5373) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON); (MIC5383) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON); IOUT1 = IOUT2 = IOUT3 = 100µA; COUT1 = COUT2 = COUT3 = 1µF; TA = 25°C, Bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted. Parameter Conditions Min. Typ. Max. Units Output Voltage Accuracy Variation from nominal VOUT1, 2, 3 −2.0 +2.0 Variation from nominal VOUT1, 2, 3 −3.0 +3.0 % Line Regulation VIN = VOUT +1V to 5.5V; IOUT = 100µA 0.02 0.3 %/V Load Regulation IOUT = 100µA to 150mA; 0.3 1 % Dropout Voltage IOUT = 50mA; VOUT ≥ 2.8V 60 115 IOUT = 150mA; VOUT ≥ 2.8V 170 330 IOUT = 50mA; VOUT < 2.8V 85 145 mV IOUT = 150mA; VOUT < 2.8V 275 450 EN1 or EN2 or EN3 = ON; Not including IBIAS 10 20 EN1 or EN2 or EN3 = ON 32 70 EN1 = EN2 = EN3 = ON 103 160 Shutdown Ground Current EN1 = EN2 = EN3 = OFF 0.04 2 µA Shutdown Bias Current EN1 = EN2 = EN3 = OFF 0.02 2 µA 700 mA Input Ground Current Bias Ground Current Ripple Rejection f = 1kHz; COUT = 1.0µF Current Limit VOUT = 0V Output Voltage Noise COUT =1µF,10Hz to 100kHz; IOUT = 150mA Enable Input Voltage 55 200 350 (MIC5373) LDO ON; (MIC5383) LDO OFF µVRMS 0.2 1.2 VIL ≤ 0.2V 0.01 VIH ≥ 1.2V 0.01 Turn-On Time COUT = 1µF 80 VPOR POR Output Low Voltage Enable Input Current µA dB 200 (MIC5373) LDO OFF; (MIC5383) LDO ON µA V µA 200 µs 0.2 V Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown. 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF. 4. The device is not guaranteed to function outside its operating rating. 5. For VIN range of 1.7V to 2.5V, output current is limited to 30mA. 6. Specification for packaged product only. September 2012 4 M9999-091712 Micrel, Inc. MIC5373/83 Electrical Characteristics(6) (MIC5373) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON); (MIC5383) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON); IOUT1 = IOUT2 = IOUT3 = 100µA; COUT1 = COUT2 = COUT3 = 1µF; TA = 25°C, Bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted. Parameter Conditions Min. Typ. Max. Units DLY Pin Current Source VDLY = 0V DLY Pin Voltage Threshold 0.75 1.25 2 µA 1.13 1.25 1.38 V 0.873 0.9 IPOR POR Output Leakage Current, VPOR OFF VTH POR Undervoltage Threshold VHYS POR Hysteresis 34 mV IPOR_IN POR Input Pin Leakage Current 1 µA Thermal Shutdown 155 °C Thermal-Shutdown Hysteresis 10 °C September 2012 5 1 µA 0.927 V M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics LDO1 Output Voltage vs. Input Voltage 3.40 3.40 3.10 IOUT = 100µA 3.00 2.90 2.80 VBIAS = VIN1/2 2.70 VOUT _NOM = 3.3V 2.60 3.30 3.20 3.10 IOUT = 50mA 3.00 2.90 2.80 VBIAS = VIN1/2 2.70 VOUT_NOM = 3.3V 2.60 COUT = 1.0µF 2.5 3 3.5 4 4.5 5 3 LDO2 Output Voltage vs. Input Voltage 4 4.5 5 IOUT = 100µA 2.40 2.35 VBIAS = VIN VOUT _NOM = 2.5V 2.25 4 4.5 2.45 IOUT = 50mA 2.40 2.35 VBIAS = VIN 2.30 VOUT_NOM = 2.5V 5 3 OUTPUT VOLTAGE (V) IOUT = 100µA 1.55 1.50 1.45 VBIAS = 5.5V VOUT_NOM = 1.8V 1.40 1.35 3.5 4 4.5 5 COUT = 1.0µF 2.2 2.7 3.2 3.7 4.2 4.7 INPUT VOLTAGE (V) September 2012 5.2 5.7 5.5 2.45 IOUT = 150mA 2.40 2.35 VBIAS = VIN 2.30 VOUT_NOM = 2.5V COUT = 1.0µF 2.5 3 1.70 1.65 IOUT = 50mA 1.60 1.55 1.50 1.45 VBIAS = 5.5V VOUT_NOM = 1.8V COUT = 1.0µF 1.7 2.2 2.7 3.2 3.7 4.2 4.7 INPUT VOLTAGE (V) 6 3.5 4 4.5 5 5.5 LDO3 Output Voltage vs. Input Voltage 1.90 1.85 5.2 1.80 1.75 1.70 1.65 1.60 1.55 IOUT = 150mA 1.50 1.45 1.40 VBIAS = 5.5V VOUT_NOM = 1.8V COUT = 1.0µF 1.35 1.30 1.30 1.7 5 INPUT VOLTAGE (V) 1.80 1.75 1.40 1.35 1.30 4.5 2.50 5.5 LDO3 Output Voltage vs. Input Voltage 1.90 1.85 1.75 1.70 4 LDO2 Output Voltage vs. Input Voltage INPUT VOLTAGE (V) 1.85 1.80 3.5 2.20 2.5 5.5 LDO3 Output Voltage vs. Input Voltage 1.65 1.60 3 2.25 COUT = 1.0µF INPUT VOLTAGE (V) 1.90 COUT = 1.0µF 2.55 OUTPUT VOLTAGE (V) 3.5 VOUT_NOM = 3.3V 2.60 2.20 2.20 3 VBIAS = VIN1/2 2.70 INPUT VOLTAGE (V) 2.50 2.25 COUT = 1.0µF 2.5 2.80 2.5 OUTPUT VOLTAGE (V) 2.50 2.30 2.90 5.5 2.55 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.5 LDO2 Output Voltage vs. Input Voltage 2.60 2.55 2.45 IOUT = 150mA 3.00 INPUT VOLTAGE (V) INPUT VOLTAGE (V) 2.60 3.10 2.50 2.5 5.5 3.20 2.60 COUT = 1.0µF 2.50 2.50 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.20 LDO1 Output Voltage vs. Input Voltage 3.40 3.30 3.30 OUTPUT VOLTAGE (V) LDO1 Output Voltage vs. Input Voltage 5.7 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7 INPUT VOLTAGE (V) M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics (Continued) 3.40 3.38 3.38 3.36 3.36 OUTPUT VOLTAGE (V) VIN = 3.6V 3.32 3.30 3.28 3.26 VBIAS = VIN1/2 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 3.20 0 3.38 VIN = 4.2V 3.34 3.32 3.30 3.28 3.26 VBIAS = VIN1/2 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 0 OUTPUT CURRENT (mA) 2.56 2.56 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 2.58 VIN = 3.0V 2.52 2.50 2.48 2.46 VBIAS = VIN1/2 2.44 VOUT _NOM = 2.5V 2.42 COUT = 1.0µF 3.28 0 50 100 150 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 0 20 40 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) 2.52 2.50 2.48 2.46 VBIAS = VIN1/2 2.44 VOUT_NOM = 2.5V 2.42 COUT = 1.0µF OUTPUT VOLTAGE (V) 1.86 VIN = 2.5V 1.82 1.80 1.78 VOUT _NOM = 1.8V 1.72 COUT = 1.0µF 50 100 150 50 100 150 OUTPUT CURRENT (mA) September 2012 2.50 2.48 2.46 VBIAS = VIN1/2 2.44 VOUT_NOM = 2.5V 2.42 COUT = 1.0µF 0 200 50 100 150 200 OUTPUT CURRENT (mA) LDO3 Output Voltage vs. Output Current 1.90 1.88 VIN = 3.6V 1.84 1.82 1.80 1.78 1.76 VBIAS = VIN3 1.74 VOUT_NOM = 1.8V 1.72 COUT = 1.0µF 1.70 1.70 0 2.52 200 LDO3 Output Voltage vs. Output Current 1.90 1.88 1.74 VIN = 5.5V 2.54 OUTPUT CURRENT (mA) 1.86 VBIAS = VIN3 2.56 2.40 0 1.88 1.76 LDO2 Output Voltage vs. Output Current 2.60 VIN = 3.6V 2.54 200 LDO3 Output Voltage vs. Output Current 1.84 20 40 60 80 100 120 140 160 180 200 2.58 OUTPUT CURRENT (mA) 1.90 VBIAS = VIN1/2 3.26 2.40 2.40 OUTPUT VOLTAGE (V) 3.30 LDO2 Output Voltage vs. Output Current 2.60 2.58 2.54 3.32 OUTPUT CURRENT (mA) LDO2 Output Voltage vs. Output Current 2.60 VIN = 5.5V 3.34 3.20 3.20 20 40 60 80 100 120 140 160 180 200 3.36 OUTPUT VOLTAGE (V) 3.34 LDO1 Output Voltage vs. Output Current 3.40 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.40 LDO1 Output Voltage vs. Output Current OUTPUT VOLTAGE (V) LDO1 Output Voltage vs. Output Current 1.86 VIN = 5.5V 1.84 1.82 1.80 1.78 VBIAS = VIN3 1.76 1.74 VOUT_NOM = 1.8V 1.72 COUT = 1.0µF 1.70 0 50 100 150 OUTPUT CURRENT (mA) 7 200 0 50 100 150 200 OUTPUT CURRENT (mA) M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics (Continued) LDO1 Output Voltage vs. Temperature 3.40 2.60 1.88 3.32 3.30 3.28 3.26 VOUT_NOM = 3.3V COUT = 1.0µF 3.22 2.52 2.50 2.48 2.46 2.44 -40 -20 0 20 40 60 80 COUT = 1.0µF 300 250 200 150 100 50 0 CURRENT LIMIT (mA) 600 550 500 450 400 350 VBIAS = VIN1/2 VOUT_NOM = 3.3V COUT = 1µF 2.5 3 3.5 4 4.5 5 600 550 500 450 400 350 LDO1/2/3 Current Limit vs. Temperature 200 180 400 350 300 250 200 VBIAS = VIN = 4.3V VOUT_NOM = 3.3V 40 60 80 20 40 60 80 TEMPERATURE (°C) September 2012 1.76 1.74 100 120 COUT = 1.0µF -40 -20 0 20 40 60 80 LDO2 Current Limit vs. Input Voltage LDO3 Current Limit vs. Input Voltage VOUT_NOM = 2.5V COUT = 1µF 3 3.5 4 4.5 5 600 550 500 450 400 350 300 250 200 150 100 50 0 5.5 100 120 VBIAS = VIN3 VOUT_NOM = 1.8V COUT = 1µF 2.5 3 3.5 4 4.5 5 5.5 INPUT VOLTAGE (V) LDO1 Dropout Voltage vs. Temperature 240 IOUT = 150mA LDO2 Dropout Voltage vs. Temperature IOUT = 150mA 160 140 VBIAS = 4.3V 120 VOUT_NOM = 3.3V 100 COUT = 1µF 80 VOUT_NOM = 1.8V IOUT = 150mA TEMPERATURE (°C) IOUT = 50mA 60 40 200 VBIAS = 4.3V 160 VOUT_NOM = 2.5V 120 COUT = 1µF IOUT = 50mA 80 40 0 0 0 0 1.78 20 COUT = 1µF -40 -20 1.80 INPUT VOLTAGE (V) DROPOUT VOLTAGE (mV) CURRENT LIMIT (mA) 20 VBIAS = VIN1/2 2.5 450 50 1.82 TEMPERATURE (°C) INPUT VOLTAGE (V) 100 0 300 250 200 150 100 50 0 5.5 IOUT = 50mA 1.84 1.70 -40 -20 LDO1 Current Limit vs. Input Voltage IOUT = 100µA 1.86 1.72 2.40 100 120 TEMPERATURE (°C) 150 VOUT_NOM = 2.5V IOUT = 150mA 2.42 3.20 500 IOUT = 50mA 2.54 DROPOUT VOLTAGE (mV) IOUT = 150mA 3.24 OUTPUT VOLTAGE (V) IOUT = 50mA 3.34 IOUT = 100µA 2.56 CURRENT LIMIT (mA) IOUT = 100µA 3.36 LDO3 Output Voltage vs. Temperature 1.90 2.58 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.38 CURRENT LIMIT (mA) LDO2 Output Voltage vs. Temperature 100 120 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) 8 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics (Continued) 40 IOUT = 150mA 280 240 VBIAS = 4.3V 200 VOUT_NOM = 1.8V IOUT = 50mA 160 COUT = 1µF 120 80 40 TOTAL GROUND CURRENT(µA) 35 30 25 20 15 10 VIN = VBIAS = 3.6V EN1 or EN2 or EN3 = ON 5 -40 -20 0 20 40 60 25 20 75 100 125 16 14 12 10 8 6 VBIAS = 5.5V 4 VIN = VOUT + 1V EN1 or EN2 or EN3= ON 2 25 50 75 125 20 12 10 8 6 VBIAS = 5.5V EN1 or EN2 or EN3 = ON No Load 4 40 35 30 25 20 15 VBIAS = 5.5V 10 VIN = VOUT + 1V EN1 or EN2 or EN3= ON 5 0 3.5 4 4.5 5 20 40 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) September 2012 16 5.5 14 12 10 8 6 4 2 5.5 -40 LDO1/2/3 Bias Ground Current vs. Temperature 50 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) LDO1 Output Noise Spectral Density 10 Noise (10Hz- 100kHz) = 200µVrms 45 40 1 35 30 25 20 15 10 5 VBIAS = 5.5V VIN = VOUT + 1V EN1 or EN2 or EN3= ON -40 -20 0 20 40 VIN = 3.8V VOUT = 2.8V COUT = 1µF CBIAS = 0.1µF Load = 150mA 60 80 TEMPERATURE (°C) 9 0.1 0.01 0 0 5 VBIAS = 5.5V EN1 or EN2 or EN3 = ON No Load 18 INPUT VOLTAGE (V) BIAS GROUND CURRENT (µA) 45 4.5 0 3 OUTPUT CURRENT (mA) 50 4 LDO1/2/3 Input Ground Current vs. Temperature 14 2.5 LDO1/2/3 Bias Ground Current vs. Output Current 3.5 LDO1/2/3 Input Ground Current vs. Input Voltage 16 150 3 INPUT VOLTAGE (V) 2 100 VBIAS = VIN1/2 = VIN3 EN1 or EN2 or EN3 = ON Including IBIAS No Load 10 2.5 0 0 15 150 18 0 BIAS GROUND CURRENT (µA) 50 INPUT GROUND CURRENT (µA) 18 GROUND CURRENT (µA) INPUT GROUND CURRENT (µA) 20 20 OUTPUT CURRENT (mA) TEMPERATURE (°C) LDO1/2/3 Input Ground Current vs. Output Current 25 0 0 80 100 120 30 5 0 0 LDO1/2/3 Total Ground Current vs. Input Voltage 40 35 NOISE uV/√Hz DROPOUT VOLTAGE (mV) 320 LDO1/2/3 Total Ground Current vs. Output Current GROUND CURRENT (µA) LDO3 Dropout Voltage vs. Temperature 100 120 0.001 10 100 1,000 10,000 100,000 FREQUENCY (Hz) M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics (Continued) LDO2 Output Noise Spectral Density LDO2 Output Noise Spectral Density LDO3 Output Noise Spectral Density 10 10 10 Noise (10Hz - 100kHz) = 144µVrms Noise (10Hz - 100kHz) = 160µVrms Noise (10Hz - 100kHz) = 125µVrms VIN = 4.0V VOUT = 1.8V VOUT = 1.8V COUT = 1µF CBIAS = 0.1µF Load = 150mA LDO3 Output Noise Spectral Density -90 -80 -80 -70 -70 -60 ` -50 -40 VIN = 4.3V -20 CBIAS = 0.1µF Load = 150mA -80 -80 -70 -70 PSRR (dB) -90 PSRR (dB) -100 -30 -30 COUT = 1µF 10000 100000 100 10000 FREQUENCY(Hz) September 2012 100000 1000000 10000 100000 1000000 LDO3 PSRR (IOUT = 100µA) -70 ` -60 -50 -40 -30 VIN = 3.6V VOUT = 2.5V -10 1000 1000 FREQUENCY(Hz) -80 COUT = 1µF VIN = 3.6V -20 VOUT = 1.8V -10 COUT = 1µF 0 0 10 100 -90 -20 0 10 1000000 -100 -50 -40 -10 1000 FREQUENCY(Hz) -60 -40 VIN = 3.6V 100 LDO2 PSRR (IOUT = 150mA) -90 ` COUT = 1µF 0 10 -100 -50 VIN = 4.3V VOUT = 3.3V -10 COUT = 1µF LDO2 PSRR (IOUT = 100µA) -60 -40 0 100,000 ` -50 -20 VOUT = 3.3V -10 0.001 100,000 -60 -30 -30 COUT =1µF 100 1,000 10,000 FREQUENCY (Hz) LDO1 PSRR (IOUT = 150mA) -90 VOUT = 1.2V 1,000 10,000 FREQUENCY (Hz) 10 -100 PSRR (dB) VIN = 3.9V VOUT = 2.5V 100,000 LDO1 PSRR (IOUT = 100µA) 0.1 -20 10,000 -100 1 100 1,000 FREQUENCY (Hz) Noise (10Hz - 100kHz) = 105µVrms 10 100 PSRR (dB) 10 COUT = 1µF 0.001 10 100,000 VIN = 4.3V VOUT = 1.2V CBIAS = 0.1µF Load = 100µA 0.01 100 1,000 10,000 FREQUENCY (Hz) 0.1 0.01 COUT = 1µF 10 NOISE uV/√Hz 0.1 CBIAS = 0.1µF Load = 100µA 0.01 0.01 VIN = 4.0V PSRR(dB) 0.1 1 NOISE uV/√Hz NOISE uV/√Hz NOISE uV/√Hz 1 1 10 100 1000 10000 FREQUENCY(Hz) 10 100000 1000000 10 100 1000 10000 100000 1000000 FREQUENCY (Hz) M9999-091712 Micrel, Inc. MIC5373/83 Typical Characteristics (Continued) LDO3 PSRR (IOUT = 150mA) -100 -90 PSRR (dB) -80 -70 -60 ` -50 -40 -30 VIN = 3.3V -20 VOUT = 1.8V -10 COUT = 1µF 0 10 100 1000 10000 100000 1000000 FREQUENCY(Hz) September 2012 11 M9999-091712 Micrel, Inc. MIC5373/83 Functional Characteristics September 2012 12 M9999-091712 Micrel, Inc. MIC5373/83 Functional Characteristics (Continued) September 2012 13 M9999-091712 Micrel, Inc. MIC5373/83 Functional Characteristics (Continued) September 2012 14 M9999-091712 Micrel, Inc. MIC5373/83 Functional Diagram MIC5373 Block Diagram (Active High Enable) MIC5383 Block Diagram (Active Low Enable) September 2012 15 M9999-091712 Micrel, Inc. MIC5373/83 Pin Descriptions INLDO The LDO input pins INLDO1/2 and INLDO3 provide the input power to the linear regulators LDO1, LDO2 and LDO3. The input operating voltage range is from 1.7V to 5.5V. For input voltages from 1.7V to 2.5V the output current must be limited to 30mA each. Due to line inductance a 1µF capacitor placed close to the INLDO pins and the GND pin is recommended. Please refer to layout recommendations. A delay can be added by placing a capacitor from the DLY pin to ground. POR_IN The power-on-reset input (POR_IN) pin compares any voltage to an internal 0.9V reference. This function can be used to monitor any of the LDO outputs or any external voltage rail. When the monitored voltage is greater than 0.9V, the POR_IN flag will internally trigger a 1.25µA source current to charge the external capacitor at the DLY pin. A resistor divider network may be used to divide down the monitored voltage to be compared with the 0.9V at the POR_IN. This resistor network can change the trigger point to any voltage level. A small decoupling capacitor is recommended between POR_IN and ground to reject high frequency noise that might interfere with the POR circuit. Do not leave the POR_IN pin floating. BIAS The BIAS pin provides power to the internal reference and control sections of the MIC5373/83. A 0.1µF ceramic capacitor must be connected from BIAS to GND for clean operation. EN (MIC5373) The enable (EN) pins EN1, EN2 and EN3 provide logic level control for the outputs OUT1, OUT2 and OUT3, respectively. A logic high signal on an enable pin activates the respective LDO. A logic low signal on an enable pin deactivates the respective LDO. Do not leave the EN pins floating, as it would leave the regulator in an unknown state. DLY The delay (DLY) pin is used to set the POR delay time. Adding a capacitor to this pin adjusts the delay of the POR signal. When the POR_IN flag is triggered, a constant 1.25µA current begins to charge the external capacitor tied to the DLY pin. When the capacitor reaches 1.25V the POR will be pulled high by the external pull up resistor. Equation 1 illustrates how to calculate the charge time is shown: /EN (MIC5383) The enable (EN) pins /EN1, /EN2 and /EN3 provide logic level control for the outputs OUT1, OUT2 and OUT3, respectively. A logic high signal on an enable pin deactivates the respective LDO. A logic low signal on an enable pin activates the respective LDO. Do not leave the EN pins floating, as it would leave the regulator in an unknown state. ⎛ 1.25V x C DLY t DELAY (s) = ⎜⎜ ⎝ 1.25 x10 −6 Eq. 1 The delay time (t) is in seconds, the delay voltage is 1.25V internally, and the external delay capacitance (CDLY) is in microfarads. For a 1µF delay capacitor, the delay time will be 1 second. A capacitor at the DLY pin is recommended when the POR function is used in order to prevent unexpected triggering of the POR signal in noisy systems. OUT OUT1, OUT2 and OUT3 are the output pins of each LDO. A minimum of 1µF capacitor be placed as close as possible to each of the OUT pins. A minimum voltage rating of 6.3V is recommended for each capacitor. GND The ground (GND) pin is the ground path for the control circuitry and the power ground for all LDOs. The current loop for the ground should be kept as short as possible. Refer to the layout recommendations for more details. MR The manual reset (MR) pin resets the output of POR and DLY generator regardless if the monitored voltage is in regulation or not. Applying a voltage greater than 1.2V on the MR pin will cause the POR voltage to be pulled low. When a voltage below 0.2V is applied to the MR pin, the internal 1.25µA will begin to charge the DLY pin until it reaches 1.25V. When the DLY pin reaches 1.25V, the POR voltage will be pulled high by the pull up external resistor again. Do not leave the MR pin floating. POR The power-on-reset (POR) pin is an open drain output. A resistor (10kΩ to 100kΩ) can be used for a pull up to either the input or the output voltage of the regulator. POR is asserted high when the voltage at DLY reaches 1.25V. September 2012 ⎞ ⎟⎟ ⎠ 16 M9999-091712 Micrel, Inc. MIC5373/83 Application Information Thermal Considerations The MIC5373/83 is designed to provide three outputs up to 200mA each of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltages are 3.6V and the output voltages are 3.3V, 2.5V, and 1.8V each with an output current = 150mA. The actual power dissipation of the regulator circuit can be determined using Equation 2: MIC5373/83 is a triple output device with three 200mA LDOs. The MIC5373/83 incorporates a POR function with the capability to monitor any voltage using POR_IN. The monitored voltage can be set to any voltage threshold level to trigger the POR flag. A delay on the POR flag may also be set with an external capacitor at the DLY pin. All the LDOs have current limit and thermal shutdown protection to prevent damage from fault conditions. MIC5373 has active high enables while the MIC5383 has active low enables. Input Capacitor The MIC5373/83 is a high-performance, high-bandwidth device. An input capacitor of 1µF from the input pin to ground is required to provide stability. Low-ESR ceramic capacitors provide optimal performance in small board area. Additional high-frequency capacitors, such as small valued NPO dielectric type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore not recommended. PD = (VINLDO1/2 – VOUT1) I OUT1 + (VINLDO1/2 – VOUT2) I OUT2 + (VINLDO3 – VOUT3) I OUT3 + VIN x IGND As the MIC5373/83 is a CMOS device, the ground current is typically <100µA over the load range, the power dissipation contributed by the ground current is <1% and may be ignored for this calculation, as illustrated in Equation 3: PD ≈ (3.6V – 2.8V)150mA+(3.6V-1.8V)150mA+ (3.6V-1.2V)150mA Output Capacitor The MIC5373/83 requires an output capacitor of 1µF or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors may cause high-frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 1µF ceramic output capacitor and does not improve significantly with larger capacitance. X7R and X5R dielectric ceramic capacitors are recommended because of their temperature performance. X7R capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range. PD ≈ 0.75W Eq. 3 To determine the maximum ambient operating temperature of the package, use the junction to ambient thermal resistance of the device and Equation 4: ⎛ TJ(MAX) − TA PD(MAX) = ⎜⎜ θ JA ⎝ ⎞ ⎟ ⎟ ⎠ Eq. 4 TJ(MAX) = 125°C θJA = 100°C/W Substituting PD for PD(max) and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The maximum power dissipation must not be exceeded for proper operation. No Load Stability Unlike many other voltage regulators, the MIC5373/83 will remain stable and in regulation with no load. September 2012 Eq. 2 17 M9999-091712 Micrel, Inc. MIC5373/83 For example, when operating the MIC5373-MG4YMT at an input voltage of 3.6V and 150mA load on LDO1, LDO2 and LDO3 with a minimum layout footprint, the maximum ambient operating temperature TA can be determined as illustrated Equation 5: 0.75W = (125°C – TA) / (100°C/W) TA = 50°C Eq. 5 Therefore the maximum ambient operating temperature of 50°C is allowed in a 2.5mm x 2.5mm Thin MLF package for the voltage options specified and at the maximum load of 150mA on each output. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the “Regulator Thermals” section of Micrel’s Designing with Low-Dropout Voltage Regulators handbook. This information can be found on Micrel's website at: http://www.micrel.com/_PDF/other/LDOBk_ds.pdf September 2012 18 M9999-091712 Micrel, Inc. MIC5373/83 Typical Circuit (MIC5373-xxxYMT) Bill of Materials Item Part Number C1 C1005X5R1A104K C2,C3, C5, C6, C7 C1005X5R1A105K C9 Optional C10 C1005C0G1H151J R4 CRCW0402100KFKED Manufacturer TDK (1) Description Qty. Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402 1 TDK Capacitor, 1µF Ceramic, 10V, X5R, Size 0402 5 TDK Capacitor, 150pF Cermaic, 50V, C0G, Size 0402 1 100kΩ, 1%, 0402 1 1 (2) Vishay R5, R6 Optional Vishay Optional 2 R10 CRCW040210KFKED Vishay 10kΩ, 1%, 0402 1 High-Performance Active-High Enable Triple LDO 1 U1 MIC5373-xxxYMT Micrel, Inc. (3) Notes: 1. TDK: www.tdk.com. 2. Vishay: www.vishay.com. 3. Micrel, Inc.: www.micrel.com. September 2012 19 M9999-091712 Micrel, Inc. MIC5373/83 Typical Circuit (MIC5383-xxxYMT) Bill of Materials Item Part Number C1 C1005X5R1A104K TDK(1) C2,C3, C5, C6, C7 C1005X5R1A105K C9 Optional C10 C1005C0G1H151J R4 CRCW0402100KFKED R5, R6 Optional R10 CRCW040210KFKED U1 MIC5383-xxxYMT Manufacturer Description Qty. Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402 1 TDK Capacitor, 1µF Ceramic, 10V, X5R, Size 0402 5 TDK Capacitor, 150pF Cermaic, 50V, C0G, Size 0402 1 100kΩ, 1%, 0402 1 Vishay Optional 2 Vishay 10kΩ, 1%, 0402 1 High-Performance Active-Low Enable Triple LDO 1 1 (2) Vishay Micrel, Inc.(3) Notes: 1. TDK: www.tdk.com. 2. Vishay: www.vishay.com. 3. Micrel, Inc.: www.micrel.com. September 2012 20 M9999-091712 Micrel, Inc. MIC5373/83 PCB Layout Recommendations Recommended Top Layout Recommended Bottom Layout September 2012 21 M9999-091712 Micrel, Inc. MIC5373/83 Package Information 16-Pin 2.5mm x 2.5mm Thin MLF (MT) MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2010 Micrel, Incorporated. September 2012 22 M9999-091712