MMPF0100, 14 Channel Configurable Power Management Integrated Circuit - Data Sheet

NXP Semiconductors
Data sheet: Advance Information
Document Number: MMPF0100
Rev. 15.0, 5/2016
14 channel configurable power
management integrated circuit
PF0100
The PF0100 SMARTMOS power management integrated circuit (PMIC)
provides a highly programmable/ configurable architecture, with fully integrated
power devices and minimal external components. With up to six buck
converters, six linear regulators, RTC supply, and coin-cell charger, the
PF0100 can provide power for a complete system, including applications
processors, memory, and system peripherals, in a wide range of applications.
With on-chip one time programmable (OTP) memory, the PF0100 is available
in pre-programmed standard versions, or non-programmed to support custom
programming. The PF0100 is defined to power an entire embedded MCU
platform solution such as i.MX 6 based eReader, IPTV, medical monitoring, and
home/factory automation.
Features:
• Four to six buck converters, depending on configuration
• Single/Dual phase/ parallel options
• DDR termination tracking mode option
• Boost regulator to 5.0 V output
• Six general purpose linear regulators
• Programmable output voltage, sequence, and timing
• OTP (one time programmable) memory for device configuration
• Coin cell charger and RTC supply
• DDR termination reference voltage
• Power control logic with processor interface and event detection
• I2C control
• Individually programmable ON, OFF, and standby modes
PF0100
POWER MANAGEMENT
EP SUFFIX (E-TYPE)
98ASA00405D
56 QFN 8X8
Applications:
• Tablets
• IPTV
• eReaders
• Set top boxes
• Industrial control
• Medical monitoring
• Home automation/ alarm/ energy management
i.MX 6X
VREFDDR
SW4
1000 mA
DDR MEMORY
INTERFACE
DDR Memory
SW3A/B
2500 mA
SW1A/B
2500 mA
Processor Core
Voltages
SW1C
2000 mA
SW2
2000 mA
SWBST
600 mA
SD-MMC/
NAND Mem.
SATA
HDD
Parallel control/GPIOS
I2 C Communication
I2C Communication
VGEN2
250 mA
VGEN3
100 mA
VGEN4
350 mA
Camera
COINCELL
Sensors
Camera
USB
Ethernet
CAN
Cluster/HUD
Front USB
POD
Rear Seat
Infotaiment
Figure 1. Simplified application diagram
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
© 2016 NXP B.V.
Audio
Codec
HDMI
LDVS Display
VGEN6
200 mA
Main Supply
2.8 – 4.5 V
External AMP
Microphones
Speakers
GPS
MIPI
uPCIe
WAM
GPS
MIPI
VGEN5
100 mA
LICELL
Charger
SATA - FLASH
NAND - NOR
Interfaces
Control Signals
VGEN1
100 mA
ES SUFFIX (WF-TYPE)
98ASA00589D
56 QFN 8X8
Rear USB
POD
Table of Contents
1
2
3
4
5
6
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 General specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.1 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.1 Device start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.2 One time programmability (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.3 OTP prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.4 Reading OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.5 Programming OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1 Clock adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.1 Internal core voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.2 VREFDDR voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.1 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.3 Power tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4.4 Buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.5 Boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.6 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.7 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.5 Specific registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.6 Register bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
PF0100
2
NXP Semiconductors
7
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 PF0100 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.1 General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.2 Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.3 General routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.4 Parallel routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.5 Switching regulator layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
118
118
118
119
123
123
123
123
123
124
125
125
125
126
126
132
132
133
PF0100
NXP Semiconductors
3
ORDERABLE PARTS
1
Orderable parts
The PF0100 is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed device uses
“NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1, which also list the
associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 10.
Table 1. Orderable Part Variations
Part Number
Temperature (TA)
Package
Programming
Reference Designs
MMPF0100NPAEP
NP
N/A
MMPF0100F0AEP
F0
MCIMX6Q-SDP
MCIMX6Q-SDB
MCIMX6DL-SDP
F1
MCIMX6SLEVK
F2
N/A
MMPF0100F3AEP
F3
N/A
MMPF0100F4AEP
F4
N/A
MMPF0100F6AEP
F6
MCIMX6SX-SDB
MMPF0100NPANES
NP
N/A
MMPF0100F0ANES
F0
MCIMX6Q-SDP
MCIMX6Q-SDB
MCIMX6DL-SDP
F3
N/A
F4
N/A
MMPF0100F6ANES
F6
MCIMX6SX-SDB
MMPF0100F9ANES
F9
N/A
MMPF0100FAANES
FA
N/A
MMPF0100F1AEP
MMPF0100F2AEP
MMPF0100F3ANES
MMPF0100F4ANES
-40 °C to 85 °C
(for use in consumer
applications)
-40 °C to 105 °C
(for use in extended
industrial applications)
56 QFN 8x8 mm - 0.5 mm pitch
E-Type QFN (full lead)
56 QFN 8x8 mm - 0.5 mm pitch
WF-Type QFN (wettable flank)
Notes
(1), (2)
(1), (2), (3)
(1), (2)
(1), (2), (4)
Notes
1. For tape and reel, add an R2 suffix to the part number.
2. For programming details see Table 10. The available OTP options are not restricted to the listed reference designs. They can be used in any
application where the listed voltage and sequence details are acceptable.
3. For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option instead of
the F2 OTP option.
4. SW2 can support an output current rating of 2.5 A in F9 and FA versions when SW2ILIM=0
PF0100
4
NXP Semiconductors
ORDERABLE PARTS
1.1
PF0100 version differences
PF0100A is an improved version of the PF0100 power management IC. Table 2 summarizes the difference between the two versions and
should be referred to when migrating from the PF0100 to the PF0100A. Note that programming options are the same for both versions of
the device.
Table 2. Differences between PF0100 and PF0100A
Description
PF0100
PF0100A
Version identification
Reading SILICON REV register at address 0x03
returns 0x11. DEVICEID register at address 0x00
reads 0x10 in PF0100 and PF0100A
Reading SILICON REV register at address 0x03
returns 0x21. DEVICEID register at address 0x00
reads 0x10 in PF0100 and PF0100A
VSNVS current limit
VSNVS current limit increased in the PF0100A
In the PF0100A, the XOR function is removed. It is
In the PF0100, FUSE_POR1, FUSE_POR2, and
required to set FUSE_POR1, FUSE_POR2, and
FUSE_POR3 bits are XOR’ed into the
FUSE_POR3 bits during OTP programming.
OTP_FUSE_PORx register setting during OTP FUSE_POR_XOR bit. The FUSE_POR_XOR bit
has to be 1 for fuses to be loaded during startup.
programming
This can be achieved by setting any one or all of the
FUSE_PORx bits during OTP programming.
Erratum ER19
Erratum ER19 applicable to PF0100. Applications Errata ER19 fixed in PF0100A. External
expecting to operate in the conditions mentioned in workaround not required
ER19 need to implement an external workaround to
overcome the problem. Refer to the product errata
for details
Erratum ER20
Erratum ER20 applicable to PF0100
Errata ER20 fixed in PF0100A
Erratum ER22
Erratum ER22 applicable to PF0100
Errata ER22 fixed in PF0100A. Workaround not
required
In addition to the version differences, Table 3 shows the differences on the test temperature rating for each version of PF0100 covered
on this datasheet.
Table 3. Ambient temperature range
Device
Qualification tier
Ambient temperature range
(TMIN to TMAX)
MMPF0100
Consumer and Industrial
TA = -40 °C to 85 °C
MMPF0100A
Consumer
TA = -40 °C to 85 °C
MMPF0100AN
Extended Industrial
TA = -40 °C to 105 °C
PF0100
NXP Semiconductors
5
INTERNAL BLOCK DIAGRAM
2
Internal block diagram
PF0100
VGEN1
100 mA
VIN1
VGEN1
SW1FB
SW1A/B
Single/Dual
2500 mA
Buck
VGEN2
250 mA
VGEN2
VIN2
VGEN3
VGEN3
100 mA
VGEN4
VGEN4
350 mA
SW1C
2000 mA
Buck
O/P
Drive
O/P
Drive
SW1BLX
O/P
Drive
SW1CLX
Initialization State Machine
SW2
2000 mA
Buck
VGEN6
200 mA
VGEN6
SW1CIN
SW1VSSSNS
VGEN5
100 mA
VGEN5
SW1BIN
SW1CFB
Core Control logic
VIN3
SW1AIN
SW1ALX
O/P
Drive
SW2LX
SW2IN
SW2IN
SW2FB
Supplies
Control
OTP
SW3AFB
VDDOTP
CONTROL
I2C
Interface
VDDIO
SCL
SDA
SW3A/B
Single/Dual
DDR
2500 mA
Buck
O/P
Drive
O/P
Drive
DVS CONTROL
SW3AIN
SW3ALX
SW3BLX
SW3BIN
SW3BFB
DVS Control
SW3VSSSNS
SW4FB
2
Trim-In-Package
I C Register
map
VCOREDIG
VCOREREF
O/P
Drive
SW4IN
SW4LX
GNDREF1
Reference
Generation
VCORE
SW4
1000 mA
Buck
Clocks and
resets
SWBST
600 mA
Boost
O/P
Drive
SWBSTLX
SWBSTIN
GNDREF
SWBSTFB
VREFDDR
VINREFDDR
Clocks
32 kHz and 16 MHz
VHALF
VIN
Li Cell
Charger
LICELL
Best
of
Supply
INTB
SDWNB
STANDBY
RESETBMCU
ICTEST
PWRON
VSNVS
VSNVS
Figure 2. Simplified internal block diagram
PF0100
6
NXP Semiconductors
PIN CONNECTIONS
SDA
VCOREREF
VCOREDIG
VIN
VCORE
GNDREF
VDDOTP
SWBSTLX
SWBSTIN
SWBSTFB
VSNVS
Pinout diagram
SCL
3.1
VDDIO
Pin connections
PWRON
3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
INTB
1
42
LICELL
SDWNB
2
41
VGEN6
RESETBMCU
3
40
VIN3
STANDBY
4
39
VGEN5
ICTEST
5
38
SW3AFB
SW1FB
6
37
SW3AIN
SW1AIN
7
36
SW3ALX
SW1ALX
8
35
SW3BLX
SW1BLX
9
34
SW3BIN
SW1BIN
10
33
SW3BFB
SW1CLX
11
32
SW3VSSSNS
SW1CIN
12
31
VREFDDR
SW1CFB
13
30
VINREFDDR
SW1VSSSNS
14
29
VHALF
24
25
26
27
28
VGEN4
SW4FB
23
VIN2
VGEN2
22
VGEN3
VIN1
21
SW2FB
VGEN1
20
SW2IN
19
SW2IN
18
SW2LX
17
SW4LX
16
SW4IN
15
GNDREF1
EP
Figure 3. Pinout diagram
PF0100
NXP Semiconductors
7
PIN CONNECTIONS
3.2
Pin definitions
Table 4. PF0100 pin definitions
Pin number
Pin name
Pin
function
Max rating
Type
1
INTB
O
3.6 V
Digital
Open drain interrupt signal to processor
2
SDWNB
O
3.6 V
Digital
Open drain signal to indicate an imminent system shutdown
3
RESETBMCU
O
3.6 V
Digital
Open drain reset output to processor. Alternatively can be used as a power
good output.
4
STANDBY
I
3.6 V
Digital
Standby input signal from processor
5
ICTEST
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
6
SW1FB (6)
I
3.6 V
Analog
Output voltage feedback for SW1A/B. Route this trace separately from the
high current path and terminate at the output capacitance.
7
SW1AIN (6)
I
4.8 V
Analog
Input to SW1A regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
8
SW1ALX (6)
O
4.8 V
Analog
Regulator 1A switch node connection
9
SW1BLX
(6)
O
4.8 V
Analog
Regulator 1B switch node connection
10
SW1BIN (6)
I
4.8 V
Analog
Input to SW1B regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
11
SW1CLX (6)
O
4.8 V
Analog
Regulator 1C switch node connection
12
SW1CIN (6)
I
4.8 V
Analog
Input to SW1C regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
13
SW1CFB (6)
I
3.6V
Analog
Output voltage feedback for SW1C. Route this trace separately from the
high current path and terminate at the output capacitance.
14
SW1VSSSNS
GND
-
GND
Ground reference for regulators SW1ABC. It is connected externally to
GNDREF through a board ground plane.
15
GNDREF1
GND
-
GND
Ground reference for regulators SW2 and SW4. It is connected externally to
GNDREF, via board ground plane.
16
VGEN1
O
2.5 V
Analog
VGEN1 regulator output, Bypass with a 2.2 μF ceramic output capacitor.
17
VIN1
I
3.6 V
Analog
VGEN1, 2 input supply. Bypass with a 1.0 μF decoupling capacitor as close
to the pin as possible.
18
VGEN2
O
2.5 V
Analog
VGEN2 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
19
SW4FB (6)
I
3.6 V
Analog
Output voltage feedback for SW4. Route this trace separately from the high
current path and terminate at the output capacitance.
20
SW4IN (6)
I
4.8 V
Analog
Input to SW4 regulator. Bypass with at least a 4.7μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
21
SW4LX (6)
O
4.8 V
Analog
Regulator 4 switch node connection
22
SW2LX
(6)
O
4.8 V
Analog
Regulator 2 switch node connection
23
SW2IN
(6)
I
4.8 V
Analog
24
SW2IN (6)
I
4.8 V
Analog
Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with
at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as
close to these pins as possible.
25
SW2FB (6)
I
3.6 V
Analog
Output voltage feedback for SW2. Route this trace separately from the high
current path and terminate at the output capacitance.
26
VGEN3
O
3.6 V
Analog
VGEN3 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
27
VIN2
I
3.6 V
Analog
VGEN3,4 input. Bypass with a 1.0 μF decoupling capacitor as close to the
pin as possible.
28
VGEN4
O
3.6 V
Analog
VGEN4 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
Definition
PF0100
8
NXP Semiconductors
PIN CONNECTIONS
Table 4. PF0100 pin definitions (continued)
Pin number
Pin name
Pin
function
Max rating
Type
29
VHALF
I
3.6 V
Analog
Half supply reference for VREFDDR
30
VINREFDDR
I
3.6 V
Analog
VREFDDR regulator input. Bypass with at least 1.0 μF decoupling capacitor
as close to the pin as possible.
31
VREFDDR
O
3.6 V
Analog
VREFDDR regulator output
32
SW3VSSSNS
GND
-
GND
Ground reference for the SW3 regulator. Connect to GNDREF externally via
the board ground plane.
33
SW3BFB (6)
I
3.6 V
Analog
Output voltage feedback for SW3B. Route this trace separately from the high
current path and terminate at the output capacitance.
34
SW3BIN (6)
I
4.8 V
Analog
Input to SW3B regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
35
SW3BLX (6)
O
4.8 V
Analog
Regulator 3B switch node connection
36
SW3ALX
(6)
O
4.8 V
Analog
Regulator 3A switch node connection
37
SW3AIN (6)
I
4.8 V
Analog
Input to SW3A regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
38
SW3AFB (6)
I
3.6 V
Analog
Output voltage feedback for SW3A. Route this trace separately from the high
current path and terminate at the output capacitance.
39
VGEN5
O
3.6 V
Analog
VGEN5 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
40
VIN3
I
4.8 V
Analog
VGEN5, 6 input. Bypass with a 1.0 μF decoupling capacitor as close to the
pin as possible.
41
VGEN6
O
3.6 V
Analog
VGEN6 regulator output. By pass with a 2.2 μF ceramic output capacitor.
42
LICELL
I/O
3.6 V
Analog
Coin cell supply input/output
43
VSNVS
O
3.6 V
Analog
LDO or coin cell output to processor
44
SWBSTFB (6)
I
5.5 V
Analog
Boost regulator feedback. Connect this pin to the output rail close to the
load. Keep this trace away from other noisy traces and planes.
45
SWBSTIN (6)
I
4.8 V
Analog
Input to SWBST regulator. Bypass with at least a 2.2 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
46
SWBSTLX (6)
O
7.5 V
Analog
SWBST switch node connection
47
VDDOTP
I
10 V(5)
48
GNDREF
GND
-
GND
49
VCORE
O
3.6 V
Analog
Analog Core supply
50
VIN
I
4.8 V
Analog
Main chip supply
51
VCOREDIG
O
1.5 V
Analog
Digital Core supply
52
VCOREREF
O
1.5 V
Analog
Main band gap reference
53
SDA
I/O
3.6 V
Digital
I2C data line (Open drain)
54
SCL
I
3.6 V
Digital
I2C clock
55
VDDIO
I
3.6 V
Analog
Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor
56
PWRON
I
3.6 V
Digital
Power On/off from processor
-
EP
GND
-
GND
Expose pad. Functions as ground return for buck regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal
dissipation.
Definition
Digital and
Supply to program OTP fuses
Analog
Ground reference for the main band gap regulator.
Notes
5. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.
6. Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be
connected to VIN with a 0.1 μF bypass capacitor.
PF0100
NXP Semiconductors
9
GENERAL PRODUCT CHARACTERISTICS
4
General product characteristics
4.1
Absolute maximum ratings
Table 5. Absolute maximum ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol
Description
Value
Unit
Main input supply voltage
-0.3 to 4.8
V
VDDOTP
OTP programming input supply voltage
-0.3 to 10
V
VLICELL
Coin cell voltage
-0.3 to 3.6
V
±2000
±500
V
Notes
Electrical ratings
VIN
VESD
ESD ratings
Human body model
Charge device model
(7)
Notes
7. ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM),
robotic (CZAP = 4.0 pF).
PF0100
10
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
4.2
Thermal characteristics
Table 6. Thermal ratings
Symbol
Description (rating)
Min.
Max.
Unit
Notes
TA
Ambient operating temperature range
• PF0100
• PF0100A
• PF0100AN
-40
-40
-40
85
85
105
TJ
Operating junction temperature range
-40
125
°C
Storage temperature range
-65
150
°C
–
Note 10
°C
(9)(10)
Junction to ambient
• Natural convection
• Four layer board (2s2p)
• Eight layer board (2s6p)
–
–
28
15
°C/W
(11)(12)(13)
Junction to ambient (@200 ft/min)
• Four layer board (2s2p)
–
22
°C/W
(11)(13)
Junction to board
–
10
°C/W
(14)
RΘJCBOTTOM
Junction to case bottom
–
1.2
°C/W
(15)
ΨJT
Junction to package top
• Natural convection
–
2.0
°C/W
(16)
Thermal ratings
TST
TPPRT
Peak package reflow temperature
°C
(8)
QFN56 thermal resistance and package dissipation ratings
RθJA
RθJMA
RθJB
Notes
8. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 7 for
thermal protection features.
9. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
10. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and
Moisture Sensitivity Levels (MSL), Go to www.nxp.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all
orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics.
11. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
12. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
13. Per JEDEC JESD51-6 with the board horizontal.
14. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
15. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
16. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD512. When Greek letter (Ψ) are not available, the thermal characterization parameter is written as Psi-JT.
4.2.1
Power dissipation
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 6. To optimize the
thermal management and to avoid overheating, the PF0100 provides thermal protection. An internal comparator monitors the die
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I are generated when the respective thresholds specified
in Table 7 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register
INTSENSE0.
In the event of excessive power dissipation, thermal protection circuitry shuts down the PF0100. This thermal protection acts above the
thermal protection threshold listed in Table 7. To avoid any unwanted power downs resulting from internal noise, the protection is
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured so
protection is not tripped under normal conditions.
PF0100
NXP Semiconductors
11
GENERAL PRODUCT CHARACTERISTICS
Table 7. Thermal protection thresholds
Parameter
Min.
Typ.
Max.
Units
Thermal 110 °C Threshold (THERM110)
100
110
120
°C
Thermal 120 °C Threshold (THERM120)
110
120
130
°C
Thermal 125 °C Threshold (THERM125)
115
125
135
°C
Thermal 130 °C Threshold (THERM130)
120
130
140
°C
Thermal Warning Hysteresis
2.0
–
4.0
°C
Thermal Protection Threshold
130
140
150
°C
4.3
Electrical characteristics
4.3.1
General specifications
Table 8. General PMIC static characteristics.
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current range, unless
otherwise noted.
Pin name
PWRON
RESETBMCU
SCL
SDA
INTB
SDWNB
STANDBY
VDDOTP
Parameter
Load condition
Min.
Max.
Unit
VIL
–
0.0
0.2 * VSNVS
V
VIH
–
0.8 * VSNVS
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VIN
VIN
V
VIL
–
0.0
0.2 * VDDIO
V
VIH
–
0.8 * VDDIO
3.6
V
VIL
–
0.0
0.2 * VDDIO
V
VIH
–
0.8 * VDDIO
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7*VDDIO
VDDIO
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VIN
VIN
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VIN
VIN
V
VIL
–
0.0
0.2 * VSNVS
V
VIH
–
0.8 * VSNVS
3.6
V
VIL
–
0.0
0.3
V
VIH
–
1.1
1.7
V
PF0100
12
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
4.3.2
Current consumption
Table 9. Current consumption summary
TMIN to TMAX (See Table 3), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and
25 °C, unless otherwise noted.
Mode
PF0100 conditions
System conditions
Typical
MAX
Unit
Notes
Coin Cell
VSNVS from LICELL
All other blocks off
VIN = 0.0 V
VSNVSVOLT[2:0] = 110
No load on VSNVS
4.0
7.0
μA
(17),(19),
(23)
Off
MMPF0100
VSNVS from VIN or LICELL
Wake-up from PWRON active
32 k RC on
All other blocks off
VIN ≥ UVDET
No load on VSNVS, PMIC able to wake-up
16
21
μA
(18),(19)
Off
MMPF0100A
VSNVS from VIN or LICELL
Wake-up from PWRON active
32 k RC on
All other blocks off
VIN ≥ UVDET
No load on VSNVS, PMIC able to wake-up
17
25
μA
(18),(19)
No load on VSNVS. DDR memories in self
refresh
122
220(22)
Sleep
VSNVS from VIN
Wake-up from PWRON active
Trimmed reference active
SW3A/B PFM
Trimmed 16 MHz RC off
32 k RC on
VREFDDR disabled
(19)
250(21)
μA
122
Standby
MMPF0100
VSNVS from either VIN or LICELL
SW1A/B combined in PFM
SW1C in PFM
SW2 in PFM
SW3A/B combined in PFM
SW4 in PFM
SWBST off
Trimmed 16 MHz RC enabled
Trimmed reference active
VGEN1-6 enabled
VREFDDR enabled
No load on VSNVS. Processor enabled in
low power mode. All rails powered on
except boost (load = 0 mA)
297
450 (20)
(19)
1000 (22)
μA
297
Standby
MMPF0100A
VSNVS from either VIN or LICELL
SW1A/B combined in PFM
SW1C in PFM
SW2 in PFM
SW3A/B combined in PFM
SW4 in PFM
SWBST off
Trimmed 16 MHz RC enabled
Trimmed reference active
VGEN1-6 enabled
VREFDDR enabled
No load on VSNVS. Processor enabled in
low power mode. All rails powered on
except boost (load = 0 mA)
297
450 (22)
(19)
550(21)
μA
297
Notes
17. Refer to Figure 4 for coin cell mode characteristics over temperature.
18. When VIN is below the UVDET threshold, in the range of 1.8 V ≤ VIN < 2.65 V, the quiescent current increases by 50 μA, typically.
19.
20.
21.
22.
23.
For PFM operation, headroom should be 300 mV or greater.
From 0 °C to 85 °C
From -40 °C to 105 °C, applicable only to extended industrial parts.
From -40 °C to 85 °C, applicable to consumer, industrial and extended industrial part numbers.
Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from RESETBMCU to VIN.
The additional current is < 30 μA with a pull up resistor of 100 kΩ. The i.MX 6x processors have an internal pull up from the POR_B pin to the
VDD_SNVS_IN pin. For i.MX 6x applications, if additional current in the coin cell mode is not desired, use an external switch to disconnect the
RESETBMCU path when VIN is removed. For non-i.MX 6 applications, pull-up RESETBMCU to a rail off in the coin cell mode.
PF0100
NXP Semiconductors
13
GENERAL PRODUCT CHARACTERISTICS
Coin Cell mode current (uA)
Coin cell mode
100
MMPF0100
10
MMPF0100A
1
-40
-20
0
20
40
60
80
Temperature
(°C)
Temperature (oC)
Figure 4. Coin cell mode current vs temperature
PF0100
14
NXP Semiconductors
GENERAL DESCRIPTION
5
General description
The PF0100 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX 6 series of application
processors.
5.1
Features
This section summarizes the PF0100 features.
• Input voltage range to PMIC: 2.8 V - 4.5 V
• Buck regulators
• Four to six channel configurable
• SW1A/B/C, 4.5 A (single); 0.3 V to 1.875 V
• SW1A/B, 2.5 A (single/dual); SW1C 2.0 A (independent); 0.3 V to 1.875 V
• SW2, 2.0 A; 0.4 V to 3.3 V (2.5 A; 1.2 V to 3.3 V (24))
• SW3A/B, 2.5 A (single/dual); 0.4 V to 3.3 V
• SW3A, 1.25 A (independent); SW3B, 1.25 A (independent); 0.4 V to 3.3 V
• SW4, 1.0 A; 0.4 V to 3.3 V
• SW4, VTT mode provide DDR termination at 50% of SW3A
• Dynamic voltage scaling
• Modes: PWM, PFM, APS
• Programmable output voltage
• Programmable current limit
• Programmable soft start
• Programmable PWM switching frequency
• Programmable OCP with fault interrupt
• Boost regulator
• SWBST, 5.0 V to 5.15 V, 0.6 A, OTG support
• Modes: PFM and auto
• OCP fault interrupt
• LDOs
• Six user programable LDO
• VGEN1, 0.80 V to 1.55 V, 100 mA
• VGEN2, 0.80 V to 1.55 V, 250 mA
• VGEN3, 1.8 V to 3.3 V, 100 mA
• VGEN4, 1.8 V to 3.3 V, 350 mA
• VGEN5, 1.8 V to 3.3 V, 100 mA
• VGEN6, 1.8 V to 3.3 V, 200 mA
• Soft start
• LDO/switch supply
• VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 400 μA
• DDR memory reference voltage
• VREFDDR, 0.6 V to 0.9 V, 10 mA
• 16 MHz internal master clock
• OTP(one time programmable) memory for device configuration
• User programmable start-up sequence and timing
• Battery backed memory including coin cell charger
• I2C interface
• User programmable standby, sleep, and off modes
Notes
24. SW2 capable of 2.5 A in F9/FA versions
PF0100
NXP Semiconductors
15
GENERAL DESCRIPTION
5.2
Functional block diagram
MMPF0100 functional internal block diagram
Power generation
OTP startup configuration
OTP prototyping
(Try before buy)
Sequence and
timing
Voltage
Switching regulators
Phasing and
frequency selection
SW1A/B/C
(0.3 V to 1.875 V)
Configurable 4.5 A or
2.5 A+2.0 A
Bias & references
Internal core voltage reference
SW2
(0.4 V to 3.3 V, 2.0 A)
DDR voltage reference
Logic and control
Parallel MCU interface
Regulator control
Linear regulators
VGEN1
(0.8 V to 1.55 V, 100 mA)
VGEN2
(0.8 V to 1.55 V, 250 mA)
VGEN3
(1.8 V to 3.3 V, 100 mA)
SW3A/B
(0.4 V to 3.3 V)
Configurable 2.5 A
or 1.25 A+1.25 A
VGEN4
(1.8 V to 3.3 V, 350 mA)
SW4
(0.4 V to 3.3 V, 1.0 A)
VGEN6
(1.8 V to 3.3 V, 200 mA)
Boost Regulator
(5.0 V to 5.15 V, 600 mA)
USB OTG Supply
VSNVS
(1.0 V to 3.0 V, 400 μA)
RTC supply with coin cell
charger
VGEN5
(1.8 V to 3.3 V, 100 mA)
2
I C communication and registers
Fault detection and protection
Thermal
Current limit
Short-circuit
Figure 5. Functional block diagram
5.3
Functional description
5.3.1
Power generation
The PF0100 PMIC features four buck regulators (up to six independent outputs), one boost regulator, six general purpose LDOs, one
switch/LDO combination and a DDR voltage reference to supply voltages for the application processor and peripheral devices.
The number of independent buck regulator outputs can be configured from four to six, thereby providing flexibility to operate with higher
current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current demands. Further,
SW1 and SW3 regulators can be configured as single/dual phase and/or independent converters. One of the buck regulators, SW4, can
also operate as a tracking regulator when used for memory termination. The buck regulators provide the supply to processor cores and
to other low voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for
the processor cores and/or other circuitry.
Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the main input
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific VREFDDR
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination. The
VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be
powered from VIN, or from a coin cell.
5.3.2
Control logic
The PF0100 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including
interrupt and reset. Start-up sequence of the device is selected upon the initial OTP configuration explained in the Start-up section, or by
configuring the “Try Before Buy” feature to test different power up sequences before choosing the final OTP configuration.
The PF0100 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor. It also ensures supply
of critical internal logic and other circuits from the coin cell in case of brief interruptions from the main battery. A charger for the coin cell
is included as well.
PF0100
16
NXP Semiconductors
GENERAL DESCRIPTION
5.3.2.1
5.3.2.1.1
Interface signals
PWRON
PWRON is an input signal to the IC generating a turn-on event. It can be configured to detect a level, or an edge using the PWRON_CFG
bit. Refer to section 6.4.2.1 Turn on events, page 31 for more details.
5.3.2.1.2
STANDBY
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby
mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. Refer to the section 6.4.1.3 Standby mode,
page 29 for more details.
Note: When operating the PMIC at VIN ≤ 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to provide
VSNVS, or the PMIC does not reliably enter and exit the STANDBY mode.
5.3.2.1.3
RESETBMCU
RESETBMCU is an open drain, active low output configurable for two modes of operation. In its default mode, it is de-asserted 2.0 ms to
4.0 ms after the last regulator in the start-up sequence is enabled; refer to Figure 6 as an example. In this mode, the signal can be used
to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a turn-off event.
When configured for its fault mode, RESETBMCU is de-asserted after the start-up sequence is completed only if no faults occurred during
start-up. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The PF0100 is turned off if the
fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault persists, the sequence described
above is repeated. To enter the fault mode, set bit OTP_PG_EN of register OTP PWRGD EN to “1”. This register, 0xE8, is located on
Table 137 of the register map. To test the fault mode, the bit may be set during TBB prototyping, or the mode may be permanently chosen
by programming OTP fuses.
5.3.2.1.4
SDWNB
SDWNB is an open drain, active low output notifying the processor of an imminent PMIC shut down. It is asserted low for one 32 kHz clock
cycle before powering down and is then de-asserted in the OFF state.
5.3.2.1.5
INTB
INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is de-asserted
after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.
PF0100
NXP Semiconductors
17
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6
Functional block requirements and behaviors
6.1
Start-up
The PF0100 can be configured to start-up from either the internal OTP configuration, or with a hard-coded configuration built in to the
device. The internal hard-coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a 100 kΩ resistor. The
OTP configuration is enabled by connecting VDDOTP to GND.
For NP devices, selecting the OTP configuration causes the PF0100 to not start-up. However, the PF0100 can be controlled through the
I2C port for prototyping and programming. Once programmed, the NP device starts up with the customer programmed configuration.
6.1.1
Device start-up configuration
Table 10 shows the default configuration, which can be accessed on all devices as described previously, as well as the pre-programmed
OTP configurations.
Table 10. Start-up configuration
Registers
Default
configuration
Pre-programmed OTP configuration
All devices
F0
F1(25)
F2(25)
F3
F4
F6
F9
FA
Default I C Address
0x08
0x08
0x08
0x08
0x08
0x08
0x08
0x08
0x08
VSNVS_VOLT
3.0 V
3.0 V
3.0 V
3.0 V
3.0 V
3.0 V
3.0 V
3.0 V
3.0 V
SW1AB_VOLT
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
SW1AB_SEQ
1
1
1
1
2
2
2
5
5
SW1C_VOLT
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
1.375 V
SW1C_SEQ
1
2
1
1
2
2
2
5
5
SW2_VOLT
3.0 V
3.3 V
3.15 V
3.15 V
3.15 V
3.15 V
3.3 V
1.375 V
1.375 V
SW2_SEQ
2
5
2
2
1
1
4
5
5
SW3A_VOLT
1.5 V
1.5 V
1.2 V
1.5 V
1.2 V
1.5 V
1.35 V
1.350 V
1.5 V
SW3A_SEQ
3
3
4
4
4
4
3
6
6
SW3B_VOLT
1.5 V
1.5 V
1.2 V
1.5 V
1.2 V
1.5 V
1.35 V
1.350 V
1.5 V
SW3B_SEQ
3
3
4
4
4
4
3
6
6
SW4_VOLT
1.8 V
3.15 V
1.8 V
1.8 V
1.8 V
1.8 V
1.8 V
1.825 V
1.825 V
SW4_SEQ
3
6
3
3
3
3
4
7
7
SWBST_VOLT
-
5.0 V
5.0 V
5.0 V
5.0 V
5.0 V
5.0 V
5.0 V
5.0 V
SWBST_SEQ
-
13
6
6
6
6
Off
10
10
VREFDDR_SEQ
3
3
4
4
4
4
3
6
6
VGEN1_VOLT
-
1.5 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
VGEN1_SEQ
-
9
4
4
4
4
5
-
-
VGEN2_VOLT
1.5 V
1.5 V
-
-
-
-
1.5 V
1.5 V
1.5 V
VGEN2_SEQ
2
10
-
-
-
-
Off
8
8
VGEN3_VOLT
-
2.5 V
-
-
-
-
2.8 V
1.8 V
1.8 V
VGEN3_SEQ
-
11
-
-
-
-
5
8
8
VGEN4_VOLT
1.8 V
1.8 V
1.8 V
1.8 V
1.8 V
1.8 V
1.8 V
3.0 V
3.0 V
VGEN4_SEQ
3
7
3
3
3
3
4
4
4
2
PF0100
18
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 10. Start-up configuration (continued)
Registers
Default
configuration
Pre-programmed OTP configuration
All devices
F0
F1(25)
F2(25)
F3
F4
F6
F9
FA
VGEN5_VOLT
2.5 V
2.8 V
2.5 V
2.5 V
2.5 V
2.5 V
3.3 V
2.5 V
2.5 V
VGEN5_SEQ
3
12
5
5
5
5
5
8
8
VGEN6_VOLT
2.8 V
3.3 V
-
-
-
-
3.0 V
2.8 V
2.8 V
VGEN6_SEQ
3
8
-
-
-
-
1
7
7
1.0 ms
2.0 ms
1.0 ms
1.0 ms
1.0 ms
1.0 ms
0.5 ms
0.5 ms
0.5 ms
6.25 mV/μs
1.5625 mV/
μs
12.5 mV/μs
12.5 mV/μs
12.5 mV/μs
12.5 mV/μs
6.25 mV/μs
6.25 mV/μs
6.25 mV/μs
PU CONFIG,
SEQ_CLK_SPEED
PU CONFIG,
SWDVS_CLK
PU CONFIG, PWRON
SW1AB CONFIG
Level sensitive
SW1AB Single Phase, SW1C Independent Mode, 2.0 MHz
SW1C CONFIG
2.0 MHz
SW2 CONFIG
2.0 MHz
SW3A CONFIG
SW3AB Single Phase, 2.0 MHz
SW3B CONFIG
2.0 MHz
SW4 CONFIG
PG EN
SW1ABC Single Phase,
2.0 MHz
No VTT, 2.0 MHz
RESETBMCU in default mode
Notes
25. For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option instead of the
F2 OTP option.
PF0100
NXP Semiconductors
19
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
LICELL
UVDET
VIN
td1
tr1
1V
VSNVS
td2
tr2
td3
PWRON
tr3
SW1A/B
SW1C
td4
tr3
SW2
VGEN2
td4
tr3
SW3A/B
SW4
VREFDDR
VGEN4
VGEN5
td5
VGEN6
tr4
RESETBMCU
*VSNVS starts from 1.0 V if LICELL is valid before VIN.
Figure 6. Default start-up sequence
Table 11. Default start-up sequence timing
Parameter
Description
Min.
Typ.
Max.
Unit
Notes
(26)
tD1
Turn-on delay of VSNVS
–
5.0
–
ms
tR1
Rise time of VSNVS
–
3.0
–
ms
tD2
User determined delay
–
1.0
–
ms
–
(27)
–
ms
• SEQ_CLK_SPEED[1:0] = 00
–
2.0
–
• SEQ_CLK_SPEED[1:0] = 01
–
2.5
–
tR2
Rise time of PWRON
Turn-on delay of first regulator
tD3
tR3
• SEQ_CLK_SPEED[1:0] = 10
–
4.0
–
• SEQ_CLK_SPEED[1:0] = 11
–
7.0
–
–
0.2
–
Rise time of regulators
(28)
ms
ms
(29)
PF0100
20
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 11. Default start-up sequence timing (continued)
Parameter
Description
Min.
Typ.
Max.
• SEQ_CLK_SPEED[1:0] = 00
–
0.5
–
• SEQ_CLK_SPEED[1:0] = 01
–
1.0
–
• SEQ_CLK_SPEED[1:0] = 10
–
2.0
–
• SEQ_CLK_SPEED[1:0] = 11
–
4.0
–
Unit
Notes
Delay between regulators
tD4
ms
tR4
Rise time of RESETBMCU
–
0.2
–
ms
tD5
Turn-on delay of RESETBMCU
–
2.0
–
ms
Notes
26. Assumes LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied then VSNVS turn-on delay may extend to a
maximum of 24 ms.
27. Depends on the external signal driving PWRON.
28. Default configuration.
29. Rise time is a function of slew rate of regulators and nominal voltage selected.
6.1.2
One time programmability (OTP)
OTP allows the programming of start-up configurations for a variety of applications. Before permanently programming the IC by
programming fuses, a configuration may be prototyped by using the “Try Before Buy” (TBB) feature. Further, an error correction
code(ECC) algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed.
The parameters which can be configured by OTP are listed below.
• General: I2C slave address, PWRON pin configuration, start-up sequence and timing
• Buck regulators: Output voltage, dual/single phase or independent mode configuration, switching frequency, and soft start ramp
rate
• Boost regulator and LDOs: Output voltage
NOTE: When prototyping or programming fuses, the user must ensure register settings are consistent with the hardware configuration.
This is most important for the buck regulators, where the quantity, size, and value of the inductors depend on the configuration (single/
dual phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck regulator, it is gated by the
buck regulator in the start-up sequence.
6.1.2.1
Start-up sequence and timing
Each regulator has 5-bit allocated to program its start-up time slot from a turn on event; therefore, each can be placed from position one
to thirty-one in the start-up sequence. The all zeros code indicates a regulator is not part of the start-up sequence and remains off. See
Table 12. The delay between each position is equal; however, four delay options are available. See Table 13. The start-up sequence
terminates at the last programmed regulator.
PF0100
NXP Semiconductors
21
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 12. Start-up sequence
SWxx_SEQ[4:0]/
VGENx_SEQ[4:0]/
VREFDDR_SEQ[4:0]
Sequence
00000
Off
00001
SEQ_CLK_SPEED[1:0] * 1
00010
SEQ_CLK_SPEED[1:0] * 2
*
*
*
*
*
*
*
*
11111
SEQ_CLK_SPEED[1:0] * 31
Table 13. Start-up sequence clock speed
SEQ_CLK_SPEED[1:0]
Time (μs)
00
500
01
1000
10
2000
11
4000
6.1.2.2
PWRON pin configuration
The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input
(PWRON_CFG = 1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it
into sleep mode. As an edge sensitive input, such as when connected to a mechanical switch, a falling edge turns on the part and if the
switch is held low for greater than or equal to 4.0 seconds, the part turns off or enters sleep mode.
Table 14. PWRON configuration
PWRON_CFG
Mode
0
PWRON pin HIGH = ON
PWRON pin LOW = OFF or Sleep mode
1
PWRON pin pulled LOW momentarily = ON
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode
I2C address configuration
6.1.2.3
The I2C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I2C address to avoid bus conflicts.
Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I2C address
(I2C_SLV_ADDR[2:0]) are programmable as shown in Table 15.
Table 15. I2C address configuration
I2C_SLV_ADDR[3]
hard coded
I2C_SLV_ADDR[2:0]
I2C device address
(Hex)
1
000
0x08
1
001
0x09
1
010
0x0A
1
011
0x0B
PF0100
22
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 15. I2C address configuration (continued)
I2C_SLV_ADDR[3]
hard coded
I2C_SLV_ADDR[2:0]
I2C device address
(Hex)
1
100
0x0C
1
101
0x0D
1
110
0x0E
1
111
0x0F
6.1.2.4
Soft start ramp rate
The start-up ramp rate or soft start ramp rate can be chosen from the same options as shown in 6.4.4.2.1 Dynamic voltage scaling, page
35.
6.1.3
OTP prototyping
Before permanently programming fuses, it is possible to test the desired configuration by using the “Try Before Buy” feature. With this
feature, the configuration is loaded from the OTP registers. These registers merely serve as temporary storage for the values to be written
to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid confusion, these registers
are referred to as the TBBOTP registers. The portion of the register map concerned with OTP is shown in Table 137 and Table 138.
The contents of the TBBOTP registers are initialized to zero when a valid VIN is first applied. The values loaded into the TBBOTP registers
depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR bits. Refer to Table 16.
• If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration.
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. In the MMPF0100,
FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for
fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In the MMPF0100A, the XOR function
is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses.
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero.
The initial value of TBB_POR is always “0”; only when VDDOTP = 0.0 V and TBB_POR is set to “1” are the values from the TBBOTP
registers maintained and not loaded from a different source.
The contents of the TBBOTP registers are modified by I2C. To communicate with I2C, VIN must be valid and VDDIO, to which SDA and
SCL are pulled up, must be powered by a 1.7 V to 3.6 V supply. VIN, or the coin cell voltage must be valid to maintain the contents of the
registers. To power on with the contents of the TBBOTP registers, the following conditions must exist; VIN is valid, VDDOTP = 0.0 V,
TBB_POR = 1 and there is a valid turn-on event. Refer to the application note AN4536 for an example of prototyping.
6.1.4
Reading OTP fuses
As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers when the following conditions are met;
VIN is valid, VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1. If ECC were enabled at the time the fuses were programmed,
the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded and a turn-on event occurs, the
PMIC powers on with the configuration programmed in the fuses. For more details on reading the OTP fuses, see application note
AN4536.
6.1.5
Programming OTP fuses
The parameters which can be programmed are shown in the TBBOTP registers in Table 137. Extended page 1, page 111 of the register
map. The PF0100 offers ECC, the control registers for which functions are located in Extended Page 2 of the register map. There are ten
banks of twenty-six fuses each which can be programmed. Programming the fuses requires an 8.25 V, 100 mA supply powering the
VDDOTP pin, bypassed with 10 to 20 μF of capacitance. For more details on programming the OTP fuses, see application note AN4536.
PF0100
NXP Semiconductors
23
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 16. Source of start-up sequence
VDDOTP(V)
TBB_POR
FUSE_POR_XOR
Start-up sequence
0
0
0
None
0
0
1
OTP fuses
0
1
x
TBBOTP registers
1.5
x
x
Factory defined
6.2
16 MHz and 32 kHz clocks
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:
• VIN < UVDET
• All regulators are in sleep mode
• All regulators are in PFM switching mode
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:
• During start-up, VIN > UVDET
• PWRON_CFG = 1, for power button debounce timing
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 27 are referenced to the 32 kHz derived from the
16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock.
Table 17. 16 MHz clock specifications
TMIN to TMAX (See Table 3), VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V and typical external component values. Typical values are
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.
Symbol
Min.
Typ.
Max.
Units
Operating voltage from VIN
2.8
–
4.5
V
f16MHZ
16 MHz clock frequency
14.7
16
17.2
MHz
f2MHZ
2.0 MHz clock frequency
1.84
–
2.15
MHz
VIN16MHz
Parameters
Notes
(30)
Notes
30. 2.0 MHz clock is derived from the 16 MHz clock.
6.2.1
Clock adjustment
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3.0% of the nominal frequency. Contact
your NXP representative for detailed information on this feature.
6.3
Bias and references block description
6.3.1
Internal core voltage references
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and
the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the performance of the
bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a
valid supply and/or valid coin cell. Table 18 shows the main characteristics of the core circuitry.
PF0100
24
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 18. Core voltages electrical specifications(32)
TMIN to TMAX (See Table 3), VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical values are
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Notes
–
–
1.5
1.3
–
–
V
(31)
–
–
2.775
0.0
–
–
V
Output voltage
–
1.2
–
V
VCOREREFACC
Absolute accuracy
–
0.5
–
%
VCOREREFTACC
Temperature drift
–
0.25
–
%
VCOREDIG (digital core supply)
Output voltage
• ON mode
• Coin cell mode and OFF
VCOREDIG
—
VCORE (analog core supply)
Output voltage
• ON mode and charging
• OFF and coin cell mode
VCORE
(31)
—
VCOREREF (bandgap / regulator reference)
VCOREREF
(31)
Notes
31. 3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction.
32.
For information only.
6.3.1.1
External components
Table 19. External components for core voltages
6.3.2
Regulator
Capacitor value (μF)
VCOREDIG
1.0
VCORE
1.0
VCOREREF
0.22
VREFDDR voltage reference
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.
This divider then utilizes a voltage follower to drive the load.
VINREFDDR
CHALF1
100 nf
VINREFDDR
VHALF
CHALF2
100 nf
_
+
Discharge
VREFDDR
VREFDDR
CREFDDR
1.0 uf
Figure 7. VREFDDR block diagram
PF0100
NXP Semiconductors
25
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.3.2.1
VREFDDR control register
The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 20.
Table 20. Register VREFDDCRTL - ADDR 0x6A
Name
UNUSED
Bit #
R/W
Default
3:0
–
0x00
UNUSED
4
R/W
0x00
Enable or disables VREFDDR output voltage
• 0 = VREFDDR Disabled
• 1 = VREFDDR Enabled
7:5
–
0x00
UNUSED
VREFDDREN
UNUSED
6.3.2.1.1
Description
External components
Table 21. VREFDDR external components(33)
Capacitor
Capacitance (μF)
VINREFDDR(34) to VHALF
0.1
VHALF to GND
0.1
VREFDDR
1.0
Notes
33. Use X5R or X7R capacitors.
34. VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output.
6.3.2.1.2
VREFDDR specifications
Table 22. VREFDDR electrical characteristics
TMIN to TMAX (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless otherwise
noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
VREFDDR
VINREFDDR
Operating input voltage range
1.2
–
1.8
V
IREFDDR
Operating load current range
0.0
–
10
mA
Current limit
• IREFDDR when VREFDDR is forced to VINREFDDR/4
10.5
15
25
mA
–
8.0
–
μA
–
VINREFDDR/2
–
V
IREFDDRLIM
IREFDDRQ
Quiescent Current
(35)
Active mode – DC
VREFDDR
Output voltage
• 1.2 V < VINREFDDR < 1.8 V
• 0.0 mA < IREFDDR < 10 mA
VREFDDRTOL
Output voltage tolerance (TA = -40 °C to 85 °C)
• 1.2 V < VINREFDDR < 1.8 V
• 0.6 mA ≤ IREFDDR ≤ 10 mA
–1.0
–
1.0
%
VREFDDRTOL
Output voltage tolerance (TA = -40 °C to 105 °C), applicable only
to the extended industrial version
• 1.2 V < VINREFDDR < 1.8 V
• 0.6 mA ≤ IREFDDR ≤ 10 mA
–1.2
–
1.2
%
VREFDDRLOR
Load regulation
• 1.0 mA < IREFDDR < 10 mA
• 1.2 V < VINREFDDR < 1.8 V
–
0.40
–
mV/mA
PF0100
26
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 22. VREFDDR electrical characteristics (continued)
TMIN to TMAX (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless otherwise
noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
tONREFDDR
Turn-on time
• Enable to 90% of end value
• VINREFDDR = 1.2 V, 1.8 V
• IREFDDR = 0.0 mA
–
–
100
μs
tOFFREFDDR
Turn-off time
• Disable to 10% of initial value
• VINREFDDR = 1.2 V, 1.8 V
• IREFDDR = 0.0 mA
–
–
10
ms
VREFDDROSH
Start-up overshoot
• VINREFDDR = 1.2 V, 1.8 V
• IREFDDR = 0.0 mA
–
1.0
6.0
%
VREFDDRTLR
Transient load response
• VINREFDDR = 1.2 V, 1.8 V
–
5.0
–
mV
Notes
Active mode – AC
Notes
35. When VREFDDR is off there is a quiescent current of 1.5 μA typical.
PF0100
NXP Semiconductors
27
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4
Power generation
6.4.1
Modes of operation
The operation of the PF0100 can be reduced to five states, or modes: on, off, sleep, standby, and coin cell. Figure 8 shows the state
diagram of the PF0100, along with the conditions to enter and exit from each state.
Coin Cell
VIN < UVDET
VIN < UVDET
VIN > UVDET
PWRON = 0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
VIN < UVDET
Sleep
VIN < UVDET
PWRON = 0
Any SWxOMODE bits=1
(PWRON_CFG=0)
Or
PWRON=0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
Thermal shutdown
PWRON = 0
Any SWxOMODE bits=1
(PWRON_CFG=0)
Or
PWRON=0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
PWRON=1
& VIN > UVDET
(PWRON_CFG =0)
Or
PWRON= 0 < 4.0 sec
& VIN > UVDET
(PWRON_CFG=1)
PWRON=1
& VIN > UVDET
(PWRON_CFG = 0)
Or
PWRON= 0 < 4.0 sec
& VIN > UVDET
(PWRON_CFG=1)
OFF
PWRON = 0
All SWxOMODE bits= 0
(PWRON_CFG = 0)
Or
PWRON = 0 held >= 4.0 sec
All SWxOMODE bits= 0
& PWRONRSTEN = 1
(PWRON_CFG = 1)
ON
Thermal shudown
STANDBY asserted
STANDBY de-asserted
Standby
PWRON = 0
All SWxOMODE bits= 0
(PWRON_CFG = 0)
Or
PWRON = 0 held >= 4.0 sec
All SWxOMODE bits= 0
& PWRONRSTEN = 1
(PWRON_CFG = 1)
Thermal shutdown
Figure 8. State diagram
To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that VIN must exceed the
rising UVDET threshold to allow a power up. Refer to Table 29 for the UVDET thresholds. Additionally, I2C control is not possible in the
coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and on states.
6.4.1.1
ON mode
The PF0100 enters the On mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation.
6.4.1.2
OFF mode
The PF0100 enters the off mode after a turn-off event. A thermal shutdown event also forces the PF0100 into the off mode. Only
VCOREDIG and VSNVS are powered in the mode of operation. To exit the off mode, a valid turn-on event is required. RESETBMCU is
asserted, low, in this mode.
PF0100
28
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.3
Standby mode
• Depending on STANDBY pin configuration, standby is entered when the STANDBY pin is asserted. This is typically used for lowpower mode of operation.
• When STANDBY is de-asserted, standby mode is exited.
A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control
of going in and out of such deep sleep modes (DSM).
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the
operating mode of the regulators or disabling some regulators. The configuration of the regulators in standby is pre-programmed through
the I2C interface.
Note that the STANDBY pin is programmable for active high or active low polarity, and decoding of a standby event takes into account
the programmed input polarity as shown in Table 23. When the PF0100 is powered up first, regulator settings for the standby mode are
mirrored from the regulator settings for the on mode. To change the STANDBY pin polarity to Active Low, set the STANDBYINV bit via
software first, and then change the regulator settings for Standby mode as required. For simplicity, STANDBY generally is referred to as
active high throughout this document.
Table 23. Standby pin and polarity control
STANDBY (pin)(37)
STANDBYINV (I2C bit)(38)
STANDBY control (36)
0
0
0
0
1
1
1
0
1
1
1
0
Notes
36. STANDBY = 0: System is not in standby, STANDBY = 1: System is in standby
37. The state of the STANDBY pin only has influence in on mode.
38. Bit 6 in power control register (ADDR - 0x1B)
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond
to the pin level changes. A programmable delay is provided to hold off the system response to a standby event. This allows the processor
and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into
standby mode.
When enabled (STBYDLY = 01, 10, or 11) per Table 24, STBYDLY delays the standby initiated response for the entire IC, until the
STBYDLY counter expires.
An allowance should be made for three additional 32 k cycles required to synchronize the standby event.
Table 24. STANDBY delay - initiated response
STBYDLY[1:0](39)
Function
00
No delay
01
One 32 k period (default)
10
Two 32 k periods
11
Three 32 k periods
Notes
39. Bits [5:4] in power control register (ADDR - 0x1B)
6.4.1.4
Sleep mode
• Depending on PWRON pin configuration, sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.
• To exit sleep mode, assert the PWRON pin.
In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/
B, and SW4. The activated regulators maintains settings for this mode and voltage until the next turn-on event. Table 25 shows the control
bits in sleep mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event.
PF0100
NXP Semiconductors
29
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 25. Regulator mode control
SWxOMODE
Off operational mode (Sleep) (40)
0
Off
1
PFM
Notes
40. For sleep mode, an activated switching regulator, should use the off
mode set point as programmed by SW1xOFF[5:0] for SW1A/B/C and
SWxOFF[6:0] for SW2, SW3A/B, and SW4.
6.4.1.5
Coin cell mode
In the coin cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn-on event is accepted in the coin cell
state. Transition to the off state requires VIN surpasses UVDET threshold. RESETBMCU is held low in this mode.
If the coin cell is depleted, a complete system reset occurs. At the next application of power and the detection of a turn-on event, the system
is re-initialized with all I2C bits including those reset on COINPORB, which are restored to their default states.
6.4.2
State machine flow summary
Table 26 provides a summary matrix of the PF0100 flow diagram to show the conditions needed to transition from one state to another.
Table 26. State machine flow summary
STATE
Next state
OFF
Coin cell
Sleep
Standby
ON
OFF
X
VIN < UVDET
X
X
PWRON_CFG = 0
PWRON = 1 & VIN > UVDET
or
PWRON_CFG = 1
PWRON = 0 < 4.0 s
& VIN > UNDET
Coin cell
VIN > UVDET
X
X
X
X
Thermal shutdown
Initial state
Sleep
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
VIN < UVDET
X
X
PWRON_CFG = 0
PWRON = 1 & VIN > UVDET
or
PWRON_CFG = 1
PWRON = 0 < 4.0 s &
VIN > UNDET
VIN < UVDET
PWRON_CFG = 0
PWRON = 0
Any SWxOMODE = 1
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
X
Standby de-asserted
VIN < UVDET
PWRON_CFG = 0
PWRON = 0
Any SWxOMODE = 1
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
Standby asserted
X
Thermal shutdown
Standby
PWRON_CFG = 0
PWRON = 0
All SWxOMODE = 0
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
All SWxOMODE = 0 &
PWRONRSTEN = 1
Thermal shutdown
ON
PWRON_CFG = 0
PWRON = 0
All SWxOMODE = 0
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
All SWxOMODE = 0 &
PWRONRSTEN = 1
PF0100
30
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.2.1
Turn on events
From off and sleep modes, the PMIC is powered on by a turn-on event. The type of turn-on event depends on the configuration of PWRON.
PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when PWRON_CFG = 1.
VIN must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and PWRON is high (pulled up
to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a Turn-on event. See the state diagram,
Figure 8, and the Table 26 for more details. Any regulator enabled in the sleep mode remains enabled when transitioning from sleep to
on, i.e., the regulator does not turn off and then on again to match the start-up sequence. The following is a more detailed description of
the PWRON configurations:
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and
PWRONS respectively, is set.
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits,
PWRONI and PWRONS respectively, sets.
The sense bit shows the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch
debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press.
The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to
both falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in Table 27. The
interrupt is cleared by software, or when cycling through the OFF mode.
Table 27. PWRON hardware debounce bit settings
Bits
PWRONDBNC[1:0]
State
Turn on
debounce (ms)
Falling edge INT
debounce (ms)
Rising edge INT
debounce (ms)
00
0.0
31.25
31.25
01
31.25
31.25
31.25
10
125
125
31.25
11
750
750
31.25
Notes
41. The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.
6.4.2.2
6.4.2.2.1
Turn off events
PWRON pin
The PWRON pin is used to power off the PF0100. The PWRON pin can be configured with OTP to power off the PMIC under the following
two conditions:
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds.
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.
6.4.2.2.2
Thermal protection
If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event
does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a
given threshold. There are no specific interrupts related to this other than the warning interrupt. See 4.2.1 Power dissipation, page 11
section for more detailed information.
6.4.2.2.3
Undervoltage detection
When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin cell mode.
PF0100
NXP Semiconductors
31
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.3
Power tree
The PF0100 PMIC features six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a DDR
voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost
regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be tied to VIN, whether they
are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators
depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it should be supplied
by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR.
VSNVS is supplied by either the main input supply or the coin cell. Refer to Table 28 for a summary of all power supplies provided by the
PF0100.
Table 28. Power tree summary
Supply
Output voltage (V)
Step size (mV)
Maximum load current (mA)
SW1A/B
0.3 - 1.875
25
2500
SW1C
0.3 - 1.875
25
2000
SW2
0.4 - 3.3
25/50
2000 (43)
SW3A/B
0.4 - 3.3
25/50
1250 (42)
SW4
0.5*SW3A_OUT, 0.4 - 3.3
25/50
1000
SWBST
5.00/5.05/5.10/5.15
50
600
VGEN1
0.80 – 1.55
50
100
VGEN2
0.80 – 1.55
50
250
VGEN3
1.8 – 3.3
100
100
VGEN4
1.8 – 3.3
100
350
VGEN5
1.8 – 3.3
100
100
VGEN6
1.8 – 3.3
100
200
VSNVS
1.0 - 3.0
NA
0.4
VREFDDR
0.5*SW3A_OUT
NA
10
Notes
42. Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up
to 2500 mA.
43. SW2 capable of 2500 mA in F9/FA versions
Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0100, as well as the
typical application voltage domain on the i.MX 6X processor. Note that each application power tree is dependent upon the system’s voltage
and current requirements, therefore a proper input voltage should be selected for the regulators.
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative
tables and text specifying each supply for information on performance metrics and operating ranges. Table 29 summarizes the UVDET
thresholds.
Table 29. UVDET threshold
UVDET threshold
VIN
Rising
3.1 V
Falling
2.65 V
PF0100
32
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
SW1A
CORE
(0.3 to 1.875 V), 1.25 A
i.MX6X
MCU
VDDARM_IN
SW1B
CORE
(0.3 to 1.875 V), 1.25 A
VIN
2.8 - 4.5 V
SW1C
SOC
(0.3 to 1.875 V), 2.0 A
VDDSOC_IN
SW2
VDDHIGH
(0.4 to 3.3 V), 2.0 A
VDDHIGH_IN
SW3A
DDR CORE
(0.4 to 3.3 V), 1.25 A
SW3B
DDR IO
(0.4 to 3.3 V), 1.25 A
VDD_DDR_IO
SW4
System/VTT
(0.4 to 3.3 V)
(0.5*VDDR)
1.0 A
SWBST
5.0 V, 0.6 A
VREFDDR
0.5*VDDR, 10 mA
SW3A/B
VIN
MUX /
COIN
CHRG
Coincell
VINMAX = 3.4 V
SW4
VINMAX = 3.6 V
SW4
SW4
VSNVS_IN
USB_OTG
DDR3
Peripherals
VGEN4
(1.8 to 3.3 V),
350 mA
VGEN5
(1.8 to 3.3 V),
100 mA
VIN
SW2
VGEN2
(0.80 to 1.55 V),
250 mA
VGEN3
(1.8 to 3.3 V),
100 mA
VIN
SW2
VSNVS
1.0 to 3.0 V,
400 uA
VGEN1
(0.80 to 1.55 V),
100 mA
VIN
SW2
LDO_3p0
VINMAX = 4.5 V
VGEN6
(1.8 to 3.3 V),
200 mA
Figure 9. PF0100 typical power map
PF0100
NXP Semiconductors
33
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4
Buck regulators
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.
6.4.4.1
Current limit
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit
condition persists for more than 8.0 ms, a fault interrupt is generated.
6.4.4.2
General control
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current
variation. Available switching modes for buck regulators are presented in Table 30.
Table 30. Switching mode description
Mode
Description
OFF
The regulator is switched off and the output voltage is discharged.
PFM
In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency.
PWM
In this mode, the regulator is always in PWM mode operation regardless of load conditions.
APS
In this mode, the regulator moves automatically between pulse skipping mode and PWM mode
depending on load conditions.
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.
Table 31 summarizes the buck regulator programmability for normal and standby modes.
Table 31. Regulator mode control
SWxMODE[3:0]
Normal mode
Standby mode
0000
Off
Off
0001
PWM
Off
0010
Reserved
Reserved
0011
PFM
Off
0100
APS
Off
0101
PWM
PWM
0110
PWM
APS
0111
Reserved
Reserved
1000
APS
APS
1001
Reserved
Reserved
1010
Reserved
Reserved
1011
Reserved
Reserved
1100
APS
PFM
1101
PWM
PFM
1110
Reserved
Reserved
1111
Reserved
Reserved
PF0100
34
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. The rate of the output
voltage change is controlled by the dynamic voltage scaling (DVS), explained in 6.4.4.2.1 Dynamic voltage scaling, page 35. For each
regulator, the output voltage options are the same for normal and standby modes.
When in standby mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator returns to its normal switching mode and its output voltage
programmed in its voltage register.
Any regulators whose SWxOMODE bit is set to “1” enters Sleep mode if a PWRON turn-off event occurs, and any regulator whose
SWxOMODE bit is set to “0” turns off. In sleep mode, the regulator outputs the voltage programmed in its off (sleep) voltage register and
operates in the PFM mode. The regulator exits the sleep mode when a turn-on event occurs. Any regulator whose SWxOMODE bit is set
to “1” remains on and change to its normal configuration settings when exiting the sleep state to the on state. Any regulator whose
SWxOMODE bit is set to “0” is powered up with the same delay in the start-up sequence as when powering on from off. At this point, the
regulator returns to its default on state output voltage and switch mode settings.
Table 25 shows the control bits in sleep mode. When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as
programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4.
6.4.4.2.1
Dynamic voltage scaling
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.
1. Normal operation: The output voltage is selected by I2C bits SW1x[5:0] for SW1A/B/C and SWx[6:0] for SW2, SW3A/B, and SW4.
A voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 34 and Table 35.
2. Standby mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SW1xSTBY[5:0] for SW1A/B/C and by bits SWxSTBY[6:0] for SW2,
SW3A/B, and SW4. Voltage transitions initiated by a Standby event are governed by the SW1xDVSSPEED[1:0] and
SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.
3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SW1xOFF[5:0] for SW1A/B/C and by bits SWxOFF[6:0] for SW2,
SW3A/B, and SW4. Voltage transitions initiated by a turn-off event are governed by the SW1xDVSSPEED[1:0] and
SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.
Table 32, Table 33, Table 34, and Table 35 summarize the set point control and DVS time stepping applied to all regulators.
Table 32. DVS control logic for SW1A/B/C
STANDBY
Set point selected by
0
SW1x[5:0]
1
SW1xSTBY[5:0]
Table 33. DVS control logic for SW2, SW3A/B, and SW4
STANDBY
Set Point Selected by
0
SWx[6:0]
1
SWxSTBY[6:0]
Table 34. DVS speed selection for SW1A/B/C
SW1xDVSSPEED[1:0]
Function
00
25 mV step each 2.0 μs
01 (default)
25 mV step each 4.0 μs
10
25 mV step each 8.0 μs
11
25 mV step each 16 μs
PF0100
NXP Semiconductors
35
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 35. DVS speed selection for SW2, SW3A/B, and SW4
SWxDVSSPEED[1:0]
Function
SWx[6] = 0 or SWxSTBY[6] = 0
Function
SWx[6] = 1 or SWxSTBY[6] = 1
00
25 mV step each 2.0 μs
50 mV step each 4.0 μs
01 (default)
25 mV step each 4.0 μs
50 mV step each 8.0 μs
10
25 mV step each 8.0 μs
50 mV step each 16 μs
11
25 mV step each 16 μs
50 mV step each 32 μs
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control. During the
DVS period the overcurrent condition on the regulator should be masked.
Requested
Set Point
Internally
Controlled Steps
Example
Actual Output
Voltage
Output
Voltage
Initial
Set Point
Actual
Output Voltage
Internally
Controlled Steps
Voltage
Change
Request
Output Voltage
with light Load
Request for
Higher Voltage
Possible
Output Voltage
Window
Request for
Lower Voltage
Initiated by I2C Programming, Standby Control
Figure 10. Voltage stepping with DVS
6.4.4.2.2
Regulator phase clock
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 36. By default, each regulator is initialized at 90 ° out
of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and SW4 is set to 270 °
by default at power up.
Table 36. Regulator phase clock selection
SWxPHASE[1:0]
Phase of clock sent to regulator (degrees)
00
0
01
90
10
180
11
270
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 38 shows the
selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, allowing regulators operating at different frequencies
to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and 4.0 MHz, 180 °
are the same in terms of phasing. Table 37 shows the optimum phasing when using more than one switching frequency.
PF0100
36
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 37. Optimum phasing
Frequencies
Optimum Phasing
1.0 MHz
2.0 MHz
0°
180 °
1.0 MHz
4.0 MHz
0°
180 °
2.0 MHz
4.0 MHz
0°
180 °
1.0 MHz
2.0 MHz
4.0 MHz
0°
90 °
90 °
Table 38. Regulator frequency configuration
SWxFREQ[1:0]
Frequency
00
1.0 MHz
01
2.0 MHz
10
4.0 MHz
11
Reserved
6.4.4.2.3
Programmable maximum current
The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower currents
are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The
SWx_PWRSTG[2:0] bits in Table 138. Extended Page 2, page 115 of the register map control the number of power stages. See Table 39
for the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default setting,
SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage
of power stages enabled.
Table 39. Programmable current configuration
Regulators
Control bits
% of power stages enabled
SW1AB_PWRSTG[2:0]
SW1AB
ISW1ABMAX
0
0
1
40%
1.0
0
1
1
80%
2.0
1
0
1
60%
1.5
1
1
1
100%
2.5
SW1C_PWRSTG[2:0]
SW1C
ISW1CMAX
0
0
1
43%
0.9
0
1
1
58%
1.2
1
0
1
86%
1.7
1
1
100%
1
SW2_PWRSTG[2:0]
SW2
Rated current (A)
2.0
ISW2MAX
0
0
1
38%
0.75
0
1
1
75%
1.5
1
0
1
63%
1.25
1
1
1
100%
2.0
PF0100
NXP Semiconductors
37
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 39. Programmable current configuration (continued)
Regulators
Control bits
% of power stages enabled
SW3A_PWRSTG[2:0]
SW3A
ISW3AMAX
0
0
1
40%
0.5
0
1
1
80%
1.0
1
0
1
60%
0.75
1
1
1
100%
1.25
SW3B_PWRSTG[2:0]
SW3B
ISW3BMAX
0
0
1
40%
0.5
0
1
1
80%
1.0
1
0
1
60%
0.75
1
1
1
100%
1.25
SW4_PWRSTG[2:0]
SW4
6.4.4.3
Rated current (A)
ISW4MAX
0
0
1
50%
0.5
0
1
1
75%
0.75
1
0
1
75%
0.75
1
1
1
100%
1.0
SW1A/B/C
SW1/A/B/C are 2.5 A to 4.5 A buck regulators which can be configured in various phasing schemes, depending on the desired cost/
performance trade-offs. The following configurations are available:
• SW1A/B/C single phase with one inductor
• SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor
• SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor
The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Table 137. Extended page 1, page
111, as shown in Table 40.
.
Table 40. SW1 configuration
SW1_CONFIG[1:0]
Description
00
A/B/C single phase
01
A/B single phase, C independent mode
10
A/B dual phase, C independent mode
11
Reserved
6.4.4.3.1
SW1A/B/C single phase
In this configuration, all phases A, B, and C, are connected together to a single inductor, thus, providing up to 4.50 A current capability for
high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C control registers,
respectively. Figure 11 shows the connection for SW1A/B/C in single phase mode.
During single phase mode operation, all three phases use the same configuration for frequency, phase, and DVS speed set in
SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB registers should
be used. The SW1FB pin should be left floating in this configuration.
PF0100
38
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1A/B/C
SW1ALX
LSW1
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
DAC
VREF
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
Controller
I2C
Interface
Driver
SW1BFAULT
VIN
SW1CIN
SW1CMODE
ISENSE
CINSW1C
SW1CLX
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 11. SW1A/B/C single phase block diagram
6.4.4.3.2
SW1A/B single phase - SW1C independent mode
In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent output, using
its own inductor and configurations parameters. This configuration allows reduced component count by using only one inductor for SW1A/
B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage
set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 12 shows the physical
connection for SW1A/B in single phase and SW1C as an independent output.
PF0100
NXP Semiconductors
39
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1A/B
SW1ALX
LSW1A
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
DAC
VREF
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
Controller
I2C
Interface
Driver
SW1BFAULT
VIN
SW1CIN
SW1C
SW1CLX
LSW1C
COSW1C
SW1CMODE
ISENSE
CINSW1C
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 12. SW1A/B single phase, SW1C independent mode block diagram
Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register, while
SW1CLX node operates independently, using the configuration in the SW1CCONF register.
6.4.4.3.3
SW1A/B dual phase - SW1C independent mode
In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an independent
output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on the SW1A/B output. As
mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set
point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 13 shows the physical
connection for SW1A/B in dual phase and SW1C as an independent output.
PF0100
40
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1AB
SW1ALX
LSW1A
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
DAC
VREF
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
LSW1B
I2C
Interface
Controller
Driver
COSW1B
SW1BFAULT
VIN
SW1CIN
SW1C
SW1CLX
LSW1C
COSW1C
SW1CMODE
ISENSE
CINSW1C
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 13. SW1A/B dual phase, SW1C independent mode block diagram
In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the same
frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the configuration in the
SW1CCONF register.
6.4.4.3.4
SW1A/B/C setup and control registers
SW1A/B and SW1C output voltages are programmable from 0.300 V to 1.875 V in steps of 25 mV. The output voltage set point is
independently programmed for normal, standby, and sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and SW1xOFF[5:0] bits
respectively. Table 41 shows the output voltage coding for SW1A/B or SW1C.
Note: Voltage set points of 0.6 V and below are not supported.
PF0100
NXP Semiconductors
41
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 41. SW1A/B/C output voltage configuration
Set point
SW1x[5:0]
SW1xSTBY[5:0]
SW1xOFF[5:0]
SW1x output (V)
Set point
SW1x[5:0]
SW1xSTBY[5:0]
SW1xOFF[5:0]
SW1x output (V)
0
000000
0.3000
32
100000
1.1000
1
000001
0.3250
33
100001
1.1250
2
000010
0.3500
34
100010
1.1500
3
000011
0.3750
35
100011
1.1750
4
000100
0.4000
36
100100
1.2000
5
000101
0.4250
37
100101
1.2250
6
000110
0.4500
38
100110
1.2500
7
000111
0.4750
39
100111
1.2750
8
001000
0.5000
40
101000
1.3000
9
001001
0.5250
41
101001
1.3250
10
001010
0.5500
42
101010
1.3500
11
001011
0.5750
43
101011
1.3750
12
001100
0.6000
44
101100
1.4000
13
001101
0.6250
45
101101
1.4250
14
001110
0.6500
46
101110
1.4500
15
001111
0.6750
47
101111
1.4750
16
010000
0.7000
48
110000
1.5000
17
010001
0.7250
49
110001
1.5250
18
010010
0.7500
50
110010
1.5500
19
010011
0.7750
51
110011
1.5750
20
010100
0.8000
52
110100
1.6000
21
010101
0.8250
53
110101
1.6250
22
010110
0.8500
54
110110
1.6500
23
010111
0.8750
55
110111
1.6750
24
011000
0.9000
56
111000
1.7000
25
011001
0.9250
57
111001
1.7250
26
011010
0.9500
58
111010
1.7500
27
011011
0.9750
59
111011
1.7750
28
011100
1.0000
60
111100
1.8000
29
011101
1.0250
61
111101
1.8250
30
011110
1.0500
62
111110
1.8500
31
011111
1.0750
63
111111
1.8750
PF0100
42
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 42 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these register is
provided in Table 43 through Table 52.
Table 42. SW1A/B/C register summary
Register
Address
Output
SW1ABVOLT
0x20
SW1AB output voltage set point in normal operation
SW1ABSTBY
0x21
SW1AB output voltage set point on standby
SW1ABOFF
0x22
SW1AB output voltage set point on sleep
SW1ABMODE
0x23
SW1AB switching mode selector register
SW1ABCONF
0x24
SW1AB DVS, phase, frequency and ILIM configuration
SW1CVOLT
0x2E
SW1C output voltage set point in normal operation
SW1CSTBY
0x2F
SW1C output voltage set point in standby
SW1COFF
0x30
SW1C output voltage set point in sleep
SW1CMODE
0x31
SW1C switching mode selector register
SW1CCONF
0x32
SW1C DVS, phase, frequency and ILIM configuration
Table 43. Register SW1ABVOLT - ADDR 0x20
Name
Bit #
R/W
Default
Description
SW1AB
5:0
R/W
0x00
Sets the SW1AB output voltage during normal
operation mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 44. Register SW1ABSTBY - ADDR 0x21
Name
Bit #
R/W
Default
Description
SW1ABSTBY
5:0
R/W
0x00
Sets the SW1AB output voltage during standby
mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 45. Register SW1ABOFF - ADDR 0x22
Name
Bit #
R/W
Default
Description
SW1ABOFF
5:0
R/W
0x00
Sets the SW1AB output voltage during sleep
mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
PF0100
NXP Semiconductors
43
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 46. Register SW1ABMODE - ADDR 0x23
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW1AB switching operation mode.
See Table 31 for all possible configurations.
UNUSED
4
–
0x00
unused
SW1ABOMODE
5
R/W
0x00
Set status of SW1AB when in sleep mode
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
SW1ABMODE
UNUSED
Description
Table 47. Register SW1ABCONF - ADDR 0x24
Name
Bit #
R/W
Default
Description
SW1ABILIM
0
R/W
0x00
SW1AB current limit level selection
• 0 = High level current limit
• 1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW1ABFREQ
3:2
R/W
0x00
SW1A/B switching frequency selector. See
Table 38.
SW1ABPHASE
5:4
R/W
0x00
SW1A/B phase clock selection. See Table 36.
SW1ABDVSSPEED
7:6
R/W
0x00
SW1A/B DVS speed selection. See Table 34.
Table 48. Register SW1CVOLT - ADDR 0x2E
Name
Bit #
R/W
Default
Description
SW1C
5:0
R/W
0x00
Sets the SW1C output voltage during normal
operation mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 49. Register SW1CSTBY - ADDR 0x2F
Name
Bit #
R/W
Default
Description
SW1CSTBY
5:0
R/W
0x00
Sets the SW1C output voltage during standby
mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 50. Register SW1COFF - ADDR 0x30
Name
Bit #
R/W
Default
Description
SW1COFF
5:0
R/W
0x00
Sets the SW1C output voltage during sleep
mode. See Table 41 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
PF0100
44
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 51. Register SW1CMODE - ADDR 0x31
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW1C switching operation mode.
See Table 30 for all possible configurations.
UNUSED
4
–
0x00
unused
SW1COMODE
5
R/W
0x00
Set status of SW1C when in sleep mode
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
SW1CMODE
UNUSED
Description
Table 52. Register SW1CCONF - ADDR 0x32
Name
Bit #
R/W
Default
SW1CILIM
0
R/W
0x00
SW1C current limit level selection
• 0 = High level current limit
• 1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW1CFREQ
3:2
R/W
0x00
SW1C switching frequency selector. See
Table 38.
SW1CPHASE
5:4
R/W
0x00
SW1C phase clock selection.See Table 36.
SW1CDVSSPEED
7:6
R/W
0x00
SW1C DVS speed selection. See Table 34.
6.4.4.3.5
Description
SW1A/B/C external components
Table 53. SW1A/B/C external component recommendations
Mode
Components
CINSW1A(44)
CIN1AHF
A/B/C single
phase
A/B Single - C
independent mode
A/B Dual - C
independent mode
SW1A input capacitor
4.7 μF
4.7 μF
4.7 μF
(44)
SW1A decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
(44)
SW1B input capacitor
4.7 μF
4.7 μF
4.7 μF
(44)
CINSW1B
CIN1BHF
Description
SW1B decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
(44)
SW1C input capacitor
4.7 μF
4.7 μF
4.7 μF
(44)
SW1C decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
6 x 22 μF
2 x 22 μF
4 x 22 μF
–
3 x 22 μF
3 x 22 μF
CINSW1C
CIN1CHF
COSW1AB
COSW1C
(44)
(44)
SW1A/B output capacitor
SW1C output capacitor
LSW1A
SW1A inductor
1.0 μH
1.0 μH
1.0 μH
LSW1B
SW1B inductor
–
–
1.0 μH
LSW1C
SW1C inductor
–
1.0 μH
1.0 μH
Notes
44. Use X5R or X7R capacitors.
PF0100
NXP Semiconductors
45
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.3.6
SW1A/B/C specifications
Table 54. SW1A/B/C electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
SW1A/B/C (single phase)
VINSW1A
VINSW1B
VINSW1C
Operating input voltage
2.8
–
4.5
V
VSW1ABC
Nominal output voltage
–
Table 41
–
V
-25
-3.0%
–
–
25
3.0%
-65
-45
-3.0%
–
–
–
65
45
3.0%
–
–
4500
7.1
5.3
10.5
7.9
13.7
10.3
Start-up overshoot
• ISW1ABC = 0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V
–
–
66
mV
Turn-on time
• Enable to 90% of end value
• ISW1x = 0 mA
• DVS clk = 25 mV/4.0 μs, VIN = VINSW1x = 4.5 V,
VSW1ABC = 1.875 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
–
–
–
–
–
–
77
82
86
84
80
68
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW1ABCLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW1ABCLOR
DC load regulation (APS, PWM)
–
–
20
mV
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 4.5 A
VSW1ABCACC
• 0.625 V ≤ VSW1ABC ≤ 1.450 V
• 1.475 V ≤ VSW1ABC ≤ 1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 150 mA
• 0.625 V < VSW1ABC < 0.675 V
• 0.7 V < VSW1ABC < 0.85 V
• 0.875 V < VSW1ABC < 1.875 V
ISW1ABC
ISW1ABCLIM
VSW1ABCOSH
tONSW1ABC
fSW1ABC
Rated output load current,
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1ABC < 1.875 V
Current limiter peak current detection
• Current through inductor
• SW1ABILIM = 0
• SW1ABILIM = 1
Switching frequency
• SW1xFREQ[1:0] = 00
• SW1xFREQ[1:0] = 01
• SW1xFREQ[1:0] = 10
mV
%
mA
A
MHz
Efficiency
• VIN = 3.6 V, fSW1ABC = 2.0 MHz, LSW1ABC = 1.0 μH
ηSW1ABC
ΔVSW1ABC
• PFM, 0.9 V, 1.0 mA
• PFM, 1.2 V, 50 mA
• APS, PWM, 1.2 V, 850 mA
• APS, PWM, 1.2 V, 1275 mA
• APS, PWM, 1.2 V, 2125 mA
• APS, PWM, 1.2 V, 4500 mA
%
PF0100
46
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW1A/B/C electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Transient load regulation
• Transient load = 0 to 2.25 A, di/dt = 100 mA/μs
• Overshoot
• Undershoot
–
–
–
–
50
50
Quiescent current
• PFM Mode
• APS Mode
–
–
18
145
–
–
µA
Discharge resistance
–
600
–
Ω
Notes
SW1A/B/C (single phase) (continued)
VSW1ABCLOTR
ISW1ABCQ
RSW1ABCDIS
mV
SW1A/B (single/dual phase)
VINSW1A
VINSW1B
Operating input voltage
2.8
–
4.5
V
VSW1AB
Nominal output voltage
–
Table 41
–
V
-25
-3.0%
-
25
3.0%
-65
-45
-3.0%
–
–
–
65
45
3.0%
–
–
2500
4.5
3.3
6.5
4.9
8.5
6.4
2.2
1.6
3.2
2.4
4.3
3.2
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A
VSW1ABACC
• 0.625 V ≤ VSW1AB ≤ 1.450 V
• 1.475 V ≤ VSW1AB ≤ 1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA
• 0.625 V < VSW1AB < 0.675 V
• 0.7 V < VSW1AB < 0.85 V
• 0.875 V < VSW1AB < 1.875 V
ISW1AB
ISW1ABLIM
Rated output load current,
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V
Current limiter peak current detection
• SW1A/B single phase (current through inductor)
• SW1ABILIM = 0
• SW1ABILIM = 1
•
• SW1A/B dual phase (current through inductor per phase)
• SW1ABILIM = 0
• SW1ABILIM = 1
mV
%
mA
(46)
A
(46)
VSW1ABOSH
Start-up overshoot
• ISW1AB = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V
–
–
66
mV
tONSW1AB
Turn-on time
• Enable to 90% of end value
• ISW1AB = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
fSW1AB
Switching frequency
• SW1ABFREQ[1:0] = 00
• SW1ABFREQ[1:0] = 01
• SW1ABFREQ[1:0] = 10
MHz
PF0100
NXP Semiconductors
47
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW1A/B/C electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
–
–
–
–
–
–
82
84
86
87
82
71
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW1ABLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW1ABLOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW1ABLOTR
Transient load regulation
• Transient load = 0 to 1.25 A, di/dt = 100 mA/μs
• Overshoot
• Undershoot
–
–
–
–
50
50
Quiescent current
• PFM mode
• APS mode
–
–
18
235
–
–
µA
Notes
SW1A/B (single/dual phase) (continued)
Efficiency (single phase)
• VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 μH
ηSW1AB
ΔVSW1AB
ISW1ABQ
• PFM, 0.9 V, 1.0 mA
• PFM, 1.2 V, 50 mA
• APS, PWM, 1.2 V, 500 mA
• APS, PWM, 1.2 V, 750 mA
• APS, PWM, 1.2 V, 1250 mA
• APS, PWM, 1.2 V, 2500 mA
%
mV
RONSW1AP
SW1A P-MOSFET RDS(on)
• VINSW1A = 3.3 V
–
215
245
mΩ
RONSW1AN
SW1A N-MOSFET RDS(on)
• VINSW1A = 3.3 V
–
258
326
mΩ
ISW1APQ
SW1A P-MOSFET leakage current
• VINSW1A = 4.5 V
–
–
7.5
µA
ISW1ANQ
SW1A N-MOSFET leakage current
• VINSW1A = 4.5 V
–
–
2.5
µA
RONSW1BP
SW1B P-MOSFET RDS(on)
• VINSW1B = 3.3 V
–
215
245
mΩ
RONSW1BN
SW1B N-MOSFET RDS(on)
• VINSW1B = 3.3 V
–
258
326
mΩ
ISW1BPQ
SW1B P-MOSFET leakage current
• VINSW1B = 4.5 V
–
–
7.5
µA
ISW1BNQ
SW1B N-MOSFET leakage current
• VINSW1B = 4.5 V
–
–
2.5
µA
Discharge resistance
–
600
–
Ω
RSW1ABDIS
PF0100
48
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW1A/B/C electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
SW1C (independent)
VINSW1C
Operating input voltage
2.8
–
4.5
V
VSW1C
Nominal output voltage
–
Table 41
–
V
-25
-3.0%
–
–
25
3.0%
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1C < 2.0 A
VSW1CACC
• 0.625 V ≤ VSW1C ≤ 1.450 V
• 1.475 V ≤ VSW1C ≤ 1.875 V
•
PFM, steady state 2.8 V < VIN < 4.5 V, 0 < ISW1C < 50 mA
• 0.625 V < VSW1C < 0.675 V
• 0.7 V < VSW1C < 0.85 V
• 0.875 V < VSW1C < 1.875 V
ISW1C
ISW1CLIM
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1C < 1.875 V
Current limiter peak current detection
• Current through inductor
• SW1CILIM = 0
• SW1CILIM = 1
mV
-65
-45
-3.0%
–
–
–
65
45
3.0%
–
–
2000
2.6
1.95
4.0
3.0
5.2
3.9
mA
A
—
VSW1COSH
Start-up overshoot
• ISW1C = 0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V
–
–
66
mV
tONSW1C
Turn-on time
• Enable to 90% of end value
• ISW1C = 0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
–
–
–
–
–
–
77
78
86
84
78
65
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW1CLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW1CLOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW1CLOTR
Transient load regulation
• Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs
• Overshoot
• Undershoot
–
–
–
–
50
50
Quiescent current
• PFM mode
• APS mode
–
–
22
145
–
–
fSW1C
Switching frequency
• SW1CFREQ[1:0] = 00
• SW1CFREQ[1:0] = 01
• SW1CFREQ[1:0] = 10
(45)
MHz
Efficiency
• VIN = 3.6 V, fSW1C = 2.0 MHz, LSW1C = 1.0 μH
• PFM, 0.9 V, 1.0 mA
• PFM, 1.2 V, 50 mA
• APS, PWM, 1.2 V, 400 mA
• APS, PWM, 1.2 V, 600 mA
• APS, PWM, 1.2 V, 1000 mA
• APS, PWM, 1.2 V, 2000 mA
ηSW1C
ΔVSW1C
ISW1CQ
%
mV
µA
PF0100
NXP Semiconductors
49
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW1A/B/C electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
184
206
211
260
Unit
Notes
SW1C (independent) (continued)
RONSW1CP
SW1C P-MOSFET RDS(on)
• at VINSW1C = 3.3 V
–
RONSW1CN
SW1C N-MOSFET RDS(on)
• at VINSW1C = 3.3 V
–
ISW1CPQ
SW1C P-MOSFET leakage current
• VINSW1C = 4.5 V
–
–
10.5
µA
ISW1CNQ
SW1C N-MOSFET leakage current
• VINSW1C = 4.5 V
–
–
3.5
µA
RSW1CDIS
Discharge resistance
–
600
–
Ω
mΩ
mΩ
Notes
45. Meets 1.89 A current rating for VDDSOC_IN domain on i.MX 6X processor.
46. Current rating of SW1AB supports the power virus mode of operation of the i.MX 6X processor.
PFM
0.1
1
10
Load Current (mA)
100
1000
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
APS
PWM
10
100
1000
10000
Load Current (mA)
Figure 14. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version
PF0100
50
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
PFM
0.1
1
10
100
1000
100
90
80
) 70
%
(
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
)
(% 70
y 60
c
n 50
e
i 40
c
if
f 30
E
20
10
0
APS
PWM
10
Load Current (mA)
100
1000
10000
Load Current (mA)
Figure 15. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; extended industrial version
PFM
0.1
1
10
100
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
APS
PWM
10
1000
100
1000
10000
Load Current (mA)
Load Current (mA)
Figure 16. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version
100
90
80
) 70
(%
y 60
c
n 50
e
i
c
fif 40
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
(%
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
PFM
0.1
1
10
Load Current (mA)
100
1000
APS
PWM
10
100
1000
10000
Load Current (mA)
Figure 17. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; extended industrial version
PF0100
NXP Semiconductors
51
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4
SW2
SW2 is a single phase, 2.0 A rated buck regulator (2.5 A in F9/FA versions). Table 30 describes the modes, and Table 31 show the options
for the SWxMODE[3:0] bits. Figure 18 shows the block diagram and the external component connections for SW2 regulator.
VIN
SW2IN
SW2MODE
ISENSE
CINSW2
SW2
Controller
SW2LX
Driver
LSW2
COSW2
SW2FAULT
EP
Internal
Compensation
SW2FB
I2C
Interface
I2C
Z2
Z1
VREF
EA
DAC
Figure 18. SW2 block diagram
6.4.4.4.1
SW2 setup and control registers
SW2 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is
set to “0”, the output is limited to the lower output voltages from 0.400 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0].
Likewise, once bit SW2[6] is set to “1”, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV
increments, as determined by bits SW2[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range,
and the lower range be used for voltages from 0.400 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits.
Therefore, the output voltage range remains the same in all three operating modes. Table 55 shows the output voltage coding valid for
SW2.
Note: Voltage set points of 0.6 V and below are not supported.
Table 55. SW2 output voltage configuration
Low output voltage range(47)
High output voltage range
Set point
SW2[6:0]
SW2 output
Set point
SW2[6:0]
SW2 output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
PF0100
52
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 55. SW2 output voltage configuration (continued)
Low output voltage range(47)
High output voltage range
Set point
SW2[6:0]
SW2 output
Set point
SW2[6:0]
SW2 output
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
PF0100
NXP Semiconductors
53
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 55. SW2 output voltage configuration (continued)
Low output voltage range(47)
High output voltage range
Set point
SW2[6:0]
SW2 output
Set point
SW2[6:0]
SW2 output
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
47. For voltages less than 2.0 V, only use set points 0 to 63.
Setup and control of SW2 is done through I2C registers listed in Table 56, and a detailed description of each one of the registers is provided
in Tables 57 to Table 61.
Table 56. SW2 register summary
Register
Address
Description
SW2VOLT
0x35
Output voltage set point on normal operation
SW2STBY
0x36
Output voltage set point on standby
SW2OFF
0x37
Output voltage set point on sleep
SW2MODE
0x38
Switching mode selector register
SW2CONF
0x39
DVS, phase, frequency, and ILIM configuration
Table 57. Register SW2VOLT - ADDR 0x35
Name
Bit #
R/W
Default
Description
SW2
5:0
R/W
0x00
Sets the SW2 output voltage during normal operation
mode. See Table 55 for all possible configurations.
SW2
6
R
0x00
Sets the operating output voltage range for SW2. Set
during OTP or TBB configuration only. See Table 55
for all possible configurations.
UNUSED
7
–
0x00
unused
PF0100
54
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 58. Register SW2STBY - ADDR 0x36
Name
SW2STBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW2 output voltage during standby mode.
See Table 55 for all possible configurations.
SW2STBY
6
R
0x00
Sets the operating output voltage range for SW2 on
standby mode. This bit inherits the value configured
on bit SW2[6] during OTP or TBB configuration. See
Table 55 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 59. Register SW2OFF - ADDR 0x37
Name
SW2OFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW2 output voltage during sleep mode. See
Table 55 for all possible configurations.
SW2OFF
6
R
0x00
Sets the operating output voltage range for SW2 on
sleep mode. This bit inherits the value configured on
bit SW2[6] during OTP or TBB configuration. See
Table 55 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 60. Register SW2MODE - ADDR 0x38
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW2 switching operation mode.
See Table 30 for all possible configurations.
UNUSED
4
–
0x00
unused
SW2OMODE
5
R/W
0x00
Set status of SW2 when in sleep mode
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
SW2MODE
UNUSED
Description
Table 61. Register SW2CONF - ADDR 0x39
Name
Bit #
R/W
Default
Description
SW2ILIM
0
R/W
0x00
SW2 current limit level selection (48)
• 0 = High level current limit
• 1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW2FREQ
3:2
R/W
0x00
SW2 switching frequency selector. See Table 38.
SW2PHASE
5:4
R/W
0x00
SW2 phase clock selection. See Table 36.
SW2DVSSPEED
7:6
R/W
0x00
SW2 DVS speed selection. See Table 35.
Notes
48. SW2ILIM = 0 must be used in F9/FA versions if 2.5 A output load current is desired
PF0100
NXP Semiconductors
55
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4.2
SW2 external components
Table 62. SW2 external component recommendations
Components
Description
CINSW2(49)
CIN2HF
(49)
Values
SW2 input capacitor
4.7 μF
SW2 decoupling input capacitor
0.1 μF
COSW2(49)
SW2 output capacitor
LSW2
SW2 inductor
3 x 22 μF
1.0 μH
Notes
49. Use X5R or X7R capacitors.
6.4.4.4.3
SW2 Specifications
Table 63. SW2 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min
Typ
Max
Unit
Notes
(50)
Switch mode supply SW2
VINSW2
Operating input voltage
2.8
–
4.5
V
VSW2
Nominal output voltage
–
Table 55
–
V
-25
-3.0%
-6.0%
–
–
–
25
3.0%
6.0%
-65
-45
-3.0%
-3.0%
–
–
–
–
65
45
3.0%
3.0%
–
–
–
–
2000
2500
2.8
2.1
4.0
3.0
5.2
3.9
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A
VSW2ACC
• 0.625 V < VSW2 < 0.85 V
• 0.875 V < VSW2 < 1.975 V
• 2.0 V < VSW2 < 3.3 V
•
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 ≤ 50 mA
• 0.625 V < VSW2 < 0.675 V
• 0.7 V < VSW2 < 0.85 V
• 0.875 V < VSW2 < 1.975 V
• 2.0 V < VSW2 < 3.3 V
ISW2
ISW2LIM
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V
• 2.8 V < VIN < 4.5 V, 1.2 V < VSW2 < 3.3 V, SW2LIM = 0
Current limiter peak current detection
• Current through inductor
• SW2ILIM = 0
• SW2ILIM = 1
mV
%
mA
Start-up overshoot
• ISW2 = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW2 = 4.5 V
–
–
66
mV
tONSW2
Turn-on time
• Enable to 90% of end value
• ISW2 = 0.0 mA
• DVS clk = 50 mV/8 μs, VIN = VINSW2 = 4.5 V
–
–
550
µs
–
–
–
1.0
2.0
4.0
–
–
–
fSW2
(52)
A
VSW2OSH
Switching frequency
• SW2FREQ[1:0] = 00
• SW2FREQ[1:0] = 01
• SW2FREQ[1:0] = 10
(51)
MHz
PF0100
56
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 63. SW2 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min
Typ
Max
Unit
–
–
–
–
–
–
94
95
96
94
92
86
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW2LIR
Line regulation (APS, PWM)
–
–
20
mV
VSW2LOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW2LOTR
Transient load regulation
• Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs
• Overshoot
• Undershoot
–
–
–
–
50
50
Quiescent current
• PFM mode
• APS mode (low output voltage settings)
• APS mode (high output voltage settings)
–
–
–
23
145
305
–
–
–
Notes
Switch mode supply SW2 (continued)
Efficiency
• VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
• PFM, 3.15 V, 1.0 mA
• PFM, 3.15 V, 50 mA
• APS, PWM, 3.15 V, 400 mA
• APS, PWM, 3.15 V, 600 mA
• APS, PWM, 3.15 V, 1000 mA
• APS, PWM, 3.15 V, 2000 mA
ηSW2
ΔVSW2
ISW2Q
%
mV
µA
RONSW2P
SW2 P-MOSFET RDS(on)
• at VIN = VINSW2 = 3.3 V
–
190
209
mΩ
RONSW2N
SW2 N-MOSFET RDS(on)
• at VIN = VINSW2 = 3.3 V
–
212
255
mΩ
ISW2PQ
SW2 P-MOSFET leakage current
• VIN = VINSW2 = 4.5 V
–
–
12
µA
ISW2NQ
SW2 N-MOSFET leakage current
• VIN = VINSW2 = 4.5 V
–
–
4.0
µA
RSW2DIS
Discharge resistance
–
600
–
Ω
Notes
50. When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.
51.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).
52.
Applies to F9/FA versions
PF0100
NXP Semiconductors
57
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
PFM
0.1
1
10
100
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
APS
PWM
10
1000
Load Current (mA)
100
1000
10000
Load Current (mA)
Figure 19. sw2 Efficiency Waveforms: VIN = 4.2 V; VOUT = 3.0 V; consumer version
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
%
(
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
PFM
0.1
1
10
Load Current (mA)
100
1000
APS
PWM
10
100
1000
10000
Load Current (mA)
Figure 20. sw2 efficiency waveforms: vin = 4.2 v; vout = 3.0 v; Extended Industrial Version
6.4.4.4.4
SW3A/B
SW3A/B are 1.25 to 2.5 A rated buck regulators, depending on the configuration. Table 30 describes the available switching modes and
Table 31 show the actual configuration options for the SW3xMODE[3:0] bits. SW3A/B can be configured in various phasing schemes,
depending on the desired cost/performance trade-offs. The following configurations are available:
• A single phase
• A dual phase
• Independent regulators
The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 64 shows the options for the SW3CFG[1:0]
bits.
PF0100
58
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 64. SW3 configuration
SW3_CONFIG[1:0]
Description
00
A/B single phase
01
A/B single phase
10
A/B dual phase
11
A/B independent
6.4.4.4.5
SW3A/B single phase
In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 21. This configuration
reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control
is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set.
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3
SW3ALX
LSW3A
Controller
Driver
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
DAC
I2C
Interface
VIN
SW3BIN
SW3BMODE
ISENSE
CINSW3B
SW3BLX
Controller
Driver
SW3BFAULT
EP
I2C
Internal
Compensation
SW3BFB
Z2
VREF
Z1
EA
DAC
Figure 21. SW3A/B single phase block diagram
PF0100
NXP Semiconductors
59
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4.6
SW3A/B dual phase
SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 22. This mode allows
a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control is from SW3A,
registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch 180 degrees apart.
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3
SW3ALX
LSW3A
Controller
Driver
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
I2C
Interface
DAC
VIN
SW3BIN
SW3BLX
LSW3B
COSW3B
SW3BMODE
ISENSE
CINSW3B
Controller
Driver
SW3BFAULT
EP
I2C
Internal
Compensation
SW3BFB
Z2
VREF
Z1
EA
DAC
Figure 22. SW3A/B dual phase block diagram
PF0100
60
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4.7
SW3A - SW3B independent outputs
SW3A and SW3B can be configured as independent outputs as shown in Figure 23, providing flexibility for applications requiring more
voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C registers as shown
in Table 66.
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3A
SW3ALX
LSW3A
Controller
Driver
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
DAC
VIN
SW3BIN
SW3BLX
LSW3B
COSW3B
I2C
Interface
ISENSE
CINSW3B
SW3B
SW3BMODE
Controller
Driver
SW3BFAULT
EP
Internal
Compensation
SW3BFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 23. SW3A/B independent output block diagram
6.4.4.4.8
SW3A/B Setup and Control Registers
SW3A/B output voltage is programmable from 0.400 V to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6]
is set to “0”, the output is limited to the lower output voltages from 0.40 V to 1.975 V with 25 mV increments, as determined by bits
SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V
with 50 mV increments, as determined by bits SW3x[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range
and the lower range be used for voltages from 0.400 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3x[5:0],
SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit is copied into the SW3xSTBY[6] and
SW3xOFF[6] bits. Therefore, the output voltage range remains the same on all three operating modes. Table 65 shows the output voltage
coding valid for SW3x.
Note: Voltage set points of 0.6 V and below are not supported.
PF0100
NXP Semiconductors
61
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 65. SW3A/B output voltage configuration
Low output voltage range (53)
High output voltage range
Set point
SW3x[6:0]
SW3x output
Set point
SW3x[6:0]
SW3x output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
PF0100
62
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 65. SW3A/B output voltage configuration
Low output voltage range (53)
High output voltage range
Set point
SW3x[6:0]
SW3x output
Set point
SW3x[6:0]
SW3x output
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
53. For voltages less than 2.0 V, only use set points 0 to 63.
PF0100
NXP Semiconductors
63
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 66 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is provided
on Tables 67 through Table 76.
Table 66. SW3AB register summary
Register
Address
Output
SW3AVOLT
0x3C
SW3A output voltage set point on normal operation
SW3ASTBY
0x3D
SW3A output voltage set point on standby
SW3AOFF
0x3E
SW3A output voltage set point on sleep
SW3AMODE
0x3F
SW3A switching mode selector register
SW3ACONF
0x40
SW3A DVS, phase, frequency and ILIM configuration
SW3BVOLT
0x43
SW3B output voltage set point on normal operation
SW3BSTBY
0x44
SW3B output voltage set point on standby
SW3BOFF
0x45
SW3B output voltage set point on sleep
SW3BMODE
0x46
SW3B switching mode selector register
SW3BCONF
0x47
SW3B DVS, phase, frequency and ILIM configuration
Table 67. Register SW3AVOLT - ADDR 0x3C
Name
Bit #
R/W
Default
Description
SW3A
5:0
R/W
0x00
Sets the SW3A output voltage (independent) or
SW3A/B output voltage (single/dual phase),
during normal operation mode. See Table 65 for
all possible configurations.
SW3A
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase).
Set during OTP or TBB configuration only. See
Table 65 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 68. Register SW3ASTBY - ADDR 0x3D
Name
SW3ASTBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3A output voltage (independent) or
SW3A/B output voltage (single/dual phase),
during standby mode. See Table 65 for all
possible configurations.
SW3ASTBY
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase) on
standby mode. This bit inherits the value
configured on bit SW3A[6] during OTP or TBB
configuration. See Table 65 for all possible
configurations.
UNUSED
7
–
0x00
unused
PF0100
64
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 69. Register SW3AOFF - ADDR 0x3E
Name
SW3AOFF
Bit #
5:0
R/W
R/W
Default
Description
0x00
Sets the SW3A output voltage (independent) or
SW3A/B output voltage (Single/Dual phase),
during Sleep mode. See Table 65 for all possible
configurations.
SW3AOFF
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase) on
sleep mode. This bit inherits the value configured
on bit SW3A[6] during OTP or TBB configuration.
See Table 65 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 70. Register SW3AMODE - ADDR 0x3F
Name
SW3AMODE
UNUSED
SW3AOMODE
UNUSED
Bit #
R/W
Default
Description
3:0
R/W
0x08
Sets the SW3A (independent) or SW3A/B (single/
dual phase) switching operation mode.
See Table 30 for all possible configurations.
4
–
0x00
unused
5
R/W
0x00
Set status of SW3A (independent) or SW3A/B
(single/dual phase) when in sleep mode.
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
Table 71. Register SW3ACONF - ADDR 0x40
Name
Bit #
R/W
Default
Description
SW3AILIM
0
R/W
0x00
SW3A current limit level selection
• 0 = High level current limit
• 1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW3AFREQ
3:2
R/W
0x00
SW3A switching frequency selector. See
Table 38.
SW3APHASE
5:4
R/W
0x00
SW3A phase clock selection. See Table 36.
SW3ADVSSPEED
7:6
R/W
0x00
SW3A DVS speed selection. See Table 35.
Table 72. Register SW3BVOLT - ADDR 0x43
Name
Bit #
R/W
Default
Description
SW3B
5:0
R/W
0x00
Sets the SW3B output voltage (independent)
during normal operation mode. See Table 65 for
all possible configurations.
SW3B
6
R
0x00
Sets the operating output voltage range for SW3B
(independent). Set during OTP or TBB
configuration only. See Table 65 for all possible
configurations.
UNUSED
7
–
0x00
unused
PF0100
NXP Semiconductors
65
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 73. Register SW3BSTBY - ADDR 0x44
Name
SW3BSTBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3B output voltage (independent)
during standby mode. See Table 65 for all
possible configurations.
SW3BSTBY
6
R
0x00
Sets the operating output voltage range for SW3B
(Independent) on standby mode. This bit inherits
the value configured on bit SW3B[6] during OTP
or TBB configuration. See Table 65 for all
possible configurations.
UNUSED
7
–
0x00
unused
Table 74. Register SW3BOFF - ADDR 0x45
Name
SW3BOFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3B output voltage (independent)
during sleep mode. See Table 65 for all possible
configurations.
SW3BOFF
6
R
0x00
Sets the operating output voltage range for SW3B
(independent) on sleep mode. This bit inherits the
value configured on bit SW3B[6] during OTP or
TBB configuration. See Table 65 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 75. Register SW3BMODE - ADDR 0x46
Name
SW3BMODE
UNUSED
SW3BOMODE
UNUSED
Bit #
R/W
Default
Description
3:0
R/W
0x08
Sets the SW3B (independent) switching
operation mode. See Table 30 for all possible
configurations.
4
–
0x00
unused
5
R/W
0x00
Set status of SW3B (independent) when in sleep
mode.
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
Table 76. Register SW3BCONF - ADDR 0x47
Name
Bit #
R/W
Default
Description
SW3BILIM
0
R/W
0x00
SW3B current limit level selection
• 0 = High level Current limit
• 1 = Low level Current limit
UNUSED
1
R/W
0x00
Unused
SW3BFREQ
3:2
R/W
0x00
SW3B switching frequency selector. See Table 38.
SW3BPHASE
5:4
R/W
0x00
SW3B phase clock selection. See Table 36.
SW3BDVSSPEED
7:6
R/W
0x00
SW3B DVS speed selection. See Table 35.
PF0100
66
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4.9
SW3A/B external components
Table 77. SW3A/B external component requirements
Mode
Components
Description
SW3A/B single
phase
SW3A/B dual
phase
SW3A independent
SW3B independent
CINSW3A(54)
SW3A input capacitor
4.7 μF
4.7 μF
4.7 μF
CIN3AHF(54)
SW3A decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
CINSW3B(54)
SW3B input capacitor
4.7 μF
4.7 μF
4.7 μF
CIN3BHF(54)
SW3B decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
COSW3A(54)
SW3A output capacitor
3 x 22 μF
2 x 22 μF
2 x 22 μF
COSW3B(54)
SW3B output capacitor
–
2 x 22 μF
2 x 22 μF
LSW3A
SW3A inductor
1.0 μH
1.0 μH
1.0 μH
LSW3B
SW3B inductor
–
1.0 μH
1.0 μH
Notes
54. Use X5R or X7R capacitors.
6.4.4.4.10
SW3A/B specifications
Table 78. SW3A/B electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],
and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
(55)
Switch mode supply SW3a/B
VINSW3x
Operating input voltage
2.8
–
4.5
V
VSW3x
Nominal output voltage
-
Table 65
-
V
-25
-3.0%
-6.0%
–
–
–
25
3.0%
6.0%
-65
-45
-3.0%
-3.0%
–
–
–
–
65
45
3.0%
3.0%
–
–
–
–
2500
1250
Output voltage accuracy
• PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX
VSW3xACC
•
• 0.625 V < VSW3x < 0.85 V
• 0.875 V < VSW3x < 1.975 V
• 2.0 V < VSW3x < 3.3 V
•
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA)
• 0.625 V < VSW3x < 0.675 V
• 0.7 V < VSW3x < 0.85 V
• 0.875 V < VSW3x < 1.975 V
• 2.0 V < VSW3x < 3.3 V
ISW3x
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V
• PWM, APS mode single/dual phase
• PWM, APS mode independent (per phase)
mV
%
mA
(56)
PF0100
NXP Semiconductors
67
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 78. SW3A/B electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],
and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
3.5
2.7
5.0
3.8
6.5
4.9
Unit
Notes
Switch mode supply SW3a/B (continued)
Current limiter peak current detection
• Single phase (current through inductor)
• SW3xILIM = 0
• SW3xILIM = 1
ISW3xLIM
A
•
Independent mode or dual phase (current through inductor per
phase)
• SW3xILIM = 0
• SW3xILIM = 1
1.8
1.3
2.5
1.9
3.3
2.5
VSW3xOSH
Start-up overshoot
• ISW3x = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V
–
–
66
mV
tONSW3x
Turn-on time
• Enable to 90% of end value
• ISW3x = 0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
–
–
–
–
–
–
84
85
85
84
80
74
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW3xLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW3xLOR
DC load regulation (APS, PWM)
–
–
20
mV
–
–
–
–
50
50
–
–
–
–
–
22
300
50
250
150
–
–
–
–
–
215
245
258
326
fSW3x
Switching frequency
• SW3xFREQ[1:0] = 00
• SW3xFREQ[1:0] = 01
• SW3xFREQ[1:0] = 10
MHz
Efficiency (single phase)
• fSW3 = 2.0 MHz, LSW3x 1.0 μH
ηSW3AB
ΔVSW3x
VSW3xLOTR
ISW3xQ
• PFM, 1.5 V, 1.0 mA
• PFM, 1.5 V, 50 mA
• APS, PWM 1.5 V, 500 mA
• APS, PWM 1.5 V, 750 mA
• APS, PWM 1.5 V, 1250 mA
• APS, PWM 1.5 V, 2500 mA
Transient load regulation
• Transient load = 0.0 mA to ISW3x/2, di/dt = 100 mA/μs
• Overshoot
• Undershoot
Quiescent current
• PFM mode (single/dual phase)
• APS mode (single/dual phase)
• PFM mode (independent mode)
• APS mode (SW3A independent mode)
• APS mode (SW3B independent mode)
RONSW3AP
SW3A P-MOSFET RDS(on)
• at VIN = VINSW3A = 3.3 V
–
RONSW3AN
SW3A N-MOSFET RDS(on)
• at VIN = VINSW3A = 3.3 V
–
%
mV
µA
mΩ
mΩ
PF0100
68
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 78. SW3A/B electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],
and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Switch Mode Supply SW3a/B (Continued)
ISW3APQ
SW3A P-MOSFET leakage current
• VIN = VINSW3A = 4.5 V
–
–
7.5
µA
ISW3ANQ
SW3A N-MOSFET leakage current
• VIN = VINSW3A = 4.5 V
–
–
2.5
µA
RONSW3BP
SW3B P-MOSFET RDS(on)
• at VIN = VINSW3B = 3.3 V
–
215
245
RONSW3BN
SW3B N-MOSFET RDS(on)
• at VIN = VINSW3B = 3.3 V
–
258
326
ISW3BPQ
SW3B P-MOSFET leakage current
• VIN = VINSW3B = 4.5 V
–
–
7.5
µA
ISW3BPQ
SW3B N-MOSFET leakage current
• VIN = VINSW3B = 4.5 V
–
–
2.5
µA
RSW3xDIS
Discharge resistance
–
600
–
Ω
mΩ
mΩ
Notes
55. When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW3x - VSW3x) = ISW3x* (DCR of inductor +RONSW3xP + PCB trace resistance).
Efficiency (%)
100
90
80
) 70
%
(
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
PFM
0.1
1
10
Load Current (mA)
100
1000
100
90
80
) 70
%
(
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
Efficiency (%)
56.
APS
PWM
10
100
1000
10000
Load Current (mA)
Figure 24. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; consumer version
PF0100
NXP Semiconductors
69
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
100
90
80
) 70
%
(
y 60
c
n 50
e
i
c
if 40
f
E 30
20
10
0
Efficiency (%)
Efficiency (%)
100
90
80
) 70
(%
y 60
c
n 50
e
i
c
fif 40
E 30
20
10
0
PFM
0.1
1
10
100
1000
APS
PWM
10
100
Load Current (mA)
1000
10000
Load Current (mA)
Figure 25. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; extended industrial version
6.4.4.5
SW4
SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In its default mode, it operates as a normal buck
regulator with a programmable output between 0.400 V and 3.300 V. It is capable of operating in the three available switching modes:
PFM, APS, and PWM, described on Table 30 and configured by the SW4MODE[3:0] bits, as shown in Table 31.
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage tracks the
output voltage of SW3A, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The VTT mode can
be configured by use of VTT bit in the OTP_SW4_CONFIG register.
Figure 26 shows the block diagram and the external component connections for the SW4 regulator.
VIN
SW4IN
SW4
SW4LX
LSW4
COSW4
SW4MODE
ISENSE
CINSW4
Controller
Driver
SW4FAULT
EP
Internal
Compensation
SW4FB
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 26. SW4 block diagram
6.4.4.5.1
SW4 setup and control registers
To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register in Table 137. Extended page 1, page 111, is
programmed during OTP or TBB configuration; setting bit VTT to “1” enables SW4 to operate in VTT mode and “0” in regulator mode. See
6.1.2 One time programmability (OTP), page 21 for detailed information on OTP configuration.
In regulator mode, the SW4 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW4[6] in the SW4VOLT register is
read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers.
Once SW4[6] is set to “0”, the output is limited to the lower output voltages, from 0.400 V to 1.975 V with 25 mV increments, as determined
by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V
to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits.
To optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range and the
lower range be used for voltages from 0.400 V to 1.975 V.
PF0100
70
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW4[5:0], SW4STBY[5:0],
and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit is copied into bits SW4STBY[6], and SW4OFF[6] bits, so
the output voltage range remains the same on all three operating modes. Table 79 shows the output voltage coding valid for SW4.
Note: Voltage set points of 0.6 V and below are not supported, except in the VTT mode.
Table 79. SW4 output voltage configuration
Low output voltage range(57)
High output voltage range
Set point
SW4[6:0]
SW4 output
Set point
SW4[6:0]
SW4 output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
PF0100
NXP Semiconductors
71
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 79. SW4 output voltage configuration (continued)
Low output voltage range(57)
High output voltage range
Set point
SW4[6:0]
SW4 output
Set point
SW4[6:0]
SW4 output
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
57. For voltages less than 2.0 V, only use set points 0 to 63.
PF0100
72
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Full setup and control of SW4 is done through the I2C registers listed on Table 80, and a detailed description of each one of the registers
is provided in Tables 81 to Table 85.
Table 80. SW4 register summary
Register
Address
Description
SW4VOLT
0x4A
Output voltage set point on normal operation
SW4STBY
0x4B
Output voltage set point on standby
SW4OFF
0x4C
Output voltage set point on sleep
SW4MODE
0x4D
Switching mode selector register
SW4CONF
0x4E
DVS, phase, frequency and ILIM configuration
Table 81. Register SW4VOLT - ADDR 0x4A
Name
Bit #
R/W
Default
Description
SW4
5:0
R/W
0x00
Sets the SW4 output voltage during normal
operation mode. See Table 79 for all possible
configurations.
SW4
6
R
0x00
Sets the operating output voltage range for SW4.
Set during OTP or TBB configuration only. See
Table 79 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 82. Register SW4STBY - ADDR 0x4B
Name
SW4STBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during standby
mode. See Table 79 for all possible
configurations.
SW4STBY
6
R
0x00
Sets the operating output voltage range for SW4
on standby mode. This bit inherits the value
configured on bit SW4[6] during OTP or TBB
configuration. See Table 79 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 83. Register SW4OFF - ADDR 0x4C
Name
SW4OFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during sleep mode.
See Table 79 for all possible configurations.
SW4OFF
6
R
0x00
Sets the operating output voltage range for SW4
on sleep mode. This bit inherits the value
configured on bit SW4[6] during OTP or TBB
configuration. See Table 79 for all possible
configurations.
UNUSED
7
–
0x00
unused
PF0100
NXP Semiconductors
73
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 84. Register SW4MODE - ADDR 0x4D
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW4 switching operation mode.
See Table 30 for all possible configurations.
UNUSED
4
–
0x00
unused
SW4OMODE
5
R/W
0x00
Set status of SW4 when in sleep mode
• 0 = OFF
• 1 = PFM
7:6
–
0x00
unused
SW4MODE
UNUSED
Description
Table 85. Register SW4CONF - ADDR 0x4E
Name
Bit #
R/W
Default
SW4ILIM
0
R/W
0x00
SW4 current limit level selection
• 0 = High level current limit
• 1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW4FREQ
3:2
R/W
0x00
SW4 switching frequency selector. See Table 38.
SW4PHASE
5:4
R/W
0x00
SW4 phase clock selection. See Table 36.
SW4DVSSPEED
7:6
R/W
0x00
SW4 DVS speed selection. See Table 35.
6.4.4.5.2
Description
SW4 external components
Table 86. SW4 external component requirements
Components
CINSW4(58)
CIN4HF
(58)
Description
Values
SW4 input capacitor
4.7 μF
SW4 decoupling input capacitor
0.1 μF
COSW4(58)
SW4 output capacitor
LSW4
SW4 inductor
3 x 22 μF
1.0 μH
Notes
58. Use X5R or X7R capacitors
PF0100
74
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.5.3
SW4 specifications
Table 87. SW4 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode unless,
otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101],
and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
(59)
Switch mode supply SW4
VINSW4
Operating input voltage
2.8
–
4.5
V
VSW4
Nominal output voltage
• Normal operation
• VTT mode
–
–
Table 79
VSW3AFB/2
–
–
V
-25
-3.0
-6.0
–
–
–
25
3.0
6.0
mV
%
%
-65
-45
-3.0
-3.0
-40
–
–
–
–
–
65
45
3.0
3.0
40
mV
mV
%
%
mV
–
–
1000
mA
1.4
1.0
2.0
1.5
3.0
2.4
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
• 0.625 V < VSW4 < 0.85 V
• 0.875 V < VSW4 < 1.975 V
• 2.0 V < VSW4 < 3.3 V
VSW4ACC
ISW4
ISW4LIM
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA
•
• 0.625 V < VSW4 < 0.675 V
• 0.7 V < VSW4 < 0.85 V
• 0.875 V < VSW4 < 1.975 V
• 2.0 V < VSW4 < 3.3 V
VTT Mode , 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 3.3 V
Current limiter peak current detection
Current through inductor
• SW4ILIM = 0
• SW4ILIM = 1
A
VSW4OSH
Start-up overshoot
• ISW4 = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V
–
–
66
mV
tONSW4
Turn-on time
• Enable to 90% of end value
• ISW4 = 0.0 mA
• DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
• PFM, 1.8 V, 1.0 mA
• PFM, 1.8 V, 50 mA
• APS, PWM 1.8 V, 200 mA
• APS, PWM 1.8 V, 500 mA
• APS, PWM 1.8 V, 1000 mA
–
–
–
–
–
81
78
87
88
83
–
–
–
–
–
• PWM 0.75 V, 200 mA
• PWM 0.75 V, 500 mA
• PWM 0.75 V, 1000 mA
–
–
–
78
76
66
–
–
–
–
10
–
fSW4
Switching frequency
• SW4FREQ[1:0] = 00
• SW4FREQ[1:0] = 01
• SW4FREQ[1:0] = 10
(60)
MHz
Efficiency
• fSW4 = 2.0 MHz, LSW4 = 1.0 μH
ηSW4
ΔVSW4
Output ripple
%
mV
PF0100
NXP Semiconductors
75
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 87. SW4 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode unless,
otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101],
and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW4 (continued)
VSW4LIR
Line regulation (APS, PWM)
–
–
20
mV
VSW4LOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW4LOTR
Transient load regulation
• Transient load = 0.0 mA to 500 mA, di/dt = 100 mA/μs
• Overshoot
• Undershoot
–
–
–
–
50
50
Quiescent current
• PFM mode
• APS mode
–
–
22
145
–
–
µA
ISW4Q
mV
RONSW4P
SW4 P-MOSFET RDS(on)
• at VIN = VINSW4 = 3.3 V
–
236
274
mΩ
RONSW4N
SW4 N-MOSFET RDS(on)
• at VIN = VINSW4 = 3.3 V
–
293
378
mΩ
ISW4PQ
SW4 P-MOSFET leakage current
• VIN = VINSW4 = 4.5 V
–
–
6.0
µA
ISW4NQ
SW4 N-MOSFET leakage current
• VIN = VINSW4 = 4.5 V
–
–
2.0
µA
RSW4DIS
Discharge resistance
–
600
–
Ω
Notes
59. When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW4 - VSW4) = ISW4* (DCR of inductor +RONSW4P + PCB trace resistance).
90
80
Efficiency (%)
70
)
%
( 60
y 50
c
n
e
i 40
ic
ff 30
E
20
PFM
10
0
0.1
1
10
Load Current (mA)
100
1000
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
Efficiency (%)
60.
APS
PWM
10
100
1000
10000
Load Current (mA)
Figure 27. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; consumer version
PF0100
76
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
100
90
80
) 70
%
(
y 60
c
n 50
e
i
ic
ff 40
E 30
20
10
0
90
Efficiency (%)
70
)
%
( 60
y
c 50
n
e
i 40
ic
ff
E 30
20
Efficiency (%)
80
PFM
10
0
0.1
1
10
100
APS
PWM
10
1000
100
1000
10000
Load Current (mA)
Load Current (mA)
Figure 28. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; extended industrial version
6.4.5
Boost regulator
SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY
in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and
SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is
integrated on-chip. Figure 29 shows the block diagram and component connection for the boost regulator.
VIN
CINBST
VOBST
LBST
SWBSTIN
DBST
SWBSTMODE
SWBSTLX
Driver
EP
OC
RSENSE
VREFSC
Controller
SWBSTFAULT
I2C
Interface
SC
VREFUV
UV
SWBSTFB
COSWBST
Internal
Compensation Z2
Z1
EA
VREF
Figure 29. Boost regulator architecture
PF0100
NXP Semiconductors
77
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.1
SWBST setup and control
Boost regulator control is done through a single register SWBSTCTL described in Table 88. SWBST is included in the power-up sequence
if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros.
Table 88. Register SWBSTCTL - ADDR 0x66
Name
Bit #
SWBST1VOLT
1:0
SWBST1MODE
UNUSED
SWBST1STBYMODE
UNUSED
R/W
Default
R/W
Description
0x00
Set the output voltage for SWBST
• 00 = 5.000 V
• 01 = 5.050 V
• 10 = 5.100 V
• 11 = 5.150 V
3:2
R
0x02
Set the Switching mode on normal operation
• 00 = OFF
• 01 = PFM
• 10 = Auto (Default)(61)
• 11 = APS
4
–
0x00
unused
6:5
R/W
0x02
Set the switching mode on standby
• 00 = OFF
• 01 = PFM
• 10 = Auto (Default)(61)
• 11 = APS
7
–
0x00
unused
Notes
61. In auto mode, the controller automatically switches between PFM and APS modes depending on the load current.
The SWBST regulator starts up by default in the auto mode if SWBST is part of the startup sequence.
6.4.5.2
SWBST external components
Table 89. SWBST external component requirements
Components
CINBST(62)
CINBSTHF
COBST
(62)
(62)
Description
Values
SWBST input capacitor
10 μF
SWBST decoupling input capacitor
0.1 μF
SWBST output capacitor
LSBST
SWBST inductor
DBST
SWBST boost diode
2 x 22 μF
2.2 μH
1.0 A, 20 V Schottky
Notes
62. Use X5R or X7R capacitors.
PF0100
78
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.3
SWBST specifications
Table 90. SWBST Electrical Specifications
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V,
ISWBST = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
2.8
–
4.5
V
–
Table 88
–
V
-4.0
–
3.0
%
Output ripple
• 2.8 V ≤ VIN ≤ 4.5 V
• 0 < ISWBST < ISWBSTMAX, excluding reverse recovery of
Schottky diode
–
–
120
mV Vp-p
VSWBSTLOR
DC load regulation
• 0 < ISWBST < ISWBSTMAX
–
0.5
–
mV/mA
VSWBSTLIR
DC line regulation
• 2.8 V ≤ VIN ≤ 4.5 V, ISWBST = ISWBSTMAX
–
50
–
mV
–
–
–
–
500
600
mA
–
222
289
μA
Notes
Switch mode supply SWBST
VINSWBST
VSWBST
VSWBSTACC
ΔVSWBST
ISWBST
ISWBSTQ
Input voltage range
Nominal output voltage
Output voltage accuracy
• 2.8 V ≤ VIN ≤ 4.5 V
• 0 < ISWBST < ISWBSTMAX
Continuous load current
• 2.8 V ≤ VIN ≤ 3.0 V
• 3.0 V ≤ VIN ≤ 4.5 V
Quiescent current
• Auto
RDSONBST
MOSFET on resistance
ISWBSTLIM
Peak current limit
–
206
306
mΩ
1400
2200
3200
mA
Start-up overshoot
• ISWBST = 0.0 mA
–
–
500
mV
VSWBSTTR
Transient load response
• ISWBST from 1.0 mA to 100 mA in 1.0 µs
• Maximum transient amplitude
–
–
300
mV
VSWBSTTR
Transient load response
• ISWBST from 100 mA to 1.0 mA in 1.0 µs
• Maximum transient amplitude
–
–
300
mV
tSWBSTTR
Transient load response
• ISWBST from 1.0 mA to 100 mA in 1.0 µs
• Time to settle 80% of transient
–
–
500
µs
tSWBSTTR
Transient load response
• ISWBST from 100 mA to 1.0 mA in 1.0 µs
• Time to settle 80% of transient
–
–
20
ms
ISWBSTHSQ
NMOS Off leakage
• SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00
–
1.0
5.0
µA
tONSWBST
Turn-on time
• Enable to 90% of VSWBST, ISWBST = 0.0 mA
–
–
2.0
ms
fSWBST
Switching frequency
–
2.0
–
MHz
ηSWBST
Efficiency
• ISWBST = ISWBSTMAX
–
86
–
%
VSWBSTOSH
(63)
Notes
63. Only in auto mode.
PF0100
NXP Semiconductors
79
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6
LDO regulators description
This section describes the LDO regulators provided by the PF0100. All regulators use the main bandgap as reference. Refer to 6.3 Bias
and references block description, page 24 for further information on the internal reference voltages.
A low-power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest
bias currents may be attained by forcing the part into its low-power mode by setting the VGENxLPWR bit. The use of this bit is only
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.
When a regulator is disabled, the output is discharged by an internal pull-down. The pull-down is also activated when RESETBMCU is low.
VINx
VINx
VREF
_
VGENxEN
+
VGENxLPWR
VGENx
VGENx
I2C
Interface
CGENx
VGENx
Discharge
Figure 30. General LDO block diagram
6.4.6.1
Transient response waveforms
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 31. Note that the transient line
and load response refers to the overshoot, or undershoot only, excluding the DC shift.
IL = IMAX/10
IMAX
ILOAD
IL = IMAX
Overshoot
VOUT
IMAX/10
1.0 us
1.0 us
Undershoot
Transient Load Stimulus
VOUT Transient Load Response
VINx_FINAL
VINx_INITIAL
VINx_INITIAL
VINx
Overshoot
VOUT
VINx_FINAL
10 us
10 us
Undershoot
Transient Line Stimulus
VOUT Transient Line Response
Figure 31. Transient waveforms
PF0100
80
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6.2
Short-circuit protection
All general purpose LDOs have short-circuit protection capability. The short-circuit protection (SCP) system includes debounced fault
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product
damage. If a short-circuit condition is detected, the LDO is disabled by resetting its VGENxEN bit, while at the same time, an interrupt
VGENxFAULTI is generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the
VGENxFAULTM mask bit.
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators do not automatically disable upon a shortcircuit detection. However, the current limiter continues to limit the output current of the regulator. By default, the REGSCPEN is not set;
therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI, is generated
in an overload condition regardless of the state of the REGSCPEN bit. See Table 91 for SCP behavior configuration.
Table 91. Short-circuit behavior
REGSCPEN[0]
Short-circuit behavior
0
Current limit
1
Shutdown
6.4.6.3
LDO regulator control
Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage
according to Table 92 for VGEN1 and VGEN2; and uses the voltage set point on Table 93 for VGEN3 through VGEN6.
Table 92. VGEN1, VGEN2 output voltage configuration
Set point
VGENx[3:0]
VGENx output (V)
0
0000
0.800
1
0001
0.850
2
0010
0.900
3
0011
0.950
4
0100
1.000
5
0101
1.050
6
0110
1.100
7
0111
1.150
8
1000
1.200
9
1001
1.250
10
1010
1.300
11
1011
1.350
12
1100
1.400
13
1101
1.450
14
1110
1.500
15
1111
1.550
Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration
Set point
VGENx[3:0]
VGENx output (V)
0
0000
1.80
1
0001
1.90
2
0010
2.00
PF0100
NXP Semiconductors
81
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration (continued)
Set point
VGENx[3:0]
VGENx output (V)
3
0011
2.10
4
0100
2.20
5
0101
2.30
6
0110
2.40
7
0111
2.50
8
1000
2.60
9
1001
2.70
10
1010
2.80
11
1011
2.90
12
1100
3.00
13
1101
3.10
14
1110
3.20
15
1111
3.30
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 94
presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output.
Table 94. LDO control
VGENxEN
VGENxLPWR
VGENxSTBY
STANDBY(64)
VGENxOUT
0
X
X
X
Off
1
0
0
X
On
1
1
0
X
Low power
1
X
1
0
On
1
0
1
1
Off
1
1
1
1
Low power
Notes
64. STANDBY refers to a standby event as described earlier.
For more detail information, Table 95 through Table 100 provide a description of all registers necessary to operate all six general purpose
LDO regulators.
Table 95. Register VGEN1CTL - ADDR 0x6C
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN1 output voltage.
See Table 92 for all possible configurations.
VGEN1EN
4
–
0x00
Enables or disables VGEN1 output
• 0 = OFF
• 1 = ON
VGEN1STBY
5
R/W
0x00
Set VGEN1 output state when in standby. Refer
to Table 94.
VGEN1LPWR
6
R/W
0x00
Enable low-power mode for VGEN1. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN1
Description
PF0100
82
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 96. Register VGEN2CTL - ADDR 0x6D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN2 output voltage.
See Table 92 for all possible configurations.
VGEN2EN
4
–
0x00
Enables or disables VGEN2 output
• 0 = OFF
• 1 = ON
VGEN2STBY
5
R/W
0x00
Set VGEN2 output state when in standby. Refer
to Table 94.
VGEN2LPWR
6
R/W
0x00
Enable low-power mode for VGEN2. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN2
Description
Table 97. Register VGEN3CTL - ADDR 0x6E
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN3 output voltage.
See Table 93 for all possible configurations.
VGEN3EN
4
–
0x00
Enables or disables VGEN3 output
• 0 = OFF
• 1 = ON
VGEN3STBY
5
R/W
0x00
Set VGEN3 output state when in standby. Refer
to Table 94.
VGEN3LPWR
6
R/W
0x00
Enable low-power mode for VGEN3. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN3
Description
Table 98. Register VGEN4CTL - ADDR 0x6F
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN4 output voltage.
See Table 93 for all possible configurations.
VGEN4EN
4
–
0x00
Enables or disables VGEN4 output
• 0 = OFF
• 1 = ON
VGEN4STBY
5
R/W
0x00
Set VGEN4 output state when in standby. Refer
to Table 94.
VGEN4LPWR
6
R/W
0x00
Enable low-power mode for VGEN4. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN4
Description
PF0100
NXP Semiconductors
83
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 99. Register VGEN5CTL - ADDR 0x70
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN5 output voltage.
See Table 93 for all possible configurations.
VGEN5EN
4
–
0x00
Enables or disables VGEN5 output
• 0 = OFF
• 1 = ON
VGEN5STBY
5
R/W
0x00
Set VGEN5 output state when in standby. Refer
to Table 94.
VGEN5LPWR
6
R/W
0x00
Enable low-power mode for VGEN5. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN5
Description
Table 100. Register VGEN6CTL - ADDR 0x71
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN6 output voltage.
See Table 93 for all possible configurations.
VGEN6EN
4
–
0x00
Enables or disables VGEN6 output
• 0 = OFF
• 1 = ON
VGEN6STBY
5
R/W
0x00
Set VGEN6 output state when in standby. Refer
to Table 94.
VGEN6LPWR
6
R/W
0x00
Enable low-power mode for VGEN6. Refer to
Table 94.
UNUSED
7
–
0x00
unused
VGEN6
6.4.6.4
Description
External components
Table 101 lists the typical component values for the general purpose LDO regulators.
Table 101. LDO external components
Regulator
Output capacitor (μF)(65)
VGEN1
2.2
VGEN2
4.7
VGEN3
2.2
VGEN4
4.7
VGEN5
2.2
VGEN6
2.2
Notes
65. Use X5R/X7R ceramic capacitors.
PF0100
84
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6.5
6.4.6.5.1
LDO specifications
VGEN1
Table 102. VGEN1 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111,
IGEN1 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
VGEN1
VIN1
Operating input voltage
1.75
–
3.40
V
VGEN1NOM
Nominal output voltage
–
Table 92
–
V
IGEN1
Operating load current
0.0
–
100
mA
VGEN1TOL
Output voltage tolerance
• 1.75 V < VIN1 < 3.4 V
• 0.0 mA < IGEN1 < 100 mA
• VGEN1[3:0] = 0000 to 1111
-3.0
–
3.0
%
VGEN1LOR
Load regulation
• (VGEN1 at IGEN1 = 100 mA) - (VGEN1 at IGEN1 = 0.0 mA)
• For any 1.75 V < VIN1 < 3.4 V
–
0.15
–
mV/mA
VGEN1LIR
Line regulation
• (VGEN1 at VIN1 = 3.4 V) - (VGEN1 at VIN1 = 1.75 V)
• For any 0.0 mA < IGEN1 < 100 mA
–
0.30
–
mV/mA
IGEN1LIM
Current limit
• IGEN1 when VGEN1 is forced to VGEN1NOM/2
122
167
200
mA
IGEN1OCP
Overcurrent protection threshold
• IGEN1 required to cause the SCP function to disable LDO when
REGSCPEN = 1
115
–
200
mA
–
14
–
μA
• VGEN1[3:0] = 0000 - 1101
• VGEN1[3:0] = 1110, 1111
50
37
60
45
–
–
Output noise density
• VIN1 = 1.75 V, IGEN1 = 75 mA
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
–
–
–
-108
-118
-124
-100
-108
-112
–
–
–
–
12.5
16.5
60
–
500
VGEN1 DC
IGEN1Q
Quiescent current
• No load, change in IVIN and IVIN1
• When VGEN1 enabled
VGEN1 AC and transient
PSRRVGEN1
NOISEVGEN1
SLWRVGEN1
PSRR
• IGEN1 = 75 mA, 20 Hz to 20 kHz
Turn-on slew rate
• 10% to 90% of end value
• 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN1 = 0.0 mA
• VGEN1[3:0] = 0000 to 0111
• VGEN1[3:0] = 1000 to 1111
GEN1tON
Turn-on time
• Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V
• IGEN1 = 0.0 mA
dB
(66)
dBV/
√Hz
mV/μs
μs
PF0100
NXP Semiconductors
85
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 102. VGEN1 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111,
IGEN1 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
VGEN1 AC and transient (continued)
GEN1tOFF
Turn-off time
• Disable to 10% of initial value, VIN1 = 1.75 V
• IGEN1 = 0.0 mA
–
–
10
ms
GEN1OSHT
Start-up overshoot
• VIN1 = 1.75 V, 3.4 V, IGEN1 = 0.0 mA
–
1.0
2.0
%
–
–
3.0
%
–
5.0
8.0
mV
Transient load response
• VIN1 = 1.75 V, 3.4 V
VGEN1LOTR
•
• IGEN1 = 10 mA to 100 mA in 1.0 μs. Peak of overshoot or
undershoot of VGEN1 with respect to final value
Refer to Figure 31
Transient line response
• IGEN1 = 75 mA
VGEN1LITR
•
• VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for
VGEN1[3:0] = 0000 to 1101
• VIN1INITIAL = VGEN1+0.3 V to VIN1FINAL = VGEN1+0.8 V for
VGEN1[3:0] = 1110, 1111
Refer to Figure 31
Notes
66. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test.
6.4.6.5.2
VGEN2
Table 103. VGEN2 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,
IGEN2 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
VGEN2
VIN1
Operating input voltage
1.75
–
3.40
V
VGEN2NOM
Nominal output voltage
–
Table 92
–
V
IGEN2
Operating load current
0.0
–
250
mA
-3.0
–
3.0
%
VGEN2 active mode - DC
VGEN2TOL
Output voltagetolerance
• 1.75 V < VIN1 < 3.4 V
• 0.0 mA < IGEN2 < 250 mA
• VGEN2[3:0] = 0000 to 1111
VGEN2LOR
Load regulation
• (VGEN2 at IGEN2 = 250 mA) - (VGEN2 at IGEN2 = 0.0 mA)
• For any 1.75 V < VIN1 < 3.4 V
–
0.05
–
mV/mA
VGEN2LIR
Line regulation
• (VGEN2 at VIN1 = 3.4 V) - (VGEN2 at VIN1 = 1.75 V)
• For any 0.0 mA < IGEN2 < 250 mA
–
0.50
–
mV/mA
PF0100
86
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 103. VGEN2 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,
IGEN2 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
IGEN2LIM
Current limit
• IGEN2 when VGEN2 is forced to VGEN2NOM/2
• MMPF0100
• MMPF0100A
333
305
417
417
510
510
IGEN2OCP
Overcurrent protection threshold
• IGEN2 required to cause the SCP function to disable LDO when
REGSCPEN = 1
• MMPF0100
• MMPF0100A
300
290
–
–
500
500
–
16
–
50
37
60
45
–
–
–
–
–
-108
-118
-124
-100
-108
-112
–
–
–
–
12.5
16.5
Unit
Notes
VGEN2 active mode - DC (continued)
IGEN2Q
Quiescent current
• No load, change in IVIN and IVIN1
• When VGEN2 enabled
mA
mA
μA
VGEN2 AC and transient
PSRRVGEN2
PSRR
• IGEN2 = 187.5 mA, 20 Hz to 20 kHz
• VGEN2[3:0] = 0000 - 1101
• VGEN2[3:0] = 1110, 1111
dB
(67)
Output noise density
• VIN1 = 1.75 V, IGEN2 = 187.5 mA
NOISEVGEN2
SLWRVGEN2
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
Turn-on slew rate
• 10% to 90% of end value
• 1.75 V ≤ VIN1 ≤ 3.4 V, IGEN2 = 0.0 mA
• VGEN2[3:0] = 0000 to 0111
• VGEN2[3:0] = 1000 to 1111
dBV/√Hz
mV/μs
GEN2tON
Turn-on time
• Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V
• IGEN2 = 0.0 mA
60
–
500
μs
GEN2tOFF
Turn-off time
• Disable to 10% of initial value, VIN1 = 1.75 V
• IGEN2 = 0.0 mA
–
–
10
ms
GEN2OSHT
Start-up overshoot
• VIN1 = 1.75 V, 3.4 V, IGEN2 = 0.0 mA
–
1.0
2.0
%
VGEN2LOTR
Transient load response
• VIN1 = 1.75 V, 3.4 V
• IGEN2 = 25 to 250 mA in 1.0 μs
• Peak of overshoot or undershoot of VGEN2 with respect to final
value
• Refer to Figure 31
–
–
3.0
%
PF0100
NXP Semiconductors
87
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 103. VGEN2 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,
IGEN2 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
–
5.0
8.0
mV
Notes
VGEN2 AC and transient (continued)
VGEN2LITR
Transient line response
• IGEN2 = 187.5 mA
• VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for
VGEN2[3:0] = 0000 to 1101
• VIN1INITIAL = VGEN2+0.3 V to VIN1FINAL = VGEN2+0.8 V for
VGEN2[3:0] = 1110, 1111
• Refer to Figure 31
Notes
67. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test.
6.4.6.5.3
VGEN3
Table 104. VGEN3 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111,
IGEN3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
2.8
VGEN3NO
M+ 0.250
–
–
3.6
3.6
V
Notes
VGEN3
VIN2
Operating input voltage
• 1.8 V ≤ VGEN3NOM ≤ 2.5 V
• 2.6 V ≤ VGEN3NOM ≤ 3.3 V
VGEN3NOM
Nominal output voltage
–
Table 93
–
V
IGEN3
Operating load current
0.0
–
100
mA
VGEN3TOL
Output voltage tolerance
• VIN2MIN < VIN2 < 3.6 V
• 0.0 mA < IGEN3 < 100 mA
• VGEN3[3:0] = 0000 to 1111
-3.0
–
3.0
%
VGEN3LOR
Load regulation
• (VGEN3 at IGEN3 = 100 mA) - (VGEN3 at IGEN3 = 0.0 mA)
• For any VIN2MIN < VIN2 < 3.6 V
–
0.07
–
mV/mA
VGEN3LIR
Line regulation
• (VGEN3 at VIN2 = 3.6 V) - (VGEN3 at VIN2MIN )
• For any 0.0 mA < IGEN3 < 100 mA
–
0.8
–
mV/mA
IGEN3LIM
Current limit
• IGEN3 when VGEN3 is forced to VGEN3NOM/2
127
167
200
mA
IGEN3OCP
Overcurrent protection threshold
• IGEN3 required to cause the SCP function to disable LDO when
REGSCPEN = 1
120
–
200
mA
–
13
–
μA
—
(68)
VGEN3 DC
IGEN3Q
Quiescent current
• No load, Change in IVIN and IVIN2
• When VGEN3 enabled
PF0100
88
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 104. VGEN3 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111,
IGEN3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
35
55
40
60
–
–
dB
(69)
–
–
–
-114
-129
-135
-102
-123
-130
dBV/√Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mV/μs
VGEN3 AC and transient
PSRRVGEN3
PSRR
• IGEN3 = 75 mA, 20 Hz to 20 kHz
• VGEN3[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV
• VGEN3[3:0] = 0000 - 1000, VIN2 = VGEN3NOM + 1.0 V
Output noise density
• VIN2 = VIN2MIN, IGEN3 = 75 mA
NOISEVGEN3
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
Turn-on slew rate
• 10% to 90% of end value
• VIN2MIN ≤ VIN2 ≤ 3.6 V, IGEN3 = 0.0 mA
SLWRVGEN3
• VGEN3[3:0] = 0000 to 0011
• VGEN3[3:0] = 0100 to 0111
• VGEN3[3:0] = 1000 to 1011
• VGEN3[3:0] = 1100 to 1111
GEN3tON
Turn-on time
• Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V
• IGEN3 = 0.0 mA
60
–
500
μs
GEN3tOFF
Turn-off time
• Disable to 10% of initial value, VIN2 = VIN2MIN
• IGEN3 = 0.0 mA
–
–
10
ms
GEN3OSHT
Start-up overshoot
• VIN2 = VIN2MIN, 3.6 V, IGEN3 = 0.0 mA
–
1.0
2.0
%
VGEN3LOTR
Transient load response
• VIN2 = VIN2MIN, 3.6 V
• IGEN3 = 10 to 100 mA in 1.0μs
• Peak of overshoot or undershoot of VGEN3 with respect to final
value. Refer to Figure 31
–
–
3.0
%
VGEN3LITR
Transient line response
• IGEN3 = 75 mA
• VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for GEN3[3:0] = 0000 to
0111
• VIN2INITIAL = VGEN3+0.3 V to VIN2FINAL = VGEN3+0.8 V for
VGEN3[3:0] = 1000 to 1010
• VIN2INITIAL = VGEN3+0.25 V to VIN2FINAL = 3.6 V for VGEN3[3:0]
= 1011 to 1111
• Refer to Figure 31
–
5.0
8.0
mV
Notes
68. When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
69. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.
PF0100
NXP Semiconductors
89
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6.5.4
VGEN4
Table 105. VGEN4 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111,
IGEN4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
2.8
VGEN4NO
M+ 0.250
–
–
3.6
3.6
V
Notes
VGEN4
VIN2
Operating input voltage
• 1.8 V ≤ VGEN4NOM ≤ 2.5 V
• 2.6 V ≤ VGEN4NOM ≤ 3.3 V
VGEN4NOM
Nominal output voltage
–
Table 93
–
V
IGEN4
Operating load current
0.0
–
350
mA
VGEN4TOL
Output voltage tolerance
• VIN2MIN < VIN2 < 3.6 V
• 0.0 mA < IGEN4 < 350 mA
• VGEN4[3:0] = 0000 to 1111
-3.0
–
3.0
%
VGEN4LOR
Load regulation
• (VGEN4 at IGEN4 = 350 mA) - (VGEN4 at IGEN4 = 0.0 mA )
• For any VIN2MIN < VIN2 < 3.6 V
–
0.07
–
mV/mA
VGEN4LIR
Line regulation
• (VGEN4 at 3.6 V) - (VGEN4 at VIN2MIN)
• For any 0.0 mA < IGEN4 < 350 mA
–
0.80
–
mV/mA
IGEN4LIM
Current limit
• IGEN4 when VGEN4 is forced to VGEN4NOM/2
435
584.5
700
mA
IGEN4OCP
Overcurrent protection threshold
• IGEN4 required to cause the SCP function to disable LDO when
REGSCPEN = 1
420
–
700
mA
–
13
–
μA
35
55
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/√Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mV/μs
—
(70)
VGEN4 DC
IGEN4Q
Quiescent current
• No load, Change in IVIN and IVIN2
• When VGEN4 enabled
VGEN4 AC and transient
PSRRVGEN4
PSRR
• IGEN4 = 262.5 mA, 20 Hz to 20 kHz
• VGEN4[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV
• VGEN4[3:0] = 0000 - 1000, VIN2 = VGEN4NOM + 1.0 V
dB
(71)
Output noise density
• VIN2 = VIN2MIN, IGEN4 = 262.5 mA
NOISEVGEN4
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
Turn-on slew rate
• 10% to 90% of end value
• VIN2MIN ≤ VIN2 ≤ 3.6 V, IGEN4 = 0.0 mA
SLWRVGEN4
• VGEN4[3:0] = 0000 to 0011
• VGEN4[3:0] = 0100 to 0111
• VGEN4[3:0] = 1000 to 1011
• VGEN4[3:0] = 1100 to 1111
PF0100
90
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 105. VGEN4 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111,
IGEN4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Turn-on time
• Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V
• IGEN4 = 0.0 mA
60
–
500
μs
GEN4tOFF
Turn-off time
• Disable to 10% of initial value, VIN2 = VIN2MIN
• IGEN4 = 0.0 mA
–
–
10
ms
GEN4OSHT
Start-up overshoot
• VIN2 = VIN2MIN, 3.6 V, IGEN4 = 0.0 mA
–
1.0
2.0
%
VGEN4LOTR
Transient load response
• VIN2 = VIN2MIN, 3.6 V
• IGEN4 = 35 to 350 mA in 1.0 μs
• Peak of overshoot or undershoot of VGEN4 with respect to final
value. Refer to Figure 31
–
–
3.0
%
VGEN4LITR
Transient line response
• IGEN4 = 262.5 mA
• VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for VGEN4[3:0] = 0000
to 0111
• VIN2INITIAL = VGEN4+0.3 V to VIN2FINAL = VGEN4+0.8 V for
VGEN4[3:0] = 1000 to 1010
• VIN2INITIAL = VGEN4+0.25 V to VIN2FINAL = 3.6 V for VGEN4[3:0]
= 1011 to 1111
• Refer to Figure 31
–
5.0
8.0
mV
Notes
VGEN4 AC AND tRANSIENT (Continued)
GEN4tON
Notes
70. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
71. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.
6.4.6.5.5
VGEN5
Table 106. VGEN5 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
2.8
VGEN5NO
M+ 0.250
–
–
4.5
4.5
V
Notes
VGEN5
VIN3
Operating input voltage
• 1.8 V ≤ VGEN5NOM ≤ 2.5 V
• 2.6 V ≤ VGEN5NOM ≤ 3.3 V
VGEN5NOM
Nominal output voltage
–
Table 93
–
V
IGEN5
Operating load current
0.0
–
100
mA
—
(72)
PF0100
NXP Semiconductors
91
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 106. VGEN5 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
-3.0
–
3.0
%
Notes
VGEN5 active mode – DC
VGEN5TOL
Output voltage tolerance
• VIN3MIN < VIN3 < 4.5 V
• 0.0 mA < IGEN5 < 100 mA
• VGEN5[3:0] = 0000 to 1111
VGEN5LOR
Load regulation
• (VGEN5 at IGEN5 = 100 mA) - (VGEN5 at IGEN5 = 0.0 mA)
• For any VIN3MIN < VIN3 < 4.5 mV
–
0.10
–
mV/mA
VGEN5LIR
Line regulation
• (VGEN5 at VIN3 = 4.5 V) - (VGEN5 at VIN3MIN)
• For any 0.0 mA < IGEN5 < 100 mA
–
0.50
–
mV/mA
IGEN5LIM
Current limit
• IGEN5 when VGEN5 is forced to VGEN5NOM/2
122
167
200
mA
IGEN5OCP
Overcurrent protection threshold
• IGEN5 required to cause the SCP function to disable LDO when
REGSCPEN = 1
120
–
200
mA
–
13
–
μA
35
52
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/√Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mV/μs
IGEN5Q
Quiescent current
• No load, Change in IVIN and IVIN3
• When VGEN5 enabled
VGEN5 AC and transient
PSRRVGEN5
PSRR
• IGEN5 = 75 mA, 20 Hz to 20 kHz
• VGEN5[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV
• VGEN5[3:0] = 0000 - 1111, VIN3 = VGEN5NOM + 1.0 V
dB
(73)
Output noise density
• VIN3 = VIN3MIN, IGEN5 = 75 mA
NOISEVGEN5
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
Turn-on slew rate
• 10% to 90% of end value
• VIN3MIN ≤ VIN3 ≤ 4.5 mV, IGEN5 = 0.0 mA
SLWRVGEN5
• VGEN5[3:0] = 0000 to 0011
• VGEN5[3:0] = 0100 to 0111
• VGEN5[3:0] = 1000 to 1011
• VGEN5[3:0] = 1100 to 1111
GEN5tON
Turn-on time
• Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V
• IGEN5 = 0.0 mA
60
–
500
μs
GEN5tOFF
Turn-off time
• Disable to 10% of initial value, VIN3 = VIN3MIN
• IGEN5 = 0.0 mA
–
–
10
ms
GEN5OSHT
Start-up overshoot
• VIN3 = VIN3MIN, 4.5 V, IGEN5 = 0.0 mA
–
1.0
2.0
%
PF0100
92
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 106. VGEN5 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
VGEN5LOTR
Transient load response
• VIN3 = VIN3MIN, 4.5 V
• IGEN5 = 10 to 100 mA in 1.0 μs
• Peak of overshoot or undershoot of VGEN5 with respect to final
value.
• Refer to Figure 31
–
–
3.0
%
VGEN5LITR
Transient line response
• IGEN5 = 75 mA
• VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for VGEN5[3:0] = 0000 to
0111
• VIN3INITIAL = VGEN5+0.3 V to VIN3FINAL = VGEN5+0.8 V for
VGEN5[3:0] = 1000 to 1111
• Refer to Figure 31
-
5.0
8.0
mV
Notes
VGEN5 active mode – DC (continued)
Notes
72. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
73. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.
6.4.6.5.6
VGEN6
Table 107. VGEN6 electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
2.8
VGEN6NO
M+ 0.250
–
–
4.5
4.5
V
Notes
VGEN6
VIN3
Operating input voltage
• 1.8 V ≤ VGEN6NOM ≤ 2.5 V
• 2.6 V ≤ VGEN6NOM ≤ 3.3 V
VGEN6NOM
Nominal output voltage
–
Table 93
–
V
IGEN6
Operating load current
0.0
–
200
mA
VGEN6TOL
Output voltage tolerance
• VIN3MIN < VIN3 < 4.5 V
• 0.0 mA < IGEN6 < 200 mA
• VGEN6[3:0] = 0000 to 1111
-3.0
–
3.0
%
VGEN6LOR
Load regulation
• (VGEN6 at IGEN6 = 200 mA) - (VGEN6 at IGEN6 = 0.0 mA)
• For any VIN3MIN < VIN3 < 4.5 V
–
0.10
–
mV/mA
VGEN6LIR
Line regulation
• (VGEN6 at VIN3 = 4.5 V) - (VGEN6 at VIN3MIN)
• For any 0.0 mA < IGEN6 < 200 mA
–
0.50
–
mV/mA
IGEN6LIM
Current limit
• IGEN6 when VGEN6 is forced to VGEN6NOM/2
• MMPF0100
• MMPF0100A
232
232
333
333
400
475
—
(74)
VGEN6 DC
mA
PF0100
NXP Semiconductors
93
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 107. VGEN6 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Overcurrent protection threshold
• IGEN6 required to cause the SCP function to disable LDO when
REGSCPEN = 1
• MMPF0100
• MMPF0100A
220
220
–
–
400
475
–
13
–
35
52
40
60
–
–
–
–
–
-114
-129
-135
-102
-123
-130
dBV/√Hz
–
–
–
–
–
–
–
–
22.0
26.5
30.5
34.5
mV/μs
Turn-on time
• Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V
• IGEN6 = 0.0 mA
60
–
500
μs
GEN6tOFF
Turn-off time
• Disable to 10% of initial value, VIN3 = VIN3MIN
• IGEN6 = 0.0 mA
–
–
10
ms
GEN6OSHT
Start-up overshoot
• VIN3 = VIN3MIN, 4.5 V, IGEN6 = 0 mA
–
1.0
2.0
%
VGEN6LOTR
Transient load response
• VIN3 = VIN3MIN, 4.5 V
• IGEN6 = 20 to 200 mA in 1.0 μs
• Peak of overshoot or undershoot of VGEN6 with respect to final
value. Refer to Figure 31
–
–
3.0
%
Notes
VGEN6 DC (continued)
IGEN6OCP
IGEN6Q
Quiescent current
• No load, Change in IVIN and IVIN3
• When VGEN6 enabled
mA
μA
VGEN6 AC and transient
PSRRVGEN6
PSRR
• IGEN6 = 150 mA, 20 Hz to 20 kHz
• VGEN6[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV
• VGEN6[3:0] = 0000 - 1111, VIN3 = VGEN6NOM + 1.0 V
dB
(75)
Output noise density
• VIN3 = VIN3MIN, IGEN6 = 150 mA
NOISEVGEN6
• 100 Hz – <1.0 kHz
• 1.0 kHz – <10 kHz
• 10 kHz – 1.0 MHz
Turn-on slew rate
• 10% to 90% of end value
• VIN3MIN ≤ VIN3 ≤ 4.5 V. IGEN6 = 0.0 mA
SLWRVGEN6
GEN6tON
• VGEN6[3:0] = 0000 to 0011
• VGEN6[3:0] = 0100 to 0111
• VGEN6[3:0] = 1000 to 1011
• VGEN6[3:0] = 1100 to 1111
PF0100
94
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 107. VGEN6 electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Transient line response
• IGEN6 = 150 mA
• VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for VGEN6[3:0] = 0000
to 0111
• VIN3INITIAL = VGEN6+0.3 V to VIN3FINAL = VGEN6+0.8 V for
VGEN6[3:0] = 1000 to 1111
• Refer to Figure 31
–
5.0
8.0
mV
Notes
VGEN6 AC and transient (continued)
VGEN6LITR
Notes
74. When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
75. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.
6.4.7
VSNVS LDO/switch
VSNVS powers the low-power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be
disabled. When powered by both, VIN takes precedence when above the appropriate comparator threshold. When powered by VIN,
VSNVS is an LDO capable of supplying seven voltages: 3.0, 1.8, 1.5, 1.3, 1.2, 1.1, and 1.0 V. The bits VSNVSVOLT[2:0] in register
VSNVS_CONTROL determine the output voltage. When powered by coin cell, VSNVS is an LDO capable of supplying 1.8, 1.5, 1.3, 1.2,
1.1, or 1.0 V as shown in Table 108. If the 3.0 V option is chosen with the coin cell, VSNVS tracks the coin cell voltage by means of a
switch, whose maximum resistance is 100 Ω. In this case, the VSNVS voltage is simply the coin cell voltage minus the voltage drop across
the switch, which is 40 mV at a rated maximum load current of 400 μA.
The default setting of the VSNVSVOLT[2:0] is 110, or 3.0 V, unless programmed otherwise in OTP. However, when the coin cell is applied
for the very first time, VSNVS outputs 1.0 V. Only when VIN is applied thereafter does VSNVS transition to its default, or programmed
value if different. Upon subsequent removal of VIN, with the coin cell attached, VSNVS changes configuration from an LDO to a switch for
the “110” setting, and remains as an LDO for the other settings, continuing to output the same voltages as when VIN is applied, providing
certain conditions are met as described in Table 108.
PF0100
VIN
2.25 V (VTL0) 4.5 V
LDO/SWITCH
LICELL
Charger
Input
Sense/
Selector
VREF
LDO\
_
VSNVS
+
Z
Coin Cell
1.8 - 3.3 V
I2C Interface
Figure 32. VSNVS supply switch architecture
Table 108 provides a summary of the VSNVS operation at different input voltage VIN and with or without coin cell connected to the system.
PF0100
NXP Semiconductors
95
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 108. VSNVS modes of operation
VSNVSVOLT[2:0]
VIN
Mode
110
> VTH1
VIN LDO 3.0 V
110
< VTL1
Coin cell switch
000 – 101
> VTH0
VIN LDO
000 – 101
< VTL0
Coin cell LDO
6.4.7.0.1
VSNVS control
The VSNVS output level is configured through the VSNVSVOLT[2:0]bits on VSNVSCTL register as shown in Table 109.
Table 109. Register VSNVSCTL - ADDR 0x6B
Name
Bit #
R/W
Default
Description
VSNVSVOLT
2:0
R/W
0x80
Configures VSNVS output voltage.(76)
• 000 = 1.0 V
• 001 = 1.1 V
• 010 = 1.2 V
• 011 = 1.3 V
• 100 = 1.5 V
• 101 = 1.8 V
• 110 = 3.0 V
• 111 = RSVD
UNUSED
7:3
–
0x00
unused
Notes
76. Only valid when a valid input voltage is present.
6.4.7.0.2
VSNVS external components
Table 110. VSNVS external components
6.4.7.0.3
Capacitor
Value (μF)
VSNVS
0.47
VSNVS specifications
Table 111. VSNVS electrical characteristics
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise
noted.
Symbol
Parameter
Min
Typ
Max
Unit
1.8
2.25
–
–
3.3
4.5
V
5.0
–
400
μA
Notes
VSNVS
VINSNVS
ISNVS
Operating Input Voltage
• Valid coin cell range
• Valid VIN
Operating load current
• VINMIN < VIN < VINMAX
PF0100
96
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 111. VSNVS electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise
noted.
Symbol
Parameter
Min
Typ
Max
Unit
-5.0%
-8.0%
3.0
1.0 - 1.8
7.0%
7.0%
-5.0%
-4.0%
3.0
1.0 - 1.8
5.0%
4.0%
VCOIN-0.04
-8.0%
–
1.0 - 1.8
VCOIN
7.0%
–
–
50
mV
μA
Notes
VSNVS DC, LDO
Output voltage
• 5.0 μA < ISNVS < 400 μA (OFF)
• 3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110
• VTL0/VTH < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]
VSNVS
• 5.0μA < ISNVS < 400 μA (ON)
• 3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110
• UVDET < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]
• 5.0 μA < ISNVS < 400 μA (Coin Cell mode)
• 2.84 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = 110
• 1.8 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = [000] - [101]
VSNVSDROP
Dropout voltage
• VIN = VCOIN = 2.85 V, VSNVSVOLT[2:0] = 110, ISNVS = 400 μA
V
(77)
Current limit
• MMPF0100
• VIN > VTH1, VSNVSVOLT[2:0] = 110
• VIN > VTH0, VSNVSVOLT[2:0] = 000 to 101
• VIN < VTL0, VSNVSVOLT[2:0] = 000 to 101
• MMPF0100A
• VIN > VTH1, VSNVSVOLT[2:0] = 110
• VIN > VTH0, VSNVSVOLT[2:0] = 000 to 101
• VIN < VTL0, VSNVSVOLT[2:0] = 000 to 101
750
500
480
–
–
–
5900
5900
3600
1100
500
480
–
–
–
6750
6750
4500
VTH0
VIN Threshold (coin cell powered to VIN powered) VIN going high with
valid coin cell
• VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101
2.25
2.40
2.55
VTL0
VIN threshold (VIN powered to coin cell powered) VIN going low with
valid coin cell
• VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101
2.20
2.35
2.50
VHYST1
VIN threshold hysteresis for VTH1-VTL1
5.0
–
–
mV
VHYST0
VIN threshold hysteresis for VTH0-VTL0
5.0
–
–
mV
Output voltage during crossover
• VSNVSVOLT[2:0] = 110
• VCOIN > 2.9 V
• Switch to LDO: VIN > 2.825 V, ISNVS = 100 μA
• LDO to Switch: VIN < 3.05 V, ISNVS = 100 μA
2.7
–
–
V
(80)
Turn-on time (load capacitor, 0.47 μF)
• VIN > UVDET to 90% of VSNVS
• VCOIN = 0.0 V, ISNVS = 5.0 μA
• VSNVSVOLT[2:0] = 000 to 110
–
–
24
ms
(78),(79)
VSNVSOSH
Start-up overshoot
• VSNVSVOLT[2:0] = 000 to 110
• ISNVS = 5.0 μA
• dVIN/dt = 50 mV/μs
–
40
70
mV
VSNVSLITR
Transient line response ISNVS = 75% of ISNVSMAX
• 3.2 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110
• 2.45 V < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]
–
–
32
22
–
–
mV
ISNVSLIM
VSNVSCROSS
V
V
VSNVS AC and transient
tONSNVS
PF0100
NXP Semiconductors
97
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 111. VSNVS electrical characteristics (continued)
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise
noted.
Symbol
Parameter
Min
Typ
Max
Unit
2.8
–
–
V
–
1.0
2.0
%
Operating input voltage
• Valid coin cell range
1.8
–
3.3
V
ISNVS
Operating load current
5.0
–
400
μA
RDSONSNVS
Internal switch RDS(on)
• VCOIN = 2.6 V
–
–
100
Ω
Notes
VSNVS AC and transient (continued)
VSNVSLOTR
Transient load response
• VSNVSVOLT[2:0] = 110
• 3.1 V (UVDETL)< VIN ≤ 4.5 V
• ISNVS = 75 to 750 μA
• VSNVSVOLT[2:0] = 000 to 101
• 2.45 V < VIN ≤ 4.5 V
• VTL0 > VIN, 1.8 V ≤ VCOIN ≤ 3.3 V
• ISNVS = 40 to 400 μA
• Refer to Figure 31
VSNVS DC, switch
VINSNVS
VTL1
VIN threshold (VIN powered to coin cell powered)
• VSNVSVOLT[2:0] = 110
2.725
2.90
3.00
V
VTH1
VIN threshold (coin cell powered to VIN powered)
• VSNVSVOLT[2:0] = 110
2.775
2.95
3.1
V
(80)
Notes
77. For 1.8 V ISNVS limited to 100 μA for VCOIN < 2.1 V
78.
The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tr1 time.
79.
80.
From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms.
During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. Though this is outside
the specified DC voltage level for the VDD_SNVS_IN pin of the i.MX 6, this momentary drop does not cause any malfunction. The i.MX 6’s RTC
continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching
back to the external crystal oscillator.
6.4.7.1
Coin cell battery backup
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the VIN
threshold (VTL1 and VTL0), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The
supply for internal logic and the VSNVS rail switches over to the LICELL pin when VIN goes below VTL1 or VTL0, even in the absence of
a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When system operation below VTL1 is required,
for systems not utilizing a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.0 V. A small capacitor should be
placed from LICELL to ground under all circumstances.
6.4.7.1.1
Coin cell charger control
The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for
rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable
through the VCOIN[2:0] bits on register COINCTL on Table 113. The coin cell charger voltage is programmable. In the on state, the
charger current is fixed at ICOINHI. In Sleep and Standby modes, the charger current is reduced to a typical 10 μA. In the off state, coin
cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging stops when VIN is below UVDET.
PF0100
98
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 112. Coin cell charger voltage
VCOIN[2:0]
VCOIN (V)(81)
000
2.50
001
2.70
010
2.80
011
2.90
100
3.00
101
3.10
110
3.20
111
3.30
Notes
81. Coin cell voltages selected based on the
type of LICELL used on the system.
Table 113. Register COINCTL - ADDR 0x1A
Name
VCOIN
COINCHEN
UNUSED
6.4.7.1.2
Bit #
R/W
Default
Description
2:0
R/W
0x00
Coin cell charger output voltage selection.
See Table 112 for all options selectable through
these bits.
3
R/W
0x00
Enable or disable the coin cell charger
7:4
–
0x00
unused
External components
Table 114. Coin cell charger external components
Component
Value
Units
100
nF
Typ
Unit
Voltage accuracy
100
mV
Coin cell charge current in on mode ICOINHI
60
μA
Current accuracy
30
%
LICELL bypass capacitor
6.4.7.1.3
Coin cell specifications
Table 115. Coin cell charger specifications
Parameter
PF0100
NXP Semiconductors
99
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Control interface I2C block description
6.5
The PF0100 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be
accomplished by reducing the drive strength of the I2C master via software. The i.MX6 I2C driver defaults to a 40 Ω drive strength. It is
recommended to use a drive strength of 80 Ω or higher to increase the edge times. Alternatively, this can be accomplished by using small
capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of
4.8 kΩ.
I2C device ID
6.5.1
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus
conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). Refer to 6.1.2 One time
programmability (OTP), page 21 for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general
call addressing. Note, when the TBB bits for the I2C slave address are written, the next access to the chip, must then use the new slave
address; these bits take affect right away.
I2C operation
6.5.2
The I2C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation
(exceptions to the standard are noted to be 7-bit only addressing and no support for general call addressing.) Timing diagrams, electrical
specifications, and further details can be found in the I2C specification, which is available for download at:
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte
is sent out unless a STOP command or NACK is received prior to completion.
The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains
the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.
Packet
Type
Device
Add ress
Reg ister Addre ss
7
Host SDA
0
START
Host can
also drive
another
Start instead
of Stop
Master Driven Data
( byte 0 )
7
7
0
0
0
STOP
R/W
A
C
K
Slave SDA
A
C
K
A
C
K
Figure 33. I2C write example
Packet
Type
Device
Address
23
Host SDA
START
Register Address
16
15
Device Address
8
7
0
START
0
NA
CK
1
STOP
R/W
R/W
Slave SDA
Host can also
drive another
Start instead of
Stop
PMIC Driven Data
A
C
K
A
C
K
A
C
K
7
0
Figure 34. I2C read example
PF0100
100
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5.3
Interrupt handling
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving
the INTB pin low.
Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each interrupt can be
cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this also causes the INTB pin to go high. If there are multiple
interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor clears an
existing interrupt bit, the INTB pin remains low.
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB
pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling
for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any
interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the
INTB pin goes low after unmasking.
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are
read only, and not latched or clearable.
Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before
an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 116. Due to the
asynchronous nature of the debounce timer, the effective debounce time can vary slightly.
6.5.4
Interrupt bit summary
Table 116 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer
to the related chapters.
Table 116. Interrupt, mask and sense bits
Interrupt
Mask
Sense
Purpose
Trigger
Debounce time (ms)
Low input voltage detect
Sense is 1 if below 2.80 V threshold
H to L
3.9(82)
Power on button event
H to L
31.25(82)
Sense is 1 if PWRON is high.
L to H
31.25
LOWVINI
LOWVINM
LOWVINS
PWRONI
PWRONM
PWRONS
THERM110
THERM110M
THERM110S
Thermal 110 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM120
THERM120M
THERM120S
Thermal 120 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM125
THERM125M
THERM125S
Thermal 125 °C threshold
Sense is 1 if above threshold
Dual
3.9
THERM130
THERM130M
THERM130S
Thermal 130 °C threshold
Sense is 1 if above threshold
Dual
3.9
SW1AFAULTI
SW1AFAULTM
SW1AFAULTS
Regulator 1A overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW1BFAULTI
SW1BFAULTM
SW1BFAULTS
Regulator 1B overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW1CFAULTI
SW1CFAULTM
SW1CFAULTS
Regulator 1C overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW2FAULTI
SW2FAULTM
SW2FAULTS
Regulator 2 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW3AFAULTI
SW3AFAULTM
SW3AFAULTS
Regulator 3A overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW3BFAULTI
SW3BFAULTM
SW3BFAULTS
Regulator 3B overcurrent limit
Sense is 1 if above current limit
L to H
8.0
SW4FAULTI
SW4FAULTM
SW4FAULTS
Regulator 4 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
PF0100
NXP Semiconductors
101
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 116. Interrupt, mask and sense bits (continued)
Interrupt
Mask
Sense
Purpose
Trigger
Debounce time (ms)
SWBSTFAULTI
SWBSTFAULTM
SWBSTFAULTS
SWBST overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN1FAULTI
VGEN1FAULTM
VGEN1FAULTS
VGEN1 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN2FAULTI
VGEN2FAULTM
VGEN2FAULTS
VGEN2 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN3FAULTI
VGEN3FAULTM
VGEN3FAULTS
VGEN3 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN4FAULTI
VGEN4FAULTM
VGEN4FAULTS
VGEN4 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN5FAULTI
VGEN5FAULTM
VGEN1FAULTS
VGEN5 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
VGEN6FAULTI
VGEN6FAULTM
VGEN6FAULTS
VGEN6 overcurrent limit
Sense is 1 if above current limit
L to H
8.0
OTP_ECCI
OTP_ECCM
OTP_ECCS
1 or 2 bit error detected in OTP registers
Sense is 1 if error detected
L to H
8.0
Notes
82. Debounce timing for the falling edge can be extended with PWRONDBNC[1:0].
A full description of all interrupt, mask, and sense registers is provided in Tables 117 to 128.
Table 117. Register INTSTAT0 - ADDR 0x05
Name
Bit #
R/W
Default
PWRONI
0
R/W1C
0
Power on interrupt bit
LOWVINI
1
R/W1C
0
Low-voltage interrupt bit
THERM110I
2
R/W1C
0
110 °C Thermal interrupt bit
THERM120I
3
R/W1C
0
120 °C Thermal interrupt bit
THERM125I
4
R/W1C
0
125 °C Thermal interrupt bit
THERM130I
5
R/W1C
0
130 °C Thermal interrupt bit
7:6
–
00
unused
UNUSED
Description
Table 118. Register INTMASK0 - ADDR 0x06
Name
Bit #
R/W
Default
PWRONM
0
R/W1C
1
Power on interrupt mask bit
LOWVINM
1
R/W1C
1
Low-voltage interrupt mask bit
THERM110M
2
R/W1C
1
110 °C thermal interrupt mask bit
THERM120M
3
R/W1C
1
120 °C thermal interrupt mask bit
THERM125M
4
R/W1C
1
125 °C thermal interrupt mask bit
THERM130M
5
R/W1C
1
130 °C thermal interrupt mask bit
7:6
–
00
unused
UNUSED
Description
PF0100
102
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 119. Register INTSENSE0 - ADDR 0x07
Name
Bit #
R/W
Default
Description
PWRONS
0
R
0
Power on sense bit
• 0 = PWRON low
• 1 = PWRON high
LOWVINS
1
R
0
Low-voltage sense bit
• 0 = VIN > 2.8 V
• 1 = VIN ≤ 2.8 V
THERM110S
2
R
0
110 °C thermal sense bit
• 0 = Below threshold
• 1 = Above threshold
THERM120S
3
R
0
120 °C thermal sense bit
• 0 = Below threshold
• 1 = Above threshold
THERM125S
4
R
0
125 °C thermal sense bit
• 0 = Below threshold
• 1 = Above threshold
THERM130S
5
R
0
130 °C thermal sense bit
• 0 = Below threshold
• 1 = Above threshold
UNUSED
6
–
0
unused
VDDOTPS
7
R
00
Additional VDDOTP voltage sense pin
• 0 = VDDOTP grounded
• 1 = VDDOTP to VCOREDIG or greater
Table 120. Register INTSTAT1 - ADDR 0x08
Name
Bit #
R/W
Default
Description
SW1AFAULTI
0
R/W1C
0
SW1A overcurrent interrupt bit
SW1BFAULTI
1
R/W1C
0
SW1B overcurrent interrupt bit
SW1CFAULTI
2
R/W1C
0
SW1C overcurrent interrupt bit
SW2FAULTI
3
R/W1C
0
SW2 overcurrent interrupt bit
SW3AFAULTI
4
R/W1C
0
SW3A overcurrent interrupt bit
SW3BFAULTI
5
R/W1C
0
SW3B overcurrent interrupt bit
SW4FAULTI
6
R/W1C
0
SW4 overcurrent interrupt bit
UNUSED
7
–
0
unused
Table 121. Register INTMASK1 - ADDR 0x09
Name
Bit #
R/W
Default
Description
SW1AFAULTM
0
R/W
1
SW1A overcurrent interrupt mask bit
SW1BFAULTM
1
R/W
1
SW1B overcurrent interrupt mask bit
SW1CFAULTM
2
R/W
1
SW1C overcurrent interrupt mask bit
SW2FAULTM
3
R/W
1
SW2 overcurrent interrupt mask bit
SW3AFAULTM
4
R/W
1
SW3A overcurrent interrupt mask bit
SW3BFAULTM
5
R/W
1
SW3B overcurrent interrupt mask bit
PF0100
NXP Semiconductors
103
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 121. Register INTMASK1 - ADDR 0x09 (continued)
Name
Bit #
R/W
Default
Description
SW4FAULTM
6
R/W
1
SW4 overcurrent interrupt mask bit
UNUSED
7
–
0
unused
Table 122. Register INTSENSE1 - ADDR 0x0A
Name
Bit #
R/W
Default
Description
SW1AFAULTS
0
R
0
SW1A overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW1BFAULTS
1
R
0
SW1B overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW1CFAULTS
2
R
0
SW1C overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW2FAULTS
3
R
0
SW2 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW3AFAULTS
4
R
0
SW3A overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW3BFAULTS
5
R
0
SW3B overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
SW4FAULTS
6
R
0
SW4 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
UNUSED
7
–
0
unused
Table 123. Register INTSTAT3 - ADDR 0x0E
Name
SWBSTFAULTI
UNUSED
OTP_ECCI
Bit #
R/W
Default
0
R/W1C
0
6:1
–
0x00
7
R/W1C
0
Description
SWBST overcurrent limit interrupt bit
unused
OTP error interrupt bit
Table 124. Register INTMASK3 - ADDR 0x0F
Name
SWBSTFAULTM
UNUSED
OTP_ECCM
Bit #
R/W
Default
0
R/W
1
6:1
–
0x00
7
R/W
1
Description
SWBST overcurrent limit interrupt mask bit
unused
OTP error interrupt mask bit
PF0100
104
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 125. Register INTSENSE3 - ADDR 0x10
Name
SWBSTFAULTS
UNUSED
OTP_ECCS
Bit #
R/W
Default
0
R
0
6:1
–
0x00
7
R
0
Description
SWBST overcurrent limit sense bit
• 0 = Normal operation
• 1 = Above current limit
unused
OTP error sense bit
• 0 = No error detected
• 1 = OTP error detected
Table 126. Register INTSTAT4 - ADDR 0x11
Name
Bit #
R/W
Default
VGEN1FAULTI
0
R/W1C
0
VGEN1 overcurrent interrupt bit
VGEN2FAULTI
1
R/W1C
0
VGEN2 overcurrent interrupt bit
VGEN3FAULTI
2
R/W1C
0
VGEN3 overcurrent interrupt bit
VGEN4FAULTI
3
R/W1C
0
VGEN4 overcurrent interrupt bit
VGEN5FAULTI
4
R/W1C
0
VGEN5 overcurrent interrupt bit
VGEN6FAULTI
5
R/W1C
0
VGEN6 overcurrent interrupt bit
7:6
–
00
unused
UNUSED
Description
Table 127. Register INTMASK4 - ADDR 0x12
Name
Bit #
R/W
Default
VGEN1FAULTM
0
R/W
1
VGEN1 overcurrent interrupt mask bit
VGEN2FAULTM
1
R/W
1
VGEN2 overcurrent interrupt mask bit
VGEN3FAULTM
2
R/W
1
VGEN3 overcurrent interrupt mask bit
VGEN4FAULTM
3
R/W
1
VGEN4 overcurrent interrupt mask bit
VGEN5FAULTM
4
R/W
1
VGEN5 overcurrent interrupt mask bit
VGEN6FAULTM
5
R/W
1
VGEN6 overcurrent interrupt mask bit
7:6
–
00
unused
UNUSED
Description
Table 128. Register INTSENSE4 - ADDR 0x13
Name
Bit #
R/W
Default
Description
VGEN1FAULTS
0
R
0
VGEN1 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
VGEN2FAULTS
1
R
0
VGEN2 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
VGEN3FAULTS
2
R
0
VGEN3 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
VGEN4FAULTS
3
R
0
VGEN4 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
PF0100
NXP Semiconductors
105
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 128. Register INTSENSE4 - ADDR 0x13 (continued)
Name
Bit #
R/W
Default
VGEN5FAULTS
4
R
0
VGEN5 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
VGEN6FAULTS
5
R
0
VGEN6 overcurrent sense bit
• 0 = Normal operation
• 1 = Above current limit
7:6
–
00
unused
UNUSED
6.5.5
Description
Specific registers
6.5.5.1
IC and version identification
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 129 to 131.
Table 129. Register DEVICEID - ADDR 0x00
Name
Bit #
R/W
Default
Description
DEVICEID
3:0
R
0x00
Die version.
• 0000 = PF0100
UNUSED
7:4
–
0x01
unused
Table 130. Register SILICON REV- ADDR 0x03
Name
Bit #
METAL_LAYER_REV
FULL_LAYER_REV
3:0
7:4
R/W
Default
R
R
Description
0x00
Represents the metal mask revision
• Pass 0.0 = 0000
•.
•.
• Pass 0.15 = 1111
0x01
Represents the full mask revision
• Pass 1.0 = 0001
•.
•.
• Pass 15.0 = 1111
Table 131. Register FABID - ADDR 0x04
Name
Bit #
R/W
Default
Description
FIN
1:0
R
0x00
Allows for characterizing different options within
the same reticule
FAB
3:2
R
0x00
Represents the wafer manufacturing facility
Unused
7:0
R
0x00
unused
6.5.5.2
Embedded memory
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0],
MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The
contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell
backup.
PF0100
106
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 132. Register MEMA ADDR 0x1C
Name
MEMA
Bit #
R/W
Default
7:0
R/W
0
Description
Memory bank A
Table 133. Register MEMB ADDR 0x1D
Name
MEMB
Bit #
R/W
Default
7:0
R/W
0
Description
Memory bank B
Table 134. Register MEMC ADDR 0x1E
Name
MEMC
Bit #
R/W
Default
7:0
R/W
0
Description
Memory bank C
Table 135. Register MEMD ADDR 0x1F
Name
MEMD
6.5.6
Bit #
R/W
Default
7:0
R/W
0
Description
Memory bank D
Register bitmap
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,
the functional registers are the same, but the extended registers are different. To access registers in Table 137. Extended page 1, page
111, one must first write 0x01 to the page register at address 0x7F, and to access registers in Table 138. Extended Page 2, page 115,
one must first write 0x02 to the page register at address 0x7F. To access Table 136. Functional page, page 108 from one of the extended
pages, no write to the page register is necessary.
Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect.
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:
Name: Name of the bit.
Bit #: The bit location in the register (7-0)
R/W: Read / Write access and control
• R is read-only access
• R/W is read and write access
• RW1C is read and write access with write 1 to clear
Reset: Reset signals are color coded based on the following legend.
Bits reset by SC and VCOREDIG_PORB
Bits reset by PWRON or loaded default or OTP configuration
Bits reset by DIGRESETB
Bits reset by PORB or RESETBMCU
Bits reset by VCOREDIG_PORB
Bits reset by POR or OFFB
Default: The value after reset, as noted in the default column of the memory map.
• Fixed defaults are explicitly declared as 0 or 1.
• “X” corresponds to read/write bits which are initialized at start-up, based on the OTP fuse settings or default if VDDOTP = 1.5 V. Bits
are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits which may have other dependencies.
For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the
interrupts.
PF0100
NXP Semiconductors
107
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5.6.1
Register map
Table 136. Functional page
BITS[7:0]
Add
Register name
R/W
Default
00
DeviceID
R
8'b0001_0000
7
6
5
4
–
–
–
–
0
0
0
1
3
2
04
05
06
07
08
09
0A
0E
0F
10
11
12
13
1A
SILICONREVID
FABID
INTSTAT0
INTMASK0
INTSENSE0
INTSTAT1
INTMASK1
INTSENSE1
INTSTAT3
INTMASK3
INTSENSE3
INTSTAT4
INTMASK4
INTSENSE4
COINCTL
R
R
RW1C
R/W
R
RW1C
R/W
R
RW1C
R/W
R
RW1C
R/W
R
R/W
0
DEVICE ID [3:0]
0
0
FULL_LAYER_REV[3:0]
03
1
0
0
METAL_LAYER_REV[3:0]
8'b0001_0000
X
X
X
X
X
X
X
–
–
–
–
0
0
0
0
0
0
0
0
–
–
THERM130I
THERM125I
THERM120I
THERM110I
LOWVINI
PWRONI
0
0
0
0
0
0
0
0
–
–
THERM130M
THERM125M
THERM120M
THERM110M
LOWVINM
PWRONM
0
0
1
1
1
1
1
1
VDDOTPS
RSVD
THERM130S
THERM125S
THERM120S
THERM110S
LOWVINS
PWRONS
0
0
x
x
x
x
x
x
–
SW4FAULTI
SW3BFAULTI
SW3AFAULTI
SW2FAULTI
SW1CFAULTI
SW1BFAULTI
SW1AFAULTI
0
0
0
0
0
0
0
0
–
SW4FAULTM
SW3BFAULTM
SW3AFAULTM
SW2FAULTM
SW1CFAULTM
SW1BFAULTM
SW1AFAULTM
0
1
1
1
1
1
1
1
–
SW4FAULTS
SW3BFAULTS
SW3AFAULTS
SW2FAULTS
SW1CFAULTS
SW1BFAULTS
SW1AFAULTS
0
x
x
x
x
x
x
x
OTP_ECCI
–
–
–
–
–
–
SWBSTFAULTI
0
0
0
0
0
0
0
0
OTP_ECCM
–
–
–
–
–
–
SWBSTFAULTM
1
0
0
0
0
0
0
1
OTP_ECCS
–
–
–
–
–
–
SWBSTFAULTS
0
0
0
0
0
0
0
x
–
–
VGEN6FAULTI
VGEN5FAULTI
VGEN4FAULTI
VGEN3FAULTI
VGEN2FAULTI
VGEN1FAULTI
0
0
0
0
0
0
0
0
–
–
VGEN6
FAULTM
VGEN5
FAULTM
VGEN4
FAULTM
VGEN3
FAULTM
VGEN2
FAULTM
VGEN1
FAULTM
0
0
1
1
1
1
1
1
–
–
VGEN6
FAULTS
VGEN5
FAULTS
VGEN4
FAULTS
VGEN3
FAULTS
VGEN2
FAULTS
VGEN1
FAULTS
0
0
x
x
x
x
x
x
–
–
–
–
COINCHEN
0
0
0
0
0
FAB[1:0]
X
FIN[1:0]
8'b0000_0000
8'b0000_0000
8'b0011_1111
8'b00xx_xxxx
8'b0000_0000
8'b0111_1111
8'b0xxx_xxxx
8'b0000_0000
8'b1000_0001
8'b0000_000x
8'b0000_0000
8'b0011_1111
8'b00xx_xxxx
VCOIN[2:0]
8'b0000_0000
0
0
0
PF0100
108
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 136. Functional page (continued)
BITS[7:0]
Add
Register name
R/W
Default
1B
PWRCTL
R/W
8'b0001_0000
7
6
REGSCPEN
STANDBYINV
0
0
5
4
3
STBYDLY[1:0]
0
2
PWRONBDBNC[1:0]
1
1
0
PWRONRSTEN
RESTARTEN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
x
x
x
x
MEMA[7:0]
1C
MEMA
R/W
8'b0000_0000
0
0
0
0
MEMB[7:0]
1D
MEMB
R/W
8'b0000_0000
0
0
0
0
MEMC[7:0]
1E
MEMC
R/W
8'b0000_0000
0
0
0
0
MEMD[7:0]
1F
20
21
22
23
MEMD
SW1ABVOLT
R/W
R/W/M
SW1ABSTBY
SW1ABOFF
SW1ABMODE
R/W
R/W
R/W
8'b0000_0000
0
0
2E
2F
30
31
SW1ABCONF
SW1CVOLT
SW1CSTBY
SW1COFF
SW1CMODE
R/W
R/W
R/W
R/W
R/W
–
–
0
0
–
–
0
0
–
–
0
0
x
x
–
–
SW1ABOMODE
–
0
0
0
0
SW1CCONF
R/W
SW1AB[5:0]
x
x
SW1ABSTBY[5:0]
x
x
R/W
R/W
0
0
0
SW1ABFREQ[1:0]
–
SW1ABILIM
0
x
x
0
0
x
x
x
x
x
x
x
x
x
0
R/W
1
–
–
0
0
–
–
0
0
–
–
0
0
x
–
–
SW1COMODE
–
0
0
0
0
SW1C[5:0]
8'b00xx_xxxx
x
x
x
SW1CSTBY[5:0]
8'b00xx_xxxx
x
x
x
x
SW1COFF[5:0]
8'b00xx_xxxx
x
x
x
1
0
SW1CMODE[3:0]
8'b0000_1000
SW1CPHASE[1:0]
0
0
–
SW1CILIM
x
0
0
x
x
x
x
x
x
x
x
x
SW1CFREQ[1:0]
8'bxx00_xx00
x
0
0
x
SW2[6:0]
8'b0xxx_xxxx
x
x
x
x
SW2STBY[6:0]
8'b0xxx_xxxx
x
x
x
–
SW2OFF
SW1ABMODE[3:0]
8'bxx00_xx00
0
37
x
SW1BAPHASE[1:0]
–
SW2STBY
x
8'b0000_1000
0
36
x
SW1ABOFF[5:0]
–
SW2VOLT
x
8'b00xx_xxxx
x
35
x
8'b00xx_xxxx
SW1CDVSSPEED[1:0]
32
0
8'b00xx_xxxx
SW1ABDVSSPEED[1:0]
24
0
x
SW2OFF[6:0]
8'b0xxx_xxxx
0
x
x
x
x
PF0100
NXP Semiconductors
109
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 136. Functional page (continued)
BITS[7:0]
Add
Register name
R/W
Default
38
SW2MODE
R/W
8'b0000_1000
7
6
5
4
–
–
SW2OMODE
–
0
0
0
0
SW2DVSSPEED[1:0]
39
SW2CONF
R/W
R/W
R/W
x
0
1
R/W
SW3AMODE
R/W
x
R/W
x
x
x
x
x
R/W
x
x
x
SW3AOMODE
–
0
0
0
SW3APHASE[1:0]
x
1
0
R/W
x
x
x
x
x
x
46
SW3BMODE
R/W
R/W
SW3BCONF
R/W
x
x
x
R/W
–
–
SW3BOMODE
–
0
0
0
0
SW3BPHASE[1:0]
x
1
0
R/W
4D
SW4MODE
R/W
R/W
x
SW4CONF
R/W
x
x
x
SW3AMODE[3:0]
1
0
0
0
–
SW3AILIM
x
0
0
x
x
x
x
x
x
x
x
x
SW3AFREQ[1:0]
x
x
x
x
SW3BMODE[3:0]
1
0
0
0
–
SW3BILIM
x
0
0
x
x
x
x
x
x
x
x
x
SW3BFREQ[1:0]
x
x
x
x
SW4STBY[6:0]
x
x
x
x
SW4OFF[6:0]
8'b0xxx_xxxx
0
x
x
x
–
–
SW4OMODE
–
0
0
0
0
x
SW4MODE[3:0]
8'b0000_1000
SW4DVSSPEED[1:0]
4E
x
SW4[6:0]
–
SW4OFF
x
8'b0xxx_xxxx
0
4C
x
8'b0xxx_xxxx
–
SW4STBY
x
8'bxx10_xx00
0
4B
x
8'b0000_1000
–
SW4VOLT
x
SW3BOFF[6:0]
0
x
4A
x
8'b0xxx_xxxx
SW3BDVSSPEED[1:0]
47
x
SW3BSTBY[6:0]
–
SW3BOFF
x
8'b0xxx_xxxx
0
45
0
SW3B[6:0]
–
SW3BSTBY
0
8'b0xxx_xxxx
0
44
x
SW3AOFF[6:0]
–
SW3BVOLT
x
8'bxx10_xx00
x
43
SW2ILIM
SW3ASTBY[6:0]
SW3ADVSSPEED[1:0]
SW3ACONF
–
8'b0000_1000
0
40
0
8'b0xxx_xxxx
0
3F
0
8'b0xxx_xxxx
0
SW3AOFF
0
SW3A[6:0]
–
3E
1
SW2FREQ[1:0]
–
SW3ASTBY
0
8'b0xxx_xxxx
0
3D
1
SW2MODE[3:0]
SW2PHASE[1:0]
–
SW3AVOLT
2
8'bxx01_xx00
x
3C
3
1
SW4PHASE[1:0]
0
SW4FREQ[1:0]
0
0
–
SW4ILIM
0
0
8'bxx11_xx00
x
x
1
1
x
x
PF0100
110
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 136. Functional page (continued)
BITS[7:0]
Add
Register name
R/W
Default
66
SWBSTCTL
R/W
8'b0xx0_10xx
7
6
SWBST1STBYMODE[1:0]
–
6A
6B
6C
6D
6E
6F
70
71
7F
VREFDDRCTL
VSNVSCTL
VGEN1CTL
VGEN2CTL
VGEN3CTL
VGEN4CTL
VGEN5CTL
VGEN6CTL
Page Register
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
5
4
3
2
–
SWBST1MODE[1:0]
1
0
SWBST1VOLT[1:0]
0
x
x
0
1
0
x
x
–
–
–
VREFDDREN
–
–
–
–
0
0
0
x
0
0
0
0
–
–
–
–
–
0
0
0
0
0
0
–
VGEN1LPWR
VGEN1STBY
VGEN1EN
0
0
0
x
x
x
–
VGEN2LPWR
VGEN2STBY
VGEN2EN
0
0
0
x
–
VGEN3LPWR
VGEN3STBY
VGEN3EN
0
0
0
x
–
VGEN4LPWR
VGEN4STBY
VGEN4EN
0
0
0
x
–
VGEN5LPWR
VGEN5STBY
VGEN5EN
0
0
0
x
–
VGEN6LPWR
VGEN6STBY
VGEN6EN
0
0
0
x
–
–
–
0
0
0
8'b000x_0000
VSNVSVOLT[2:0]
8'b0000_0xxx
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
VGEN1[3:0]
8'b000x_xxxx
VGEN2[3:0]
8'b000x_xxxx
x
x
VGEN3[3:0]
8'b000x_xxxx
x
x
VGEN4[3:0]
8'b000x_xxxx
x
x
VGEN5[3:0]
8'b000x_xxxx
x
x
x
x
VGEN6[3:0]
8'b000x_xxxx
PAGE[4:0]
8'b0000_0000
0
0
0
Table 137. Extended page 1
BITS[7:0]
Address
80
84
8A
8B
8C
Register name
OTP FUSE READ
EN
OTP LOAD MASK
OTP ECC SE1
OTP ECC SE2
OTP ECC DE1
TYPE
R/W
R/W
R
R
R
Default
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
OTP FUSE
READ EN
0
0
0
x
x
x
x
0
START
RL PWBRTN
FORCE PWRCTL
RL PWRCTL
RL OTP
RL OTP ECC
RL OTP FUSE
RL TRIM
FUSE
0
0
0
0
0
0
0
0
–
–
–
ECC5_SE
ECC4_SE
ECC3_SE
ECC2_SE
ECC1_SE
x
x
x
0
0
0
0
0
–
–
–
ECC10_SE
ECC9_SE
ECC8_SE
ECC7_SE
ECC6_SE
x
x
x
0
0
0
0
0
–
–
–
ECC5_DE
ECC4_DE
ECC3_DE
ECC2_DE
ECC1_DE
x
x
x
0
0
0
0
0
8'b000x_xxx0
8'b0000_0000
8'bxxx0_0000
8'bxxx0_0000
8'bxxx0_0000
PF0100
NXP Semiconductors
111
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 137. Extended page 1 (continued)
BITS[7:0]
Address
8D
A0
Register name
OTP ECC DE2
OTP SW1AB VOLT
TYPE
R
R/W
Default
7
6
5
4
3
2
1
0
–
–
–
ECC10_DE
ECC9_DE
ECC8_DE
ECC7_DE
ECC6_DE
x
x
x
0
0
0
0
0
–
–
0
0
x
x
x
X
x
8'bxxx0_0000
SW1AB_VOLT[5:0]
8'b00xx_xxxx
x
x
x
–
A1
A2
A8
OTP SW1AB SEQ
R/W
OTP SW1AB
CONFIG
R/W
OTP SW1C VOLT
R/W
SW1AB_SEQ[4:0]
8'b000x_xxXx
0
0
0
x
x
–
–
–
–
SW1_CONFIG[1:0]
0
0
0
0
x
–
–
0
0
AA
OTP SW1C SEQ
R/W
OTP SW1C
CONFIG
R/W
OTP SW2 VOLT
R/W
AD
AE
OTP SW2 SEQ
OTP SW2 CONFIG
R/W
R/W
B1
B2
OTP SW3A VOLT
OTP SW3A SEQ
R/W
R/W
OTP SW3A
CONFIG
R/W
x
x
OTP SW3B VOLT
R/W
B5
B6
OTP SW3B SEQ
OTP SW3B
CONFIG
R/W
R/W
x
x
x
x
x
x
SW1C_SEQ[4:0]
8'b000x_xxxx
0
0
0
x
x
x
x
–
–
–
–
–
–
SW1C_FREQ[1:0]
0
0
0
0
0
0
x
x
x
x
x
x
8'b0000_00xx
SW2_VOLT[5:0]
8'b0xxx_xxxx
0
x
–
–
x
x
x
0
0
0
x
x
x
x
–
–
–
–
–
–
SW2_FREQ[1:0]
0
0
0
0
0
0
x
x
x
x
x
x
x
SW2_SEQ[4:0]
8'b000x_xxxx
8'b0000_00xx
SW3A_VOLT[6:0]
8'b0xxx_xxxx
0
x
x
x
x
–
–
0
0
0
x
x
–
–
–
–
SW3_CONFIG[1:0]
SW3A_FREQ[1:0]
0
0
0
0
x
x
x
x
x
x
x
x
x
SW3A_SEQ[4:0]
8'b000x_xxxx
x
8'b0000_xxxx
–
B4
x
SW1C_VOLT[5:0]
–
B0
x
8'b00xx_xxxx
–
AC
SW1AB_FREQ[1:0]
8'b0000_xxxx
–
A9
x
SW3B_VOLT[6:0]
8'b0xxx_xxxx
0
x
x
x
x
–
–
0
0
0
x
x
x
–
–
–
–
–
–
0
0
0
0
0
0
SW3B_SEQ[4:0]
8'b000x_xxxx
SW3B_CONFIG[1:0]
8'b0000_00xx
x
x
PF0100
112
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 137. Extended page 1 (continued)
BITS[7:0]
Address
Register name
TYPE
Default
7
6
5
4
B9
BA
BC
BD
C0
C4
C8
C9
CC
CD
D0
D1
D4
D5
OTP SW4 VOLT
OTP SW4 SEQ
OTP SW4 CONFIG
OTP SWBST VOLT
OTP SWBST SEQ
OTP VSNVS VOLT
R/W
R/W
R/W
R/W
R/W
R/W
OTP VREFDDR
SEQ
R/W
OTP VGEN1 VOLT
R/W
OTP VGEN1 SEQ
OTP VGEN2 VOLT
OTP VGEN2 SEQ
OTP VGEN3 VOLT
OTP VGEN3 SEQ
OTP VGEN4 VOLT
OTP VGEN4 SEQ
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
x
x
x
x
SW4_VOLT[6:0]
–
B8
3
8'b00xx_xxxx
0
0
x
x
x
–
–
–
0
0
0
x
x
x
x
–
–
–
VTT
–
–
SW4_FREQ[1:0]
0
0
0
x
x
x
x
SW4_SEQ[4:0]
8'b000x_xxxx
8'b000x_xxxx
–
–
–
–
–
–
0
0
0
0
0
0
–
–
–
0
0
0
0
x
–
–
–
–
–
0
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
SWBST_VOLT[1:0]
8'b0000_00xx
x
x
x
x
SWBST_SEQ[4:0]
8'b0000_xxxx
x
VSNVS_VOLT[2:0]
8'b0000_0xxx
0
x
x
x
x
VREFDDR_SEQ[4:0]
8'b000x_x0xx
x
0
VGEN1_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN1_SEQ[4:0]
8'b000x_xxxx
x
x
VGEN2_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN2_SEQ[4:0]
8'b000x_xxxx
x
x
VGEN3_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN3_SEQ[4:0]
8'b000x_xxxx
x
x
VGEN4_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN4_SEQ[4:0]
8'b000x_xxxx
x
x
x
PF0100
NXP Semiconductors
113
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 137. Extended page 1 (continued)
BITS[7:0]
Address
D8
D9
DC
DD
E0
E1
E2
E3
E4 (83)
E5
E6
E7
E8
F0
F1
F4
Register name
OTP VGEN5 VOLT
OTP VGEN5 SEQ
OTP VGEN6 VOLT
OTP VGEN6 SEQ
OTP PU CONFIG1
OTP PU CONFIG2
OTP PU CONFIG3
OTP PU CONFIG
XOR
OTP FUSE POR1
OTP FUSE POR1
OTP FUSE POR1
OTP FUSE POR
XOR
OTP PWRGD EN
OTP EN ECCO
OTP EN ECC1
OTP SPARE2_4
TYPE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R/W
R/W
R/W
R
R/W/M
R/W
R/W
R/W
Default
7
6
5
4
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
–
0
0
0
0
–
–
–
0
0
0
x
–
–
–
PWRON_
CFG1
0
0
0
x
–
–
–
PWRON_
CFG2
0
0
0
x
3
2
1
0
VGEN5_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN5_SEQ[4:0]
8'b000x_xxxx
x
x
VGEN6_VOLT[3:0]
8'b0000_xxxx
x
x
x
x
x
x
VGEN6_SEQ[4:0]
8'b000x_xxxx
8'b000x_xxxx
8'b000x_xxxx
x
x
SWDVS_CLK1[1:0]
x
SEQ_CLK_SPEED1[1:0]
x
x
SWDVS_CLK2[1:0]
x
x
SEQ_CLK_SPEED2[1:0]
x
x
x
–
–
–
PWRON_
CFG3
0
0
0
x
–
–
–
PWRON_CFG
_XOR
0
0
0
x
x
x
x
x
TBB_POR
SOFT_FUSE_
POR
–
–
–
–
FUSE_POR1
–
0
0
0
0
0
0
x
0
RSVD
RSVD
–
–
–
–
FUSE_POR2
–
8'b000x_xxxx
8'b000x_xxxx
8'b0000_00x0
SWDVS_CLK3[1:0]
x
SEQ_CLK_SPEED3[1:0]
x
x
SWDVS_CLK3_XOR
x
SEQ_CLK_SPEED_XOR
8'b0000_00x0
0
0
0
0
0
0
x
0
RSVD
RSVD
–
–
–
–
FUSE_POR3
–
0
0
0
0
0
0
x
0
RSVD
RSVD
–
–
–
–
FUSE_POR_X
OR
–
0
0
0
0
0
0
x
0
–
–
–
–
–
–
–
OTP_PG_EN
0
0
0
0
0
0
x
0
–
–
–
EN_ECC_
BANK5
EN_ECC_
BANK4
EN_ECC_
BANK3
EN_ECC_
BANK2
EN_ECC_
BANK1
0
0
0
x
x
x
x
x
–
–
–
EN_ECC_
BANK10
EN_ECC_
BANK9
EN_ECC_
BANK8
EN_ECC_
BANK7
EN_ECC_
BANK6
0
0
0
x
x
x
x
x
–
–
–
–
0
0
0
0
x
x
x
x
8'b0000_00x0
8'b0000_00x0
8'b0000_000x
8'b000x_xxxx
8'b000x_xxxx
RSVD
8'b0000_xxxx
PF0100
114
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 137. Extended page 1 (continued)
BITS[7:0]
Address
F5
F6
F7
FE
FF
Register name
OTP SPARE4_3
OTP SPARE6_2
OTP SPARE7_1
OTP DONE
OTP I2C ADDR
TYPE
R/W
R/W
R/W
R/W
R/W
Default
7
6
5
4
3
2
1
0
–
–
–
–
–
0
0
0
0
0
x
–
–
–
–
–
–
0
0
0
0
0
0
x
x
–
–
–
–
–
–
–
RSVD
0
0
0
0
0
x
x
x
RSVD
8'b0000_0xxx
x
x
RSVD
8'b0000_00xx
8'b0000_0xxx
–
–
–
–
–
–
–
OTP_DONE
0
0
0
0
0
0
0
x
–
–
–
–
I2C_SLV
ADDR[3]
0
0
0
0
1
8'b0000_000x
8'b0000_0xxx
I2C_SLV ADDR[2:0]
x
x
x
Notes
83. In the MMPF0100 FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1
for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In MMPF0100A, the XOR function is removed. It is
required to set all of the FUSE_PORx bits to be able to load the fuses.
Table 138. Extended Page 2
BITS[7:0]
Address
81
Register name
SW1AB PWRSTG
TYPE
R/W
Default
7
6
5
4
3
2
1
0
RSVD
RSVD
RSVD
RSVD
RSVD
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
RSVD
RSVD
RSVD
RSVD
RSVD
1
1
1
1
1
RSVD
RSVD
RSVD
RSVD
RSVD
1
1
1
1
1
RSVD
RSVD
RSVD
RSVD
RSVD
1
1
1
1
1
RSVD
RSVD
RSVD
RSVD
RSVD
1
1
1
1
1
FSLEXT_
THERM_
DISABLE
PWRGD_
SHDWN_
DISABLE
RSVD
RSVD
RSVD
0
0
1
1
1
1
1
1
–
–
–
–
–
–
PWRGD_EN
OTP_
SHDWN_EN
0
0
0
0
0
0
0
1
0
0
0
SW1AB_PWRSTG[2:0]
8'b1111_1111
PWRSTGRSVD
82
83
84
85
86
87
88
8D
PWRSTG RSVD
SW1C PWRSTG
SW2 PWRSTG
SW3A PWRSTG
SW3B PWRSTG
SW4 PWRSTG
PWRCTRL OTP
CTRL
I2C WRITE
ADDRESS TRAP
R
R
R
R
R
R
R/W
8'b0000_0000
SW1C_PWRSTG[2:0]
8'b1111_1111
1
1
1
SW2_PWRSTG[2:0]
8'b1111_1111
1
1
1
SW3A_PWRSTG[2:0]
8'b1111_1111
1
1
1
SW3B_PWRSTG[2:0]
8'b1111_1111
8'b0111_1111
1
1
1
SW4_PWRSTG[2:0]
8'b0000_0001
I2C_WRITE_ADDRESS_TRAP[7:0]
R/W
8'b0000_0000
0
0
0
0
0
PF0100
NXP Semiconductors
115
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 138. Extended Page 2 (continued)
BITS[7:0]
Address
8E
Register name
I2C TRAP PAGE
TYPE
R/W
Default
7
6
5
LET_IT_ ROLL
RSVD
RSVD
0
0
0
4
3
2
1
0
0
0
0
0
0
0
I2C_TRAP_PAGE[4:0]
8'b0000_0000
0
0
I2C_WRITE_ADDRESS_COUNTER[7:0]
8F
I2C TRAP CNTR
R/W
8'b0000_0000
0
0
SDA_DRV[1:0]
90
DO
D1
D8 (84)
IO DRV
OTP AUTO ECC0
OTP AUTO ECC1
R/W
R/W
R/W
E1
E2
E3
E4
E5
E6
E7
E8
0
0
SDWNB_DRV[1:0]
INTB_DRV[1:0]
RESETBMCU_DRV[1:0]
8'b00xx_xxxx
0
0
x
x
x
x
x
x
–
–
–
AUTO_ECC
_BANK5
AUTO_ECC
_BANK4
AUTO_ECC_B
ANK3
AUTO_ECC
_BANK2
AUTO_ECC_B
ANK1
0
0
0
0
0
0
0
0
–
–
–
AUTO_ECC_B
ANK10
AUTO_ECC
_BANK9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8'b0000_0000
8'b0000_0000
AUTO_ECC_B AUTO_ECCBA AUTO_ECC_B
ANK8
NK7
ANK6
RSVD
Reserved
–
8'b0000_0000
0
D9 (84)
0
0
0
0
RSVD
Reserved
OTP ECC CTRL1
OTP ECC CTRL2
OTP ECC CTRL3
OTP ECC CTRL4
OTP ECC CTRL5
OTP ECC CTRL6
OTP ECC CTRL7
OTP ECC CTRL8
–
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
0
0
ECC1_EN_
TBB
ECC1_CALC_
CIN
0
0
ECC2_EN_
TBB
ECC2_CALC_
CIN
0
0
ECC3_EN_
TBB
ECC3_CALC_
CIN
0
0
ECC4_EN_
TBB
ECC4_CALC_
CIN
0
0
ECC5_EN_
TBB
ECC5_CALC_
CIN
0
0
ECC6_EN_
TBB
ECC6_CALC_
CIN
0
0
ECC7_EN_
TBB
ECC7_CALC_
CIN
0
0
ECC8_EN_
TBB
ECC8_CALC_
CIN
0
0
0
0
ECC1_CIN_TBB[5:0]
0
0
0
0
ECC2_CIN_TBB[5:0]
0
0
0
0
ECC3_CIN_TBB[5:0]
0
0
0
0
ECC4_CIN_TBB[5:0]
0
0
0
0
ECC5_CIN_TBB[5:0]
0
0
0
0
ECC6_CIN_TBB[5:0]
0
0
0
0
ECC7_CIN_TBB[5:0]
0
0
0
0
ECC8_CIN_TBB[5:0]
0
0
0
0
PF0100
116
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 138. Extended Page 2 (continued)
BITS[7:0]
Address
E9
EA
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
Register name
OTP ECC CTRL9
OTP ECC CTRL10
OTP FUSE CTRL1
OTP FUSE CTRL2
OTP FUSE CTRL3
OTP FUSE CTRL4
OTP FUSE CTRL5
OTP FUSE CTRL6
OTP FUSE CTRL7
OTP FUSE CTRL8
OTP FUSE CTRL9
OTP FUSE CTRL10
TYPE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
8'b0000_0000
8'b0000_0000
7
6
5
4
ECC9_EN_
TBB
ECC9_CALC_
CIN
0
0
ECC10_EN_T
BB
ECC10_CALC
_CIN
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
3
2
1
0
0
0
0
0
ECC9_CIN_TBB[5:0]
0
0
0
0
ECC10_CIN_TBB[5:0]
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
–
–
–
–
0
0
0
0
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
8'b0000_0000
0
0
ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R
N
OAD
W
0
0
0
ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R
N
OAD
W
0
0
0
ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R
N
OAD
W
0
0
0
ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R
N
OAD
W
0
0
0
ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R
N
OAD
W
0
0
0
ANTIFUSE6_E ANTIFUSE6_L ANTIFUSE6_R
N
OAD
W
0
0
0
ANTIFUSE7_E ANTIFUSE7_L ANTIFUSE7_R
N
OAD
W
0
0
0
ANTIFUSE8_E ANTIFUSE8_L ANTIFUSE8_R
N
OAD
W
0
0
0
ANTIFUSE9_E ANTIFUSE99_ ANTIFUSE9_R
N
LOAD
W
0
0
0
ANTIFUSE10_ ANTIFUSE10_ ANTIFUSE10_
EN
LOAD
RW
0
0
0
BYPASS1
0
BYPASS2
0
BYPASS3
0
BYPASS4
0
BYPASS5
0
BYPASS6
0
BYPASS7
0
BYPASS8
0
BYPASS9
0
BYPASS10
0
Notes
84. Do not write in reserved registers.
PF0100
NXP Semiconductors
117
TYPICAL APPLICATIONS
7
Typical applications
7.1
Introduction
Figure 35 provides a typical application diagram of the PF0100 PMIC together with its functional components. For details on component
references and additional components such as filters, refer to the individual sections.
7.1.1
Application diagram
VIN1
VIN1
2.2uF
VGEN1
4.7uF
VGEN2
VGEN1
100mA
Vin
SW1A/B
Single/Dual
2500 mA
Buck
VGEN2
250mA
VIN2
1.0uF
SW1AIN
1.0uH
SW1ALX
2 x22uF
SW1BLX
O/P
Drive
SW1BIN
4.7uF
Vin
VGEN3
100mA
SW1C Output
1.0uH
SW1CLX
4.7uF
SW1C
2000 mA
Buck
VGEN4
350mA
VGEN4
VIN3
1.0uF
O/P
Drive
SW1CIN
SW1CFB
Core Control logic
VIN3
3 x 22uF
4.7uF
Vin
SW1VSSSNS
VGEN5
100mA
2.2uF
SW2 Output
VGEN5
2.2uF
SW2
2000 mA
Buck
VGEN6
200mA
VGEN6
Supplies
Control
SW2IN
SW2IN
CONTROL
I2C
Interface
SW3A/B
Single/Dual
DDR
2500 mA
Buck
O/P
Drive
4.7uF
SW3AIN
1.0uH
SW3ALX
2 x 22uF
SW3BLX
O/P
Drive
1.0uH
SW3BIN
SCL
To
MCU
3 x 22uF
4.7uF
SW3A Output
Vin
VDDIO
0.1uF
Vin
SW3AFB
VDDOTP
VDDIO
O/P
Drive
SW2FB
VDDOTP
1.0uH
SW2LX
Initialization State Machine
OTP
4.7k
O/P
Drive
4.7uF
VIN2
VGEN3
2.2uF
4.7k
SW1AB Output
SW1FB
PF0100
1.0uF
SDA
SW3BFB
DVS CONTROL
2 x 22uF
4.7uF
Vin
SW3B Output
SW3VSSSNS
DVS Control
SW4FB
SW4 Output
Vin
1uF
I2C
Register
map
VCOREDIG
220nF
VCOREREF
1uF
Trim-In-Package
1.0uH
SW4LX
GNDREF1
Vin
SWBSTLX
Clocks and
resets
SWBST
600 mA
Boost
GNDREF
1uF
4.7uF
SW4IN
O/P
Drive
2.2uH
Reference
Generation
VCORE
SW4
1000 mA
Buck
O/P
Drive
SWBSTIN
Vin
3 x 22uF
10uF
SWBST
Output
2 x 22uF
SWBSTFB
2.2uF
VREFDDR
VSW3A
VINREFDDR
Clocks
100nF
32kHz and 16MHz
VHALF
Package Pin Legend
Output Pin
100nF
Input Pin
Bi-directional Pin
Vin
VIN
1uF
LICELL
100nF
Li Cell
Charger
Best
of
Supply
VSNVS
VSW2
100k
100k
VSW2
INTB
100k
VSW2
SDWNB
STANDBY
RESETBMCU
100k
VSW2
PWRON
0.47uF
ICTEST
VSNVS
Coin Cell
Battery
To/From
AP
Figure 35. Typical application schematic
PF0100
118
NXP Semiconductors
TYPICAL APPLICATIONS
7.1.2
Bill of materials
The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40
°C to 85 °C applications. Components are provided with an example part number; equivalent components may be used.
Table 139. Bill of materials -40 °C to 85 °C applications (85)
Value
Qty
Description
Part#
Manufacturer
Component/pin
PMIC
1
Power management IC
MMPF0100
Freescale
Buck, SW1AB - (0.300-1.875 V), 2.5 A
1.0 μH
1
2.5 x 2 x 1.2
ISAT = 3.4 A for 10% drop,
DCRMAX = 49 mΩ
DFE252012R-H-1R0M
TOKO INC.
Output inductor
22 μH
4
10 V X5R 0603
GRM188R61A226ME15
Murata
Output capacitance
4.7 μF
2
10 V X5R 0402
GRM155R61A475MEAA
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104ME84
Murata
Input capacitance
Buck, SW1C - (0.300-1.875 V), 2.0 A
1.0 μH
1
2.5 x 2 x 1.2
ISAT = 3.0 A for 10% drop,
DCRMAX = 59 mΩ
DFE252012C-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X5R 0603
GRM188R61A226ME15
Murata
Output capacitance
4.7 μF
1
10 V X5R 0402
GRM155R61A475MEAA
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104ME84
Murata
Input capacitance
Buck, SW2 - (0.400-3.300 V), 2.0 A
1.0 μH
1
2.5 x 2 x 1.2
ISAT = 3.0 A for 10% drop,
DCRMAX = 59 mΩ
DFE252012C-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X5R 0603
GRM188R61A226ME15
Murata
Output capacitance
4.7 μF
1
10 V X5R 0402
GRM155R61A475MEAA
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104ME84
Murata
Input capacitance
Buck, SW3AB - (0.400-3.300 V), 2.5 A
1.0 μH
1
2.5 x 2 x 1.2
ISAT = 3.4 A for 10% drop,
DCRMAX = 49 mΩ
DFE252012R-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X5R 0603
GRM188R61A226ME15
Murata
Output capacitance
4.7 μF
2
10 V X5R 0402
GRM155R61A475MEAA
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104ME84
Murata
Input capacitance
Buck, SW4 - (0.400-3.300V), 1.0 A
1.0 μH
1
2 x 1.6 x 0.9
ISAT = 2.0 A for 30% drop,
DCRMAX = 80 mΩ
LQM2MPN1R0MGH
Murata
Output inductor
22 μF
3
10 V X5R 0603
GRM188R61A226ME15
Murata
Output capacitance
4.7 μF
2
10 V X5R 0402
GRM155R61A475MEAA
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104ME84
Murata
Input capacitance
PF0100
NXP Semiconductors
119
TYPICAL APPLICATIONS
Table 139. Bill of materials -40 °C to 85 °C applications (continued) (85)
Value
Qty
Description
Part#
Manufacturer
Component/pin
BOOST, SWBST - 5.0 V, 600 mA
2.2 μH
1
2 x 1.6 x 1
ISAT = 2.4 A for 10% drop
DFE201610E-2R2M
TOKO INC.
Output inductor
22 μF
2
10 V X5R 0603
GRM188R61A226ME15D
Murata
Output capacitance
10 μF
3
10 V X5R 0402
GRM155R61A106ME11
Murata
Input capacitance
2.2 μF
1
10 V X5R 0201
GRM033R61A225ME47
Murata
Input capacitance
0.1 μF
1
10 V X5R 0201
GRM033R61A104KE84
Murata
Input capacitance
1.0 A
1
DIODE SCH PWR RECT 1.0 A 20V SMT
MBR120LSFT3G
ON Semiconductor
Schottky diode
LDO, VGEN1, 2, 3, 4, 5, 6
4.7 μF
1
10 V X5R 0402
GRM155R61A475MEAA
Murata
VGEN2,4 output capacitors
2.2 μF
1
10 V X5R 0201
GRM033R61A225ME47
Murata
VGEN1,3,5,6 output
capacitors
1.0 μF
1
10 V X5R 0402
GRM033R61A105ME44
Murata
VGEN1,2,3,4,5,6 input
capacitors
Miscellaneous
1.0 μF
1
10 V X5R 0402
GRM033R61A105ME44
Murata
VCORE, VCOREDIG,
VREFDDR, VINREFDDR,
VIN capacitors
0.22 μF
1
10 V X5R 0201
GRM033R61A224ME90
Murata
VCOREREF output capacitor
0.47 μF
1
10 V X5R 0201
GRM033R61A474ME90
Murata
VSNVS output capacitor
0.1 μF
1
10 V X5R 0201
GRM033R61A104KE84
Murata
VHALF, VINREFDDR,
VDDIO, LICELL capacitors
100 kΩ
2
RES MF 100 k 1/16 W 1% 0402
RC0402FR-07100KL
Yageo America
Pull-up resistors
4.7 kΩ
2
RES MF 4.70K 1/20W 1% 0201
RC0201FR-074K7L
Yageo America
I2C pull-up resistors
Notes
85. NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP
offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.
PF0100
120
NXP Semiconductors
TYPICAL APPLICATIONS
The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40
°C to 105 °C applications. Components are provided with an example part number; equivalent components may be used.
Table 140. Bill of materials -40 °C to 105 °C applications (86)
Value
Qty
Description
Part#
Manufacturer
Component/pin
PMIC
1
Power management IC
MMPF0100
Freescale
Buck, SW1AB - (0.300-1.875 V), 2.5 A
1.0 μH
1
2.5 x 2 x 1.2
ISAT = 3.4 A for 10% drop
DCRMAX = 49 mΩ
DFE252012R-H-1R0M
TOKO INC.
Output inductor
22 μH
4
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
2
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
Buck, SW1C - (0.300-1.875 V), 2.0 A
1.0 μH
1
2 x 1.6 x 1
ISAT = 2.9 A for 10% drop
DFE201610E-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
1
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
Buck, SW1ABC - (0.300-1.875 V), 4.5 A
1.0 μH
1
4.2 x 4.2 x 2
ISAT = 5.1 A for 10% drop,
DCRMAX = 29 mΩ
FDSD0420-H-1R0M
TOKO INC.
Output inductor
22 μF
6
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
2
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
Buck, SW2 - (0.400-3.300 V), 2.0 A
1.0 μH
1
2 x 1.6 x 1
ISAT = 2.9 A for 10% drop
DFE201610E-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
1
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
Buck, SW3AB - (0.400-3.300 V), 2.5 A
1.0 μH
1
2 x 1.6 x 1
ISAT = 2.9 A for 10% drop
DFE201610E-1R0M
TOKO INC.
Output inductor
22 μF
3
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
1
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
Buck, SW4 - (0.400-3.300V), 1.0 A
1.0 μH
1
2 x 1.6 x 1
ISAT = 2.9 A for 30% drop
DFE201610E-1R0M
Murata
Output inductor
22 μF
3
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
4.7 μF
1
10 V X7S 0603
GRM188C71A475KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
PF0100
NXP Semiconductors
121
TYPICAL APPLICATIONS
Table 140. Bill of materials -40 °C to 105 °C applications (continued) (86)
Value
Qty
Description
Part#
Manufacturer
Component/pin
BOOST, SWBST - 5.0 V, 600 mA
2.2 μH
1
2 x 1.6 x 1
ISAT = 2.4 A for 10% drop
DFE201610E-2R2M
TOKO INC.
Output inductor
22 μF
2
10 V X7T 0805
GRM21BD71A226ME44
Murata
Output capacitance
10 μF
3
10 V X7T 0603
GRM188D71A106MA73
Murata
Input capacitance
2.2 μF
1
10 V X7S 0402
GRM155C71A225KE11
Murata
Input capacitance
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
Input capacitance
1.0 A
1
DIODE SCH PWR RECT 1A 20V SMT
MBR120LSFT3G
ON Semiconductor
Schottky diode
LDO, VGEN1, 2, 3, 4, 5, 6
4.7 μF
1
10 V X7S 0603
GRM188C71A475KE11
Murata
VGEN2,4 output capacitors
2.2 μF
1
10 V X7S 0402
GRM155C71A225KE11
Murata
VGEN1,3,5,6 output
capacitors
1.0 μF
1
10 V X7S 0402
GRM155C71A105KE11
Murata
VGEN1,2,3,4,5,6 input
capacitors
Miscellaneous
1.0 μF
1
10 V X7S 0402
GRM155C71A105KE11
Murata
VCORE, VCOREDIG,
VREFDDR, VINREFDDR,
VIN capacitors
0.22 μF
1
10 V X7R 0402
GRM155R71A224KE01
Murata
VCOREREF output capacitor
0.47 μF
1
10 V X7R 0402
GRM155R71A474KE01
Murata
VSNVS output capacitor
0.1 μF
1
10 V X7S 0201
GRM033C71A104KE14
Murata
VHALF, VINREFDDR,
VDDIO, LICELL capacitors
100 kΩ
2
RES MF 100 k 1/16 W 1% 0402
RC0402FR-07100KL
Yageo America
Pull-up resistors
4.7 kΩ
2
RES MF 4.70K 1/20W 1% 0201
RC0201FR-074K7L
Yageo America
I2C pull-up resistors
Notes
86. NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP
offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.
PF0100
122
NXP Semiconductors
TYPICAL APPLICATIONS
7.2
PF0100 layout guidelines
7.2.1
General board recommendations
1. It is recommended to use an eight layer board stack-up arranged as follows:
• High current signal
• GND
• Signal
• Power
• Power
• Signal
• GND
• High current signal
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.
7.2.2
Component placement
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output
capacitors.
7.2.3
General routing requirements
1. Some recommended things to keep in mind for manufacturability:
• Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole
• Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper
• Minimum allowed spacing between line and hole pad is 3.5 mils
• Minimum allowed spacing between line and line is 3.0 mils
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power,
clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins. They could be
also shielded.
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power
planes shield these traces).
4. Avoid coupling traces between important signal/low noise supplies (like REFCORE, VCORE, VCOREDIG) from any switching node
(i.e. SW1ALX, SW1BLX, SW1CLX, SW2LX, SW3ALX, SW3BLX, SW4LX, and SWBSTLX).
5. Make sure all components related to a specific block are referenced to the corresponding ground.
7.2.4
Parallel routing requirements
1. I2C signal routing
• CLK is the fastest signal of the system, so it must be given special care.
• To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal
trace length.
PF0100
NXP Semiconductors
123
TYPICAL APPLICATIONS
Figure 36. Recommended shielding for critical signals
• These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.
• Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good
practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.
7.2.5
Switching regulator layout recommendations
1. Per design, the switching regulators in PF0100 are designed to operate with only one input bulk capacitor. However, it is
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.
2. Make high-current ripple traces low-inductance (short, high W/L ratio).
3. Make high-current traces wide or copper islands.
4. Make high-current traces symetrical for dual–phase regulators (SW1, SW3).
VIN
SWxIN
CIN_HF
Driver Controller
CIN
SWx
SWxLX
L
COUT
Compensation
SWxFB
Figure 37. Generic buck regulator architecture
PF0100
124
NXP Semiconductors
TYPICAL APPLICATIONS
Figure 38. Layout example for buck regulators
7.3
Thermal information
7.3.1
Rating data
The thermal rating data of the packages has been simulated with the results listed in Table 6.
Junction to ambient thermal resistance nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) is used for both
junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p
test boards. It is anticipated the generic name, Theta-JA, continues to be commonly used.
The JEDEC standards can be consulted at http://www.jedec.org.
7.3.2
Estimation of junction temperature
An estimation of the chip junction temperature TJ can be obtained from the equation:
TJ = TA + (RθJA x PD)
with:
TA = Ambient temperature for the package in °C
RθJA = Junction to ambient thermal resistance in °C/W
PD = Power dissipation in the package in W
The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance.
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be
somewhat degraded in case of significant power dissipated by other components placed close to the device.
At a known board temperature, the junction temperature TJ is estimated using the following equation
TJ = TB + (RθJB x PD) with
TB = Board temperature at the package perimeter in °C
RθJB = Junction to board thermal resistance in °C/W
PD = Power dissipation in the package in W
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.
See 6 Functional block requirements and behaviors, page 18 for more details on thermal management.
PF0100
NXP Semiconductors
125
PACKAGING
8
Packaging
8.1
Packaging dimensions
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and
perform a keyword search for the drawing’s document number. See the 4.2 Thermal characteristics, page 11 section for specific thermal
characteristics for each package.
Table 141. Package drawing information
Package
Suffix
56 QFN 8x8 mm - 0.5 mm pitch. E-Type (full lead)
56 QFN 8x8 mm - 0.5 mm pitch. WF-Type (wettable flank)
EP
ES
Package outline drawing number
98ASA00405D
98ASA00589D
PF0100
126
NXP Semiconductors
PACKAGING
PF0100
NXP Semiconductors
127
PACKAGING
PF0100
128
NXP Semiconductors
PACKAGING
PF0100
NXP Semiconductors
129
PACKAGING
PF0100
130
NXP Semiconductors
PACKAGING
PF0100
NXP Semiconductors
131
REFERENCE SECTION
9
Reference section
9.1
Reference documents
Table 142. PF0100 reference documents
Reference
AN4536
Description
MMPF0100 OTP programming instructions
PF0100
132
NXP Semiconductors
REVISION HISTORY
10
Revision history
Revision
Date
1.0
7/2011
• Preliminary specification release
2.0
8/2012
• NPI phase: prototype major updates throughout cycle
3.0
10/2012
• Initial production release
4.0
5/2013
5.0
7/2013
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
6.0
8/2013
7.0
12/2013
8.0
4/2014
Description of Changes
•
•
•
•
•
•
•
•
•
•
•
•
•
Table 4. Added recommended pin connection when regulators are unused
Update Table 9. Current Consumption summary
Table 10. Removed VREFDDR_VOLT row
Removed automatic fuse programming feature
Updated Max frequency specification for the 16 MHz clock to 17.2 MHz
Table 17. Added specification for derived 2.0 Mhz clock
Added Clock adjustment
Table 22. Updated VREFDDR minimum Current limit specification
Updated Block diagram for all Switching Regulators
Updated current limit and overcurrent protection minimum specification on LDOS
Table 111. Update VTH0 and VTL0 specification on VSNVS
Updated Table 137, Address FF
Updated Table 138, address D8 and D9
Update Figure 35. Typical application diagram
Removed Part Identification section
Added part numbers to the ordering information for the MMPF0100A
Added corrections and notes to the document to accomodate the new part numbers, where identified
by MMPF0100A
VIN threshold (coin cell powered to VIN powered) Max. changed to 3.1
Removed LICELL connection to VIN on PF0100A
Removed 4.7 μF LICELL bypass capacitor as coin cell replacement
Updated typical and max Off Current
Add bypass capacitor in VDDIO
Added industrial part numbers PMPF0100xxANES
Added parts F3 and F4
Added Table 3, Ambient temperature range and updated specification headers accordingly.
Increased max standby and sleep currents on Extended Industrial parts.
Update output accuracy on SW1A/B, SW1C, SW2, SW3A/B and SW4.
Corrected the default value on DEVICEID register, bit4 (unused) from 0 to 1.
Corrected default register values on Table 118.
Added VDDIO capacitor to Miscellaneous in the BOM
• Corrected VDDOTP maximum rating
•
•
•
•
•
•
•
•
Corrected SWBSTFB maximum rating
Corrected inductor Isat for SW1ABC single phase mode from 4.5 A to 6.0 A
Added note to clarify SWBST default operation in Auto mode
Corrected default value of bits in SILICONREVID register in Table 136
Changed VSNVS current limit for PF0100A
Noted that voltage settings 0.6V and below are not supported
VSNVS Turn On Delay (td1) spec corrected from 15 ms to 5.0 ms
Updated per GPCN 16298
6/2014
• Corrected GPCN number in the revision history table (16220 changed to 16298)
9.0
7/2014
10.0
7/2015
•
•
•
•
•
11.0
8/2015
Updated VTL1, VTH1, and VSNVSCROSS threshold specifications
Added F6 part
Changes documented in GPCN 16369
Added new part numbers MMPF0100F9ANES and MMPF0100FAANES to Table 1
Updated Table 10
• Removed MMPF0100F3EP and MMPF0100F4EP from Orderable Parts table
PF0100
NXP Semiconductors
133
REVISION HISTORY
Revision
Date
Description of Changes
9/2015
•
•
•
•
•
•
•
•
•
•
•
•
•
•
13.0
12/2015
• Removed MMPF0100NPEP, MMPF0100F0EP, MMPF0100F1EP, and MMPF0100F2EP from
Orderable Part Variations. No longer manufactured.
• Updated Table 10
• Reformatted to newer template form and style
14.0
3/2016
• Updated SW2 current capability from 2000 mA to 2500 mA for F9/FA versions
15.0
5/2016
• Changed Table 10 row - Default I2C Address from 0x80 to 0x08 for F9 and FA
12.0
Updated Table 53
Updated Table 62
Updated Table 77
Updated Table 86
Fixed typo in Table 138
Updated Table 139
Added Table 140
Corrected the default register value for SW1ABMODE in Table 46
Corrected the default register value for SW1CMODE in Table 51
Corrected the default register value for SW2MODE in Table 60
Corrected the default register value for SW3AMODE in Table 70
Corrected the default register value for SW3BMODE in Table 75
Corrected the default register value for SW4MODE in Table 84
Updated Figure 35
PF0100
134
NXP Semiconductors
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use NXP products.
Home Page:
NXP.com
based on the information in this document. NXP reserves the right to make changes without further notice to any
Web Support:
http://www.nxp.com/support
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address:
http://www.nxp.com/terms-of-use.html.
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or
service names are the property of their respective owners. All rights reserved.
© 2016 NXP B.V.
Document Number: MMPF0100
Rev. 15.0
5/2016