Freescale Semiconductor Data Sheet: Technical Data Document Number: BSC9132 Rev. 1, 08/2014 BSC9132 BSC9132 QorIQ Qonverge Multicore Baseband Processor The following list provides an overview of the feature set: • Two high-performance 32-bit e500 cores built on Power Architecture® technology: – 36-bit physical addressing – Double-precision floating-point support – 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache – Enhanced hardware and software debug support – 800 Mhz/1 GHz/1.2 GHz clock frequency – 512-Kbyte L2 cache with ECC; also configurable as SRAM and stashing memory • Two SC3850 core subsystems; each core connects to the following: – 32 Kbyte 8-way level 1 data/instruction cache (L1 Dcache/ICache) – 512 Kbyte 8-way level 2 unified instruction/data cache (L2 cache/M2 memory) – Memory management unit (MMU) – Enhanced programmable interrupt controller (EPIC) – Debug and profiling unit (DPU) – Two 32-bit quad timers • 32 Kbytes of shared M3 memory • Multi Accelerator Platform Engine for Pico Base Station Baseband Processing (MAPLE-B2P) – Supports variable sizes in Fourier Transforms, Convolution, Filtering, Turbo, Viterbi, Chiprate, MIMO – Consists of accelerators for UMTS chip rate processing, LTE UP/DL channel processing, Matrix Inversion operations, and CRC algorithms • Two DDR3/DDR3L SDRAM memory controllers support 32-bit with ECC • Integrated security engine (ULE CAAM) – Protocol support includes DES, AES, RNG, CRC, MDE, PKE, SHA, and MD5 • Secure boot capability • Two enhanced three-speed Ethernet controllers (eTSECs) © 2014 Freescale Semiconductor, Inc. All rights reserved. FC-PBGA–780 23 mm x 23 mm • • • • • • • • • • • • • • • – TCP/IP acceleration, quality of service, and classification capabilities – IEEE Std 1588™ support – Supports SGMII interfaces High-speed interfaces supporting the following multiplexing options: – One PCI Express interface with 5G support – Four lanes of high-speed serial interfaces (SerDes) to be shared between PCI Express, SGMII, and CPRI High-speed USB controller (USB 2.0) – Host and device support – Enhanced host controller interface (EHCI) – ULPI interface Enhanced secure digital (SD/MMC) host controller (eSDHC) Integrated Flash controller (IFC), supporting NAND, NOR, and general ASIC Two TDM interfaces Antenna interface controller (AIC), supporting four industry standard JESD/four custom parallel RF interfaces (three dual and one single port) and a 2-lane CPRI interface Universal Subscriber Identity Module (USIM) interface – Facilitates communication to SIM cards or Eurochip pre-paid phone cards Two enhanced serial peripheral interfaces (eSPI) Programmable interrupt controller (PIC) compliant with OpenPIC standard Two DMA controllers – 4-channel DMA on Power Architecture side – 32 unidirectional channels, providing up to 16 memory-to-memory channels on DSP side Two I2C interfaces Two dual UART (DUART) interfaces 96 general-purpose I/O signals Eight 32-bit timers Operating temperature (Ta - Tj) range: 0–105° C Table of Contents 1 2 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Ball Layout Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Pinout Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 2.1 Overall DC Electrical Characteristics . . . . . . . . . . . . . .53 2.2 Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3 Power-Down Requirements . . . . . . . . . . . . . . . . . . . . .59 2.4 RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.5 Power-on Ramp Rate . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.6 Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.7 Input Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 2.8 DDR3 and DDR3L SDRAM Controller . . . . . . . . . . . . .64 2.9 eSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 2.10 DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 2.11 Ethernet: Enhanced Three-Speed Ethernet (eTSEC) .76 2.12 USB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 2.13 Integrated Flash Controller (IFC) . . . . . . . . . . . . . . . . .83 2.14 Enhanced Secure Digital Host Controller (eSDHC) . . .87 2.15 Programmable Interrupt Controller (PIC) Specifications89 2.16 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 2.17 I2C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 2.18 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 2.19 TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 2.20 High-Speed Serial Interface (HSSI) DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 2.21 Radio Frequency (RF) Interface . . . . . . . . . . . . . . . . .120 3 4 5 6 7 2.22 Universal Subscriber Identity Module (USIM) . . . . . . 123 2.23 Timers and Timers_32b AC Timing Specifications . . 127 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . 128 3.1 Power Architecture System Clocking. . . . . . . . . . . . . 128 3.2 DSP System Clocking . . . . . . . . . . . . . . . . . . . . . . . . 131 3.3 Supply Power Default Setting . . . . . . . . . . . . . . . . . . 132 3.4 PLL Power Supply Design . . . . . . . . . . . . . . . . . . . . . 133 3.5 Decoupling Recommendations . . . . . . . . . . . . . . . . . 134 3.6 SerDes Block Power Supply Decoupling Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.7 Guidelines for High-Speed Interface Termination . . . 136 3.8 Pull-Up and Pull-Down Resistor Requirements . . . . . 136 3.9 Output Buffer DC Impedance . . . . . . . . . . . . . . . . . . 137 3.10 Configuration Pin Muxing . . . . . . . . . . . . . . . . . . . . . 137 3.11 JTAG Configuration Signals. . . . . . . . . . . . . . . . . . . . 138 3.12 Guidelines for High-Speed Interface Termination . . . 140 3.13 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 3.14 Security Fuse Processor . . . . . . . . . . . . . . . . . . . . . . 141 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2 Mechanical Dimensions of the FC-PBGA . . . . . . . . . 142 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.1 Part Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 2 Freescale Semiconductor Pin Assignments This figure shows the major functional units. StarCore SC3850 DSP Core StarCore SC3850 DSP Core Power Architecture Coherency Power Architecture e500 Core e500 Core Module 32-Kbyte 32-Kbyte I-Cache 32-Kbyte 32-Kbyte 512-Kbyte 32-Kbyte I-Cache 32-Kbyte L1 D-Cache L1 I-Cache L2 Cache L1 D-Cache L1 I-Cache BSC9132 32-Kbyte 32-Kbyte 32-Kbyte 32-Kbyte L1 D-Cache L1 I-Cache L1 D-Cache L1 I-Cache 512-Kbyte L2 Cache 512-Kbyte L2 Cache 32-bit DDR3/3L Memory Controller 32-Kbyte Shared M3 Memory 32-bit DDR3/3L Memory Controller 1GE 1GE MAPLE-B2P Baseband Accelerator LTE/UMTS/WiMAX RF Parallel DMA IEEE 1588™ CPRI 2x I2C Security Engine 4.4 PCI Express 2x DUART Ethernet DMA USB 2.0 2x eSPI Secure Boot Multicore Fabric GPIO SGMII SGMII USIM IFC x2 x2 x4 4-lane 6-GHz SerDes eSDHC 2x TDM Clocks/Reset Figure 1. BSC9132 Block Diagram 1 Pin Assignments This section contains a top-level ball layout diagram followed by four detailed quadrant views and a pinout listing table. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 3 Pin Assignments 1.1 Ball Layout Diagrams SEE DETAIL B SEE DETAIL A 1 A B C 2 3 5 ANT3_ ANT3_ ANT3_ ANT3_ DIO008 DIO006 DIO003 DIO001 ANT3_ DIO011 VSS ANT3_ X2VDD ANT3_ DIO007 DIO002 ANT3_ ANT3_ ANT3_ ANT3_ ANT3_ RX_ TXNRX FRAME DIO009 DIO004 DIO005 D ANT3_ RX_CLK E ANT3_ ANT2_ ANT2_ TX_ DIO001 DIO000 FRAME F 4 VSS 6 SPI2_ MISO ANT2_ DIO004 ANT2_ ANT2_ ANT2_ ANT2_ ANT2_ DIO006 DIO008 DIO011 DIO009 DIO010 SPI2_ CS1_B ANT3_ SPI2_ DIO000 CS0_B X2VDD ANT3_ ANT3_ ANT3_ SPI2_ TX_CLK DIO010 ENABLE CS3_B VSS 7 SPI2_ CLK VSS VSS VSS SPI2_ MOSI VSS 8 SPI2_ CS2_B VSS 9 VSS 10 11 12 13 14 D1_ D1_ MDQ29 MDQS08 VSS VSS VSS 16 17 18 19 VSS D1_ D1_ MDQS_ G1VDD MDQS_ B03 B01 D1_ D1_ D1_ D1_ MDQS_ D1_ MDQ24 MDQ27 MDQ25 B02 MDQ14 D1_ D1_ G1VDD D1_ D1_ D1_ MECC02MECC00 MDQ20 MDQ21 MDQ19 D1_ D1_ D1_ D1_ MECC03 MDM08 MECC07 MDM02 VSS D1_ MDQ17 VSS D1_ MDQ10 D1_ MCK_ B02 G1VDD D1_ MCK_ B00 D1_ D1_ MDQS_ B00 MDQ15 G1VDD VSS VSS NC_ BGA_ E19 D1_ MCAS_B ANT2_ ANT2_ ANT2_ RX_ DIO100 TXNRX FRAME VSS VSS VSS G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD J ANT2_ ANT2_ ANT2_ X2VDD ANT2_ ENABLE DIO109 RX_CLK DIO003 K VDDC VSS VDDC D1_ VDDC MVREF VSS IFC_ AD07 VSS IFC_ AD08 E D1_ MA15 SDHC_ SDHC_ DATA01 DATA02 IFC_ AD06 BVDD IFC_ AD09 IFC_ AD10 D1_ MA14 SDHC_ BVDD WP IFC_ AD11 IFC_ AD12 IFC_ AD13 IFC_ AD14 VSS IFC_ AD15 G1VDD VSS IFC_ CS_ B00 VDD VSS VDD VSS VDDC VSS VDDC VSS VDDC VSS SENSE VDDC ANT1_ DIO009 ANT1_ ANT1_ DIO005 DIO004 X2VDD VSS VDD VSS VDD VSS VDDC VSS VDDC VSS VDDC N ANT1_ X1VDD ANT1_ X1VDD ANT1_ REF_CLK DIO011 DIO003 ANT1_ ANT1_ DIO006 DIO001 X1VDD VSS VDD VSS VDD VSS VDDC VSS VDDC VSS P ANT1_ ANT1_ ANT1_ ANT1_ ANT1_ ENABLE RX_CLK TXNRX DIO100 TX_CLK X1VDD VSS VDDC VSS VDDC VSS VDDC VSS VDDC VSS V W Y AA AB AC VSS AVDD_ D2_DDR VSS VSS D2_ MA02 D2_ MA08 D2_ MBA00 ANT4_ TX_ FRAME VSS D2_ MA04 D2_ MA10 D2_ D2_ MBA02 MBA01 G2VDD AVDD_ CORE0 VSS CVDD POVDD1 VSS USB_ D03 VDDC VSS AVDD_ CORE1 VSS CVDD POVDD2 USB_ DIR VDDC VSS VDDC VSS VDDC VSS VDDC VSS VSS ANT4_ X1VDD DIO008 ANT4_ ANT4_ FA_VDD X1VDD RX_ FRAME TXNRX D2_ MA01 D2_ MCS_ B00 VSS D2_ MA00 VSS VSS VSS VDDC VDDC VDDC VSS VDDC VDDC VSS VDDC VSS D2_ MVREF VSS VSS VSS VSS VDDC VDDC VDDC VDDC D2_ MCS_ G2VDD G2VDD G2VDD G2VDD G2VDD G2VDD G2VDD B01 VSS D2_ G2VDD MDQ01 D2_ D2_ D2_ D2_ D2_ D2_ MDQ10 MDM01 MDQ18 MDQ17 MDQ30 G2VDD MDQ24 G2VDD VSS D2_ D2_ D2_ MCK00 MDIC00 MCK02 D2_ MCS_ B03 D2_ MCK_ B00 D2_ MDQ08 D2_ D2_ D2_ G2VDD MDIC01 MCK01 MODT01 VSS 5 6 7 VSS VDDC VDDC VSS VDDC VSS AVDD_ DSP VSS VSS VDDC VDDC VSS VSS VSS D2_ D2_ MDQ15 MDQS01 VSS D2_ D2_ D2_ G2VDD G2VDD MDQS00 MDQ19 MDQS02 VSS D2_ MDM08 D2_ MDQS_ D2_ D2_ B08 MDQ16 MECC07 XCORE SD_REF XPAD VDD _CLK2_B VDD VSS XCORE VDD SD_ RX03 SD_ TX03 SD_ TX_ B03 XCORE VSS 9 SEE DETAIL C 10 11 12 13 14 15 16 17 18 19 USB_ D07 P USB_ CLK USB_ STP R T IIC1_ SDA OVDD UART_ SIN00 LVDD HRESET TRST_B _REQ_B VSS TEST_ SEL_B TEMP_ D1_ ANODE DDRCLK VSS CVDD_ DSP_ TEMP_ VSS VSEL CLKIN CATHODE EC_ MDIO UART_ SOUT00 VSS UART_ UART_ RTS_B01 SIN01 TSEC_ TSEC_ TSEC_ 1588_ 1588_ LVDD 1588_ BVDD_ CLK_OUT PULSE_OUT1 TRIG_IN1VSEL01 U V W Y DSP_ TCK AA SD_ XCORE TSEC_ DSP_ UART_ UART_ XCORE BVDD_ 1588_CLK PLL1_ TRST_BRTS_B00 CTS_B00 VSS VSS VSS VSEL00 TPA _IN AB XPAD VDD VSS EC_ MDC SD1 SD_PLL1 SD1 AGND _TPD AVDD XPAD VSS XPAD VDD SD_ TX02 XPAD VSS XPAD SD_TX _B02 VSS XPAD VDD SD_ RX02 XCORE VDD 20 21 XCORE VSS SD_IMP _CAL_RX XPAD VSS XCORE VSS D2_ D2_ D2_ D2_ D2_ D2_ D2_ D2_ SD_ D2_ MDQS_ MDM02 MDQ22 MECC01 MDQS08 MECC06 XCORE SD_RX XCORE MDQS_ MDQ09 RX_B02 XCORE MDQ11 B02 VSS _B03 VDD VSS B00 8 VSS HRESET SCAN_ CVDD _B MODE_B IIC1_ SCL VSS XCORE SD_IMP_ XPAD CAL_TX VSS VSS USB_ D04 OVDD AVDD_ MAPLE SD_ PLL2_ TPD USB_ D06 TDI VSS XPAD VSS N TDO VSS XPAD VDD USB_ D00 TMS VSS SD2 AGND USB_ D01 CFG_1_ JTAG_ MODE VSS L USB_ D02 OVDD READY TCK K M EE0 UART_ CTS_ UART_ B01 SOUT01 J SPI1_ CS0_B EE1 VSS TMP_ DETECT H SPI1_ CLK VSS OVDD UDE_B1 G IFC_ AVD CFG_0_ JTAG_ OVDD MODE VDDC D2_ XCORE G2VDD MECC04 VSS VSS UDE_ B0 VSS G2VDD POVDD3 XCORE VSS D2_ MDQ29 VSS IFC_ IFC_ CLK00 CS_B01 F VSS SPI1_ SPI1_CS1SPI1_CS2 CVDD CS3_B _B _B SENSE CVDD USB_D05 USB_ VSS NXT VDDC D2_ D2_ D2_ D2_ XCORE SD_REF XPAD MDQ20 MDQS03 MECC00 MECC05 VSS _CLK2 VSS D2_ D2_ D2_ D2_ D2_ D2_ D2_ MCK_ MDQ14 MDQ13 MDQS_ MDQ23 MDQ21 MDQS_ B01 B03 B02 D2_ D2_ D2_ MCKE01MCK_BO1 MDQ12 VSS D2_ D2_ D2_ D2_ D2_ D2_ D2_ D2_ D2_ SD_PLL2 SD2 MDM00 MDQ05 MDQ00 MDQ04 MDQ28 MDM03 MDQ27 MECC02 MECC03 XCORE _TPA AVDD VSS D2_ D2_ D2_ D2_ D2_ D2_ MDQ03 MDQ02 G2VDD MDQ07 MDQ25 MDQ31 MDQ26 4 VSS VSS D2_ MCS_ B02 3 VDDC VDDC AE 2 SPI1_ MISO VSS D2_ MA06 1 AVDD_ VSS D1_DDR VSS D2_ D2_ D2_ MA11 MRAS_B MA13 AH VSS VDDC D2_ D2_ D2_ D2_ MA12 MCAS_B MWE_B MDQ06 NC_ D2_ D2_ BGA_ MODT00 MCKE00 AE4 IFC_ WE_B VSS D2_ MA14 D2_ MA03 IFC_ CLE VDDC D2_ MA09 D2_ MA05 IFC_ CS_B02 VSS D2_ MA15 AG VSS VDDC VSS D2_ MA07 SPI1_ MOSI VSS AD AF VSS VDDC ANT4_ ANT4_ ANT4_ ANT4_ DIO010 DIO011 RX_CLK X1VDD TX_CLK X1VDD ANT4_ ENABLE IFC_ WP_B VSS ANT4_ ANT4_ ANT4_ ANT4_ ANT4_ DIO002 DIO004 DIO005 DIO003 DIO007 ANT4_ DIO009 X1VDD IFC_ RB_B VDDC VSS IFC_ IFC_ IFC_ IFC_ BVDD IFC_ IFC_ ADDR26 ADDR25 ADDR24 ADDR23 ADDR22 ADDR21 BVDD VSS VDDC IFC_ IFC_ IFC_ ADDR18 ADDR17 ADDR16 IFC_ OE_B ANT1_ DIO106 VSS VSS IFC_ BCTL ANT1_ ANT1_ DIO102 X1VDD DIO103 X1VDD ANT4_ ANT4_ X1VDD DIO001 DIO006 IFC_ IFC_ ADDR20 ADDR19 BVDD VSS ANT1_ ANT1_ ANT1_ X1VDD ANT4_ DIO109 DIO110 DIO111 DIO000 VSS D1_ MCS_ D1_ B03 MODT01 X2VDD U C SDHC_ DATA03 ANT1_ DIO000 T IFC_ AD02 BVDD BVDD ANT1_ ANT1_ DIO107 DIO108 X1VDD VSS D1_ MA09 VSS ANT1_ DIO105 VSS SDHC_ SDHC_ CD CMD B D1_ MA00 VDDC ANT1_ DIO104 VSS IFC_ AD01 D1_ MCS_ B01 VSS R SDHC _CLK D VDDC ANT1_ DIO002 BVDD IFC_ AD05 VSS VSS D1_ MA10 IFC_ AD04 VDDC ANT1_ ANT1_ TX_ RX_ ANT1_ ANT1_ DIO101 FRAME AGC FRAME D1_ MA02 A IFC_ AD03 VSS VSS IFC_ AD00 SDHC_ DATA00 VDD ANT1_ ANT1_ ANT1_ DIO010 DIO008 DIO007 VSS VSS VSS VSS D1_ MA04 D1_ MA12 VDD ANT2_ ANT2_ ANT2_ ANT2_ ANT2_ DIO111 DIO108 DIO110 DIO106 DIO103 X2VDD ANT2_ DIO105 SENSE VDD D1_ MA01 VSS VSS M ANT2_ ANT2_ ANT2_ DIO107 DIO104 DIO101 VDD D1_ MA13 28 D1_ D1_ MCS_ B02 MODT00 X2VDD L ANT2_ VSS REF_CLK VSS 27 D1_ D1_ MBA00 MBA02 H VDD 26 D1_ MA11 D1_ D1_ D1_ D1_ MDQ02 MDQ01 MDQ06 MDIC01 VSS 25 D1_ MA07 D1_ D1_ D1_ D1_ D1_ D1_ MECC05MECC01 MDQ22 MDQ16 MDQ23 MDQ18 X2VDD D1_ D1_ MRAS_B MBA01 24 D1_ MCK_ D1_ G1VDD D1_ B01 MWE_B MA05 VSS ANT2_ ANT2_ DIO002 DIO102 23 G1VDD D1_ D1_ D1_ MDQ04 MDM00 MDQ03 D1_ D1_ D1_ MDQ07 MDQ00 MDQ05 22 D1_ MA08 AVDD_ PLAT ANT2_ TX_CLK 21 VSS VSS VSS D1_ MA03 D1_ D1_ D1_ D1_ D1_ D1_ MCS_ MDQ13 MDQS00 MDQ08 MCK01 MCKE01 B00 ANT2_ ANT2_ X2VDD ANT2_ ANT2_ TX_ AGC DIO007 FRAME DIO005 G 20 D1_ D1_ D1_ D1_ D1_ D1_ D1_ D1_ D1_ D1_ D1_ D1_ MDQS_ MDQ28 MDQS03 MDM01 MDQS01 MDQ09 MDQ12 MCK02 MDIC00 MCK00 MCKE00 MA06 B08 D1_ D1_ D1_ D1_ D1_ D1_ D1_ MECC06 MDQ31 MDQ26 MDM03 MDQ30 MDQS02 MDQ11 D1_ MECC04 15 SD_ RX01 SD_RX _B01 22 SD_ TX01 DSP_ TDO DSP_ TDI DSP_ TMS XCORE XCORE LVDD_ VSS VSS VSEL XPAD VDD SD_ TX00 XVDD1_ D2_ VSEL DDRCLK AC XVDD2_ VSEL AD OVDD XPAD VSS VSS SYSCLK AE XPAD VDD SD_TX _B01 XPAD VSS SD_TX _B00 XCORE VSS VSS AF XCORE VSS SD_ RX00 XCORE SD_REF XCORE _CLK1 VSS VDD RTC AG XCORE SD_RX VDD _B00 23 24 XCORE SD_REF XCORE VSS _CLK1_B VDD 25 26 27 AH 28 SEE DETAIL D Figure 2. Ball Layout Diagram—Top-Level View BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 4 Freescale Semiconductor Pin Assignments Figure 3 shows detailed view A. DETAIL A 1 A B C 2 3 4 5 ANT3_ ANT3_ ANT3_ ANT3_ DIO008 DIO006 DIO003 DIO001 ANT3_ DIO011 VSS ANT3_ X2VDD ANT3_ DIO007 DIO002 ANT3_ ANT3_ ANT3_ ANT3_ ANT3_ RX_ TXNRX FRAME DIO009 DIO004 DIO005 6 SPI2_ MISO 7 SPI2_ CS1_B ANT3_ SPI2_ DIO000 CS0_B 8 SPI2_ CS2_B VSS 9 10 11 12 13 14 D1_ D1_ D1_ D1_ D1_ MDQS_ MDQ28 MDQS03 MDM01 MDQS01 B08 D1_ D1_ MDQS_ G1VDD MDQS_ D1_ D1_ VSS B03 B01 MDQ29 MDQS08 VSS X2VDD VSS D1_ D1_ D1_ D1_ D1_ D1_ D1_ MECC06 MDQ31 MDQ26 MDM03 MDQ30 MDQS02 MDQ11 ANT3_ ANT3_ ANT3_ SPI2_ TX_CLK DIO010 ENABLE CS3_B VSS D1_ MECC04 SPI2_ CLK SPI2_ MOSI VSS D1_ D1_ G1VDD D1_ D1_ D1_ MECC02MECC00 MDQ20 MDQ21 MDQ19 VSS VSS VSS D1_ D1_ D1_ D1_ MECC03 MDM08 MECC07 MDM02 ANT2_ ANT2_ X2VDD ANT2_ ANT2_ TX_ DIO007 FRAME DIO005 AGC VSS AVDD_ PLAT VSS D1_ D1_ D1_ D1_ D1_ D1_ MECC05MECC01 MDQ22 MDQ16 MDQ23 MDQ18 H ANT2_ ANT2_ ANT2_ RX_ DIO100 TXNRX FRAME VSS VSS VSS G1VDD G1VDD G1VDD G1VDD G1VDD G1VDD J ANT2_ ANT2_ ANT2_ X2VDD ANT2_ DIO003 ENABLE DIO109 RX_CLK ANT2_ ANT2_ DIO002 DIO102 X2VDD VSS VDD VSS VDD SENSE VDD VDDC K ANT2_ VSS REF_CLK X2VDD ANT2_ DIO105 X2VDD VSS VDD VSS VDD VSS VDDC ANT1_ DIO000 X2VDD VSS VDD VSS VDD VSS VDDC ANT1_ DIO009 ANT1_ ANT1_ DIO005 DIO004 X2VDD VSS VDD VSS VDD VSS VDDC N ANT1_ X1VDD ANT1_ X1VDD ANT1_ REF_CLK DIO011 DIO003 ANT1_ ANT1_ DIO006 DIO001 X1VDD VSS VDD VSS VDD VSS VDDC P ANT1_ ANT1_ ANT1_ ANT1_ ANT1_ ENABLE RX_CLK TXNRX DIO100 TX_CLK X1VDD VSS VDDC VSS VDDC VSS VDDC D E F G ANT3_ RX_CLK VSS ANT3_ ANT2_ ANT2_ TX_ DIO001 DIO000 FRAME VSS ANT2_ DIO004 ANT2_ ANT2_ ANT2_ ANT2_ ANT2_ DIO006 DIO008 DIO011 DIO009 DIO010 VSS ANT2_ TX_CLK ANT2_ ANT2_ ANT2_ DIO107 DIO104 DIO101 L ANT2_ ANT2_ ANT2_ ANT2_ ANT2_ DIO111 DIO108 DIO110 DIO106 DIO103 M ANT1_ ANT1_ ANT1_ DIO010 DIO008 DIO007 VSS VSS VSS ANT1_ DIO002 VSS D1_ D1_ D1_ D1_ MDQS_ D1_ MDQ24 MDQ27 MDQ25 B02 MDQ14 VSS D1_ MDQ17 Figure 3. Ball Layout Diagram—Detail A BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 5 Pin Assignments Figure 4 shows detailed view B. DETAIL B 15 16 17 18 19 20 21 D1_ D1_ D1_ D1_ D1_ D1_ D1_ MDQ09 MDQ12 MCK02 MDIC00 MCK00 MCKE00 MA06 VSS D1_ MDQ10 D1_ MCK_ B02 G1VDD D1_ MCK_ B00 D1_ MA03 G1VDD VSS VSS VDDC VSS VSS VDDC VSS 28 D1_ MA01 D1_ MA04 VSS IFC_ AD00 D1_ MA02 D1_ MA10 BVDD SDHC _CLK IFC_ AD01 SDHC_ SDHC_ CD CMD VSS IFC_ AD02 A D1_ MA07 D1_ MA11 D1_ D1_ MBA00 MBA02 D1_ MCK_ D1_ G1VDD D1_ B01 MWE_B MA05 VSS D1_ MA12 VSS SDHC_ DATA00 IFC_ AD03 IFC_ AD04 IFC_ AD05 D1_ D1_ MCS_ B02 MODT00 D1_ MA00 D1_ MA09 BVDD SDHC_ DATA03 IFC_ AD07 VSS IFC_ AD08 D1_ MCS_ B01 D1_ MA15 SDHC_ SDHC_ DATA01 DATA02 IFC_ AD06 BVDD IFC_ AD09 IFC_ AD10 D1_ MA14 SDHC_ BVDD WP IFC_ AD11 IFC_ AD12 IFC_ AD13 IFC_ AD14 VSS IFC_ AD15 VSS NC_ BGA_ E19 D1_ MCAS_B D1_ MA13 G1VDD G1VDD G1VDD G1VDD G1VDD VDDC 27 25 G1VDD D1_ D1_ D1_ D1_ MDQ02 MDQ01 MDQ06 MDIC01 VSS D1_ D1_ MRAS_B MBA01 26 24 D1_ MA08 D1_ D1_ D1_ MDQ04 MDM00 MDQ03 D1_ D1_ D1_ MDQ07 MDQ00 MDQ05 23 VSS D1_ D1_ D1_ D1_ D1_ D1_ MCS_ MDQ13 MDQS00 MDQ08 MCK01 MCKE01 B00 D1_ MDQS_ D1_ B00 MDQ15 22 D1_ VDDC MVREF VSS D1_ MCS_ D1_ B03 MODT01 G1VDD IFC_ IFC_ ADDR20 ADDR19 VSS BVDD VSS VDDC VSS BVDD IFC_ CS_ B00 VSS VDDC VSS SENSE VDDC VDDC VSS VDDC VSS VDDC VSS VSS VDDC VSS VSS IFC_ IFC_ IFC_ ADDR18 ADDR17 ADDR16 IFC_ IFC_ IFC_ IFC_ BVDD IFC_ IFC_ ADDR22 ADDR21 ADDR26 ADDR25 ADDR24 ADDR23 IFC_ BCTL IFC_ OE_B BVDD IFC_ RB_B IFC_ WP_B VSS SPI1_ MOSI VSS IFC_ CS_B02 IFC_ CLE IFC_ WE_B VSS AVDD_ VSS D1_DDR SPI1_ MISO VDDC VSS AVDD_ CORE0 VSS CVDD POVDD1 VSS USB_ D03 VDDC VSS AVDD_ CORE1 VSS CVDD POVDD2 USB_ DIR USB_ D06 IFC_ IFC_ CLK00 CS_B01 B C D E F G H J K L VSS IFC_ AVD SPI1_ CLK SPI1_ CS0_B M USB_ D02 USB_ D01 USB_ D00 N USB_ D04 VSS USB_ D07 P SPI1_ SPI1_CS1SPI1_CS2 CVDD _B _B CS3_B Figure 4. Ball Layout Diagram—Detail B BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 6 Freescale Semiconductor Pin Assignments Figure 5 shows detailed view C. DETAIL C ANT1_ ANT1_ TX_ RX_ ANT1_ ANT1_ ANT1_ DIO101 FRAME AGC FRAME DIO102 X1VDD ANT1_ DIO103 X1VDD VSS VDDC VSS VDDC VSS VDDC T ANT1_ DIO104 ANT1_ DIO106 ANT1_ ANT1_ DIO107 DIO108 X1VDD VSS VDDC VSS VDDC VSS VDDC U ANT1_ ANT1_ ANT1_ X1VDD ANT4_ DIO109 DIO110 DIO111 DIO000 ANT4_ ANT4_ DIO001 DIO006 X1VDD VSS VDDC VSS VDDC VSS VDDC V ANT4_ ANT4_ ANT4_ ANT4_ ANT4_ DIO002 DIO004 DIO005 DIO003 DIO007 X1VDD VSS VDDC VSS VDDC VSS VDDC ANT4_ X1VDD ANT4_ ANT4_ ANT4_ X1VDD ANT4_ X1VDD DIO009 DIO010 DIO011 RX_CLK TX_CLK VSS VDDC VSS VDDC VSS VDDC VSS VDDC VSS D2_ MVREF VSS VDDC R W Y VSS VSS ANT1_ DIO105 ANT4_ TX_ ANT4_ ENABLE FRAME VSS VSS VSS ANT4_ DIO008 ANT4_ ANT4_ FA_VDD X1VDD RX_ FRAME TXNRX D2_ MCS_ B00 D2_ MCS_ G2VDD G2VDD G2VDD G2VDD G2VDD G2VDD G2VDD B01 D2_ MA00 VSS AA AVDD_ D2_DDR VSS AB VSS D2_ MA02 AC D2_ MA08 D2_ MBA00 AD VSS D2_ MA09 D2_ D2_ D2_ MA11 MRAS_B MA13 AE D2_ MA15 D2_ MA14 D2_ MA06 VSS D2_ D2_ D2_ MCK00 MDIC00 MCK02 AF D2_ MA07 G2VDD D2_ MCS_ B02 D2_ MCS_ B03 D2_ MCK_ B00 AG D2_ MA05 D2_ MA03 D2_ MA04 D2_ MA10 D2_ D2_ MBA02 MBA01 G2VDD D2_ MA01 VSS D2_ D2_ D2_ D2_ MA12 MCAS_B MWE_B MDQ06 G2VDD D2_ MDQ08 D2_ G2VDD D2_ D2_ MODT01 MDIC01 MCK01 D2_ MDQ01 1 2 3 4 5 6 D2_ D2_ G2VDD D2_ D2_ D2_ D2_ MDQ03 MDQ02 MDQ07 MDQ25 MDQ31 MDQ26 D2_ D2_ D2_ D2_ D2_ G2VDD D2_ MDQ10 MDM01 MDQ18 MDQ17 MDQ30 MDQ24 VSS D2_ D2_ MDQ15 MDQS01 VSS D2_ D2_ D2_ MDQ20 MDQS03 MECC00 D2_ D2_ D2_ MDQS_ D2_ MDQS_ MCK_ D2_ D2_ D2_ B01 B03 B02 MDQ14 MDQ13 MDQ23 MDQ21 VSS NC_ BGA_ D2_ D2_ D2_ D2_ D2_ MODT00 MCKE00 AE4 MCKE01 MCK_BO1MDQ12 AH D2_ D2_ D2_ D2_ D2_ D2_ D2_ MDM00 MDQ05 MDQ00 MDQ04 MDQ28 MDM03 MDQ27 7 VSS D2_ G2VDD D2_ D2_ G2VDD D2_ D2_ MDQS00 MDQ19 MDQS02 MDQ16 MECC07 D2_ D2_ MDQS_ D2_ MDQ09 MDQ11 B00 8 9 10 D2_ D2_ D2_ MDQS_ D2_ B02 MDM02 MDQ22 MECC01 11 12 13 14 Figure 5. Ball Layout Diagram—Detail C BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 7 Pin Assignments Figure 6 shows detailed view D. DETAIL D USB_ CLK USB_ STP CVDD VSS EE1 EE0 CFG_0_ JTAG_ OVDD MODE TMS TDO TDI CFG_1_ JTAG_ MODE IIC1_ SCL IIC1_ SDA OVDD VSS VDDC VSS VDDC VSS VSS VDDC VSS VDDC VSS VSS VDDC VSS VDDC VSS OVDD READY VSS VDDC VSS VDDC VSS OVDD OVDD VSS VDDC VSS VDDC VSS VSS VSS VSS AVDD_ DSP VSS VDDC VSS AVDD_ MAPLE VSS UART_ SIN00 G2VDD POVDD3 XCORE SD2 VSS AGND XPAD VDD XPAD VDD VSS EC_ MDC D2_ D2_ XCORE SD_PLL2 SD2 MECC02 MECC03 VSS _TPA AVDD G2VDD D2_ MDQ29 D2_ XCORE MECC04 VSS VSS XPAD VSS SD_ PLL2_ TPD XCORE SD_IMP_ XPAD VSS CAL_TX VSS SENSE CVDD USB_D05 USB_ VSS NXT VSS UDE_ B0 UDE_B1 TMP_ DETECT TCK UART_ CTS_ UART_ B01 SOUT01 LVDD HRESET SCAN_ _B MODE_B R HRESET TRST_B _REQ_B T VSS TEST_ SEL_B TEMP_ D1_ ANODE DDRCLK VSS CVDD_ DSP_ TEMP_ VSS VSEL CLKIN CATHODE EC_ MDIO UART_ SOUT00 VSS UART_ UART_ RTS_B01 SIN01 TSEC_ TSEC_ TSEC_ 1588_ 1588_ LVDD 1588_ BVDD_ CLK_OUT PULSE_OUT1 TRIG_IN1VSEL01 U V W Y DSP_ TCK AA SD_ TSEC_ DSP_ UART_ PLL1_ XCORE XCORE BVDD_ 1588_CLKTRST_B UART_ VSS CTS_B00 TPA RTS_B00 VSS VSS VSEL00 _IN AB SD1 SD_PLL1 SD1 AGND _TPD AVDD DSP_ TMS XVDD1_ D2_ VSEL DDRCLK AC XCORE XPAD SD_IMP XPAD XCORE XCORE LVDD_ VSS VSS VSEL VSS VSS _CAL_RX VSS OVDD XVDD2_ VSEL AD XCORE DSP_ TDO VSS DSP_ TDI D2_ XCORE SD_REF XPAD MECC05 VSS _CLK2 VSS SD_ TX03 XPAD VDD SD_ TX02 XPAD VSS SD_ TX01 XPAD VDD SD_ TX00 XPAD VSS VSS SYSCLK AE D2_ XCORE SD_REF XPAD MDM08 VDD _CLK2_B VDD SD_ TX_ B03 XPAD VSS SD_TX _B02 XPAD VDD SD_TX _B01 XPAD VSS SD_TX _B00 XPAD VDD XCORE VSS VSS AF SD_ XCORE RX02 VDD SD_ RX01 XCORE VSS SD_ RX00 XCORE SD_REF XCORE VDD _CLK1 VSS RTC AG D2_ MDQS_ B08 VSS XCORE VDD SD_ RX03 XCORE VSS D2_ D2_ XCORE SD_RX XCORE SD_ XCORE MDQS08 MECC06 VSS _B03 VDD RX_B02 VSS 15 16 17 18 19 20 21 AH SD_RX XCORE SD_RX XCORE SD_REF XCORE _B00 VSS _CLK1_B VDD _B01 VDD 22 23 24 25 26 27 28 Figure 6. Ball Layout Diagram—Detail D 1.2 Pinout Assignments This table provides the pinout listing. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 8 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing Signal Signal Description Pin Number Pin Type Power Supply Note DDR 1 (Power Architecture) D1_MDQ00 Data F16 I/O G1VDD — D1_MDQ01 Data G16 I/O G1VDD — D1_MDQ02 Data G15 I/O G1VDD — D1_MDQ03 Data E18 I/O G1VDD — D1_MDQ04 Data E16 I/O G1VDD — D1_MDQ05 Data F17 I/O G1VDD — D1_MDQ06 Data G17 I/O G1VDD — D1_MDQ07 Data F15 I/O G1VDD — D1_MDQ08 Data C17 I/O G1VDD — D1_MDQ09 Data A15 I/O G1VDD — D1_MDQ10 Data B16 I/O G1VDD — D1_MDQ11 Data C14 I/O G1VDD — D1_MDQ12 Data A16 I/O G1VDD — D1_MDQ13 Data C15 I/O G1VDD — D1_MDQ14 Data D14 I/O G1VDD — D1_MDQ15 Data D15 I/O G1VDD — D1_MDQ16 Data G12 I/O G1VDD — D1_MDQ17 Data F14 I/O G1VDD — D1_MDQ18 Data G14 I/O G1VDD — D1_MDQ19 Data E14 I/O G1VDD — D1_MDQ20 Data E12 I/O G1VDD — D1_MDQ21 Data E13 I/O G1VDD — D1_MDQ22 Data G11 I/O G1VDD — D1_MDQ23 Data G13 I/O G1VDD — D1_MDQ24 Data D10 I/O G1VDD — D1_MDQ25 Data D12 I/O G1VDD — D1_MDQ26 Data C10 I/O G1VDD — D1_MDQ27 Data D11 I/O G1VDD — D1_MDQ28 Data A11 I/O G1VDD — D1_MDQ29 Data B9 I/O G1VDD — D1_MDQ30 Data C12 I/O G1VDD — D1_MDQ31 Data C9 I/O G1VDD — D1_MDM00 Data Mask E17 O G1VDD — D1_MDM01 Data Mask A13 O G1VDD — D1_MDM02 Data Mask F12 O G1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 9 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note D1_MDM03 Data Mask C11 O G1VDD — D1_MDQS00 Data Strobe C16 I/O G1VDD — D1_MDQS01 Data Strobe A14 I/O G1VDD — D1_MDQS02 Data Strobe C13 I/O G1VDD — D1_MDQS03 Data Strobe A12 I/O G1VDD — D1_MDQS_B00 Data Strobe D16 I/O G1VDD — D1_MDQS_B01 Data Strobe B14 I/O G1VDD — D1_MDQS_B02 Data Strobe D13 I/O G1VDD — D1_MDQS_B03 Data Strobe B12 I/O G1VDD — D1_MBA00 Bank Select C23 O G1VDD — D1_MBA01 Bank Select A23 O G1VDD — D1_MBA02 Bank Select C24 O G1VDD — D1_MA00 Address E22 O G1VDD — D1_MA01 Address A24 O G1VDD — D1_MA02 Address B24 O G1VDD — D1_MA03 Address B20 O G1VDD — D1_MA04 Address A25 O G1VDD — D1_MA05 Address D21 O G1VDD — D1_MA06 Address A21 O G1VDD — D1_MA07 Address C21 O G1VDD — D1_MA08 Address B22 O G1VDD — D1_MA09 Address E23 O G1VDD — D1_MA10 Address B25 O G1VDD — D1_MA11 Address C22 O G1VDD — D1_MA12 Address D23 O G1VDD — D1_MA13 Address G19 O G1VDD — D1_MA14 Address G22 O G1VDD — D1_MA15 Address F22 O G1VDD — D1_MWE_B Write Enable D19 O G1VDD — D1_MRAS_B Row Address Strobe A22 O G1VDD — D1_MCAS_B Column Address Strobe F19 O G1VDD — D1_MCS_B00 Chip Select C20 O G1VDD — D1_MCS_B01 Chip Select F20 O G1VDD — D1_MCS_B02 Chip Select E20 O G1VDD — D1_MCS_B03 Chip Select G20 O G1VDD — D1_MCKE00 Clock Enable A20 O G1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 10 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note D1_MCKE01 Clock Enable C19 O G1VDD — D1_MCK00 Clock A19 O G1VDD — D1_MCK01 Clock C18 O G1VDD — D1_MCK02 Clock A17 O G1VDD — D1_MCK_B00 Clock Complements B19 O G1VDD — D1_MCK_B01 Clock Complements D18 O G1VDD — D1_MCK_B02 Clock Complements B17 O G1VDD — D1_MODT00 On Die Termination E21 O G1VDD — D1_MODT01 On Die Termination G21 O G1VDD — D1_MDIC00 Driver Impedence Calibration A18 I/O VSS 14 D1_MDIC01 Driver Impedence Calibration G18 I/O G1VDD 14 D1_MECC00 ECC data E10 I/O G1VDD — D1_MECC01 ECC data G10 I/O G1VDD — D1_MECC02 ECC data E9 I/O G1VDD — D1_MECC03 ECC data F9 I/O G1VDD — D1_MECC04 ECC data D8 I/O G1VDD — D1_MECC05 ECC data G9 I/O G1VDD — D1_MECC06 ECC data C8 I/O G1VDD — D1_MECC07 ECC data F11 I/O G1VDD — D1_MDQS08 ECC Strobe B10 I/O G1VDD — D1_MDQS_B08 ECC Strobe A10 I/O G1VDD — D1_MDM08 ECC Data Mask F10 O G1VDD — DDR 2 (DSP) D2_MDQ00 Data AB10 I/O G2VDD — D2_MDQ01 Data AD7 I/O G2VDD — D2_MDQ02 Data AC9 I/O G2VDD — D2_MDQ03 Data AC8 I/O G2VDD — D2_MDQ04 Data AB11 I/O G2VDD — D2_MDQ05 Data AB9 I/O G2VDD — D2_MDQ06 Data AC7 I/O G2VDD — D2_MDQ07 Data AC11 I/O G2VDD — D2_MDQ08 Data AF6 I/O G2VDD — D2_MDQ09 Data AH9 I/O G2VDD — D2_MDQ10 Data AD8 I/O G2VDD — D2_MDQ11 Data AH10 I/O G2VDD — D2_MDQ12 Data AH7 I/O G2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 11 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note D2_MDQ13 Data AF9 I/O G2VDD — D2_MDQ14 Data AF8 I/O G2VDD — D2_MDQ15 Data AE9 I/O G2VDD — D2_MDQ16 Data AG13 I/O G2VDD — D2_MDQ17 Data AD11 I/O G2VDD — D2_MDQ18 Data AD10 I/O G2VDD — D2_MDQ19 Data AG10 I/O G2VDD — D2_MDQ20 Data AE12 I/O G2VDD — D2_MDQ21 Data AF12 I/O G2VDD — D2_MDQ22 Data AH13 I/O G2VDD — D2_MDQ23 Data AF11 I/O G2VDD — D2_MDQ24 Data AD14 I/O G2VDD — D2_MDQ25 Data AC12 I/O G2VDD — D2_MDQ26 Data AC14 I/O G2VDD — D2_MDQ27 Data AB14 I/O G2VDD — D2_MDQ28 Data AB12 I/O G2VDD — D2_MDQ29 Data AD15 I/O G2VDD — D2_MDQ30 Data AD12 I/O G2VDD — D2_MDQ31 Data AC13 I/O G2VDD — D2_MDM00 Data Mask AB8 O G2VDD — D2_MDM01 Data Mask AD9 O G2VDD — D2_MDM02 Data Mask AH12 O G2VDD — D2_MDM03 Data Mask AB13 O G2VDD — D2_MDQS00 Data Strobe AG8 I/O G2VDD — D2_MDQS01 Data Strobe AE10 I/O G2VDD — D2_MDQS02 Data Strobe AG11 I/O G2VDD — D2_MDQS03 Data Strobe AE13 I/O G2VDD — D2_MDQS_B00 Data Strobe AH8 I/O G2VDD — D2_MDQS_B01 Data Strobe AF10 I/O G2VDD — D2_MDQS_B02 Data Strobe AH11 I/O G2VDD — D2_MDQS_B03 Data Strobe AF13 I/O G2VDD — D2_MBA00 Bank Select AC2 O G2VDD — D2_MBA01 Bank Select AB4 O G2VDD — D2_MBA02 Bank Select AB3 O G2VDD — D2_MA00 Address AB6 O G2VDD — D2_MA01 Address AA5 O G2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 12 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note D2_MA02 Address AB2 O G2VDD — D2_MA03 Address AG2 O G2VDD — D2_MA04 Address AA3 O G2VDD — D2_MA05 Address AG1 O G2VDD — D2_MA06 Address AE3 O G2VDD — D2_MA07 Address AF1 O G2VDD — D2_MA08 Address AC1 O G2VDD — D2_MA09 Address AD2 O G2VDD — D2_MA10 Address AA4 O G2VDD — D2_MA11 Address AD3 O G2VDD — D2_MA12 Address AC4 O G2VDD — D2_MA13 Address AD5 O G2VDD — D2_MA14 Address AE2 O G2VDD — D2_MA15 Address AE1 O G2VDD — D2_MWE_B Write Enable AC6 O G2VDD — D2_MRAS_B Row Address Strobe AD4 O G2VDD — D2_MCAS_B Column Address Strobe AC5 O G2VDD — D2_MCS_B00 Chip Select AA6 O G2VDD — D2_MCS_B01 Chip Select AA7 O G2VDD — D2_MCS_B02 Chip Select AF3 O G2VDD — D2_MCS_B03 Chip Select AF4 O G2VDD — D2_MCKE00 Clock Enable AH3 O G2VDD — D2_MCKE01 Clock Enable AH5 O G2VDD — D2_MCK00 Clock AE5 O G2VDD — D2_MCK01 Clock AG6 O G2VDD — D2_MCK02 Clock AE7 O G2VDD — D2_MCK_B00 Clock Complements AF5 O G2VDD — D2_MCK_B01 Clock Complements AH6 O G2VDD — D2_MCK_B02 Clock Complements AF7 O G2VDD — D2_MODT00 On Die Termination AH2 O G2VDD — D2_MODT01 On Die Termination AG3 O G2VDD — D2_MDIC00 Driver Impedence Calibration AE6 I/O VSS 14 D2_MDIC01 Driver Impedence Calibration AG5 I/O G2VDD 14 D2_MECC00 ECC data AE14 I/O G2VDD — D2_MECC01 ECC data AH14 I/O G2VDD — D2_MECC02 ECC data AB15 I/O G2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 13 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note D2_MECC03 ECC data AB16 I/O G2VDD — D2_MECC04 ECC data AC16 I/O G2VDD — D2_MECC05 ECC data AE15 I/O G2VDD — D2_MECC06 ECC data AH16 I/O G2VDD — D2_MECC07 ECC data AG14 I/O G2VDD — D2_MDQS08 ECC Strobe AH15 I/O G2VDD — D2_MDQS_B08 ECC Strobe AG15 I/O G2VDD — D2_MDM08 ECC Data Mask AF15 O G2VDD — Ethernet Management EC_MDC Management Data Clock AA22 O LVDD 2 EC_MDIO Management Data In/Out Y24 I/O LVDD 2 eTSEC 1588 TSEC_1588_CLK_IN 1588 Clock In AB24 I LVDD — TSEC_1588_CLK_OUT/ CLK_OUT 1588 Clock Out AA23 O LVDD — TSEC_1588_TRIG_IN1 1588 Trigger In AA26 I LVDD — TSEC_1588_PULSE_OUT1/ PPS_OUT 1588 Pulse Out AA24 O LVDD 2 IFC IFC_AD00 IFC Muxed Address,Data A27 I/O BVDD 18 IFC_AD01 IFC Muxed Address,Data B28 I/O BVDD 18 IFC_AD02 IFC Muxed Address,Data C28 I/O BVDD 18 IFC_AD03 IFC Muxed Address,Data D26 I/O BVDD 18 IFC_AD04 IFC Muxed Address,Data D27 I/O BVDD 18 IFC_AD05 IFC Muxed Address,Data D28 I/O BVDD 18 IFC_AD06 IFC Muxed Address,Data F25 I/O BVDD 2 IFC_AD07 IFC Muxed Address,Data E26 I/O BVDD 18 IFC_AD08/ GPIO34 IFC Muxed Address,Data E28 I/O BVDD — IFC_AD09/ GPIO35 IFC Muxed Address,Data F27 I/O BVDD — IFC_AD10/ GPIO36 IFC Muxed Address,Data F28 I/O BVDD — IFC_AD11/ GPIO37/ IRQ08 IFC Muxed Address,Data G25 I/O BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 14 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note IFC_AD12/ GPIO38/ IRQ09 IFC Muxed Address,Data G26 I/O BVDD — IFC_AD13/ GPIO39/ IRQ07 IFC Muxed Address,Data G27 I/O BVDD — IFC_AD14/ GPIO40/ IRQ06 IFC Muxed Address,Data G28 I/O BVDD — IFC_AD15/ GPIO41/ TIMER02 IFC Muxed Address,Data H28 I/O BVDD — IFC_ADDR16/ GPO08 IFC Address H26 O BVDD 2 IFC_ADDR17/ GPO09 IFC Address H25 O BVDD 2 IFC_ADDR18/ GPO10 IFC Address H24 O BVDD 2 IFC_ADDR19/ GPO11 IFC Address H22 O BVDD 2 IFC_ADDR20/ GPO12 IFC Address H21 O BVDD 2 IFC_ADDR21/ GPO13 IFC Address J28 O BVDD 2 IFC_ADDR22/ GPO14 IFC Address J27 O BVDD 18 IFC_ADDR23/ GPO15 IFC Address J25 O BVDD 2 IFC_ADDR24/ GPO16 IFC Address J24 O BVDD 2 IFC_ADDR25/ GPO17 IFC Address J23 O BVDD 2 IFC_ADDR26/ GPO18 IFC Address J22 O BVDD 2 IFC_AVD/ GPO54 IFC Address Valid L28 O BVDD 2 IFC_CS_B00/ GPO55 IFC Chip Select K21 O BVDD — IFC_CS_B01/ GPO64 IFC Chip Select K28 O BVDD — IFC_CS_B02/ GPO65 IFC Chip Select L24 O BVDD — IFC_WE_B/ GPO52 IFC Write Enable/GPCM Write Byte Select0/ Generic ASIC i/f Start of Frame L26 O BVDD 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 15 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note IFC_CLE/ GPO48 NAND Command Latch Enable/GPCM Write Byte Select1 L25 O BVDD 18 IFC_OE_B/ GPO49 NOR Output Enable/NAND Read Enable/ GPCM Output Enable/Generic ASIC Interface Read-Write Indicator K23 O BVDD 2 IFC_WP_B/ GPO66 IFC Write Protect K26 O BVDD 18 IFC_RB_B/ GPO50 IFC Read Busy/GPCM External Transreciver/ Generic ASIC i/f Ready Indicator K25 I BVDD — IFC_BCTL/ GPO67 Data Buffer Control K22 O BVDD 18 IFC_CLK00/ GPO68 IFC Clock K27 O BVDD — eSDHC SDHC_CLK/ SIM_CLK/ GPO52 SDHC Clock B27 O BVDD — SDHC_CMD/ SIM_RST_B/ GPIO48 SDHC Command C26 I/O BVDD 15 SDHC_DATA00/ SIM_TRXD/ GPIO49 SDHC Data2 in all modes D25 I/O BVDD 15 SDHC_DATA01/ SIM_SVEN/ GPIO50 SDHC Data1 in 4-bit mode F23 I/O BVDD 15 SDHC_DATA02/ SIM_PD/ GPIO51 SDHC Data2 in 4-bit mode F24 I/O BVDD 15 SDHC_DATA03/ DMA_DDONE_B00/ CKSTP1_IN_B/ GPIO77 SDHC Data3 in 1-bit mode SDHC Data3 in 4-bit mode E25 I/O BVDD 15,16 SDHC_WP/ DMA_DREQ_B00/ CKSTP0_IN_B/ GPIO78 SDHC Write Protect Detect G23 I BVDD — SDHC_CD/ DMA_DACK_B00/ MCP1_B/ GPIO79/ IRQ10 SDHC Card Detect C25 I BVDD — USIM BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 16 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note SDHC_CLK/ SIM_CLK/ GPO52 SIM Clock B27 O BVDD — SDHC_CMD/ SIM_RST_B/ GPIO48 SIM Reset C26 O BVDD 17 SDHC_DATA00/ SIM_TRXD/ GPIO49 SIM TX RX Data D25 I/O BVDD 15 SDHC_DATA01/ SIM_SVEN/ GPIO50 SIM Enable F23 O BVDD 17 SDHC_DATA02/ SIM_PD/ GPIO51 SIM Card Detect F24 I BVDD 17 USIM over SPI1 SPI1_CLK/ SIM_CLK SIM Clock M27 O CVDD — SPI1_MISO/ UART_CTS_B03/ SIM_RST_B/ GPIO55 SIM Reset M22 O CVDD 17 SPI1_CS0_B/ UART_RTS_B03/ SIM_TRXD SIM TX RX Data M28 I/O CVDD 15 SPI1_MOSI/ UART_SIN03/ SIM_SVEN/ GPIO54 SIM Enable L22 O CVDD 17 UART_CTS_B00/ SIM_PD/ TIMER04/ GPIO42/ IRQ04 SIM Card Detect AB27 I OVDD 17 USB USB_CLK/ UART_SIN02/ GPIO69/ IRQ11/ TIMER03 ULPI Clock R24 I CVDD — USB_D07/ UART_SOUT02/ GPIO70 ULPI Data P28 I/O CVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 17 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note USB_D06/ UART_CTS_B02/ GPIO62 ULPI Data P25 I/O CVDD — USB_D05/ UART_RTS_B02/ GPIO63 ULPI Data R22 I/O CVDD — USB_D04/ GPIO00/ IRQ00 ULPI Data P26 I/O CVDD — USB_D03/ GPIO01/ IRQ01 ULPI Data N25 I/O CVDD — USB_D02/ IIC2_SDA/ GPIO71 ULPI Data N26 I/O CVDD — USB_D01/ IIC2_SCL/ GPIO72 ULPI Data N27 I/O CVDD — USB_D00/ IRQ02/ GPIO53 ULPI Data N28 I/O CVDD — USB_STP/ IRQ_OUT_B/ GPO73 ULPI Stop R25 O CVDD — USB_DIR/ GPIO02/ TIMER01/ MCP0_B ULPI Data Direction P24 I CVDD — USB_NXT/ GPIO03/ IRQ03/ TRIG_IN ULPI Next Data Throttle Control R23 I CVDD — USB over ANT2 ANT2_DIO009/ USB_CLK/ GPIO59 ULPI Clock F4 I X2VDD — ANT2_DIO007/ USB_D07/ GPIO32 ULPI Data G3 I/O X2VDD — ANT2_DIO006/ USB_D06/ GPIO31 ULPI Data F1 I/O X2VDD — ANT2_DIO005/ USB_D05/ GPIO30 ULPI Data G5 I/O X2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 18 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT2_DIO004/ USB_D04/ GPIO29 ULPI Data E5 I/O X2VDD — ANT2_DIO003/ USB_D03/ GPIO28 ULPI Data J5 I/O X2VDD — ANT2_DIO002/ USB_D02/ GPIO27 ULPI Data J6 I/O X2VDD — ANT2_DIO001/ USB_D01/ GPIO26 ULPI Data E1 I/O X2VDD — ANT2_DIO000/ USB_D00/ GPIO25 ULPI Data E2 I/O X2VDD — ANT2_ENABLE/ USB_STP ULPI Stop J1 O X2VDD — ANT2_DIO008/ USB_DIR/ GPIO33 ULPI Data Direction F2 I X2VDD — ANT2_DIO010/ USB_NXT/ GPIO60 ULPI Next Data Throttle Control F5 I X2VDD — DUART UART_SOUT00 UART0 Transmit Data Y25 O OVDD 2 UART_SIN00 UART0 Receive Data Y22 I OVDD — UART_CTS_B00/ SIM_PD/ TIMER04/ GPIO42/ IRQ04 UART0 Clear to Send AB27 I OVDD — UART_RTS_B00/ PPS_LED/ GPO43 UART0 Ready to Send AB26 O OVDD 2 UART_SOUT01/ GPO56 UART1 Transmit Data W23 O OVDD 2 UART_SIN01/ GPIO57 UART1 Receive Data Y28 I OVDD — UART_CTS_B01/ SYS_DMA_REQ/ SRESET_B/ GPIO44/ IRQ05 UART1 Clear to Send W22 I OVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 19 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal UART_RTS_B01/ SYS_DMA_DONE/ GPO45/ ANT4_AGC Signal Description UART1 Ready to Send Pin Number Pin Type Power Supply Note Y27 O OVDD 2 UART2 over USB USB_D07/ UART_SOUT02/ GPIO70 UART2 Transmit Data P28 O CVDD — USB_CLK/ UART_SIN02/ GPIO69/ IRQ11/ TIMER03 UART2 Receive Data R24 I CVDD — USB_D06/ UART_CTS_B02/ GPIO62 UART2 Clear to Send P25 I CVDD — USB_D05/ UART_RTS_B02/ GPIO63 UART2 Ready to Send R22 O CVDD — UART3 over SPI1 SPI1_CS1_B/ UART_SOUT03/ GPO74 UART3 Transmit Data M24 O CVDD — SPI1_MOSI/ UART_SIN03/ SIM_SVEN/ GPIO54 UART3 Receive Data L22 I CVDD — SPI1_MISO/ UART_CTS_B03/ SIM_RST_B/ GPIO55 UART3 Clear to Send M22 I CVDD — SPI1_CS0_B/ UART_RTS_B03/ SIM_TRXD UART3 Ready to Send M28 O CVDD — SPI1 SPI1_MOSI/ UART_SIN03/ SIM_SVEN/ GPIO54 SPI Master Out Slave In Data L22 I/O CVDD — SPI1_MISO/ UART_CTS_B03/ SIM_RST_B/ GPIO55 SPI Master In Slave Out Data M22 I CVDD — SPI1_CLK/ SIM_CLK SPI Serial Clock M27 O CVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 20 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note SPI1_CS0_B/ UART_RTS_B03/ SIM_TRXD SPI Slave Select M28 O CVDD — SPI1_CS1_B/ UART_SOUT03/ GPO74 SPI Slave Select M24 O CVDD — SPI1_CS2_B/ CKSTP0_OUT_B/ GPO75 SPI Slave Select M25 O CVDD — SPI1_CS3_B/ CKSTP1_OUT_B/ GPO76 SPI Slave Select M23 O CVDD — SPI2 for RF Interface Control SPI2_CLK SPI Serial Clock E6 O X2VDD — SPI2_MOSI SPI Master Out Slave In Data E7 I/O X2VDD 2 SPI2_MISO SPI Master In Slave Out Data A6 I X2VDD — SPI2_CS0_B SPI Slave Select B7 O X2VDD — SPI2_CS1_B SPI Slave Select A7 O X2VDD — SPI2_CS2_B/ GPO93 SPI Slave Select A8 O X2VDD — SPI2_CS3_B/ GPO94 SPI Slave Select D6 O X2VDD — I2C1 IIC1_SDA/ GPIO46 Serial Data V25 I/O OVDD 5 IIC1_SCL/ GPIO47 Serial Clock V24 I/O OVDD 5 I2C2 USB_D02/ IIC2_SDA/ GPIO71 Serial Data N26 I/O CVDD 5 USB_D01/ IIC2_SCL/ GPIO72 Serial Clock N27 I/O CVDD 5 TDM1 over RF2 ANT2_DIO100/ TDM1_TCK TDM1 Clock H1 I/O X2VDD — ANT2_DIO101/ TDM1_TFS TDM1 Transmit Frame Sync K5 I/O X2VDD — ANT2_DIO103/ TDM1_TXD TDM1 Transmit Data L5 I/O X2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 21 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT2_DIO104/ TDM1_RCK/ GPIO92 TDM1 Receive Clock K4 I/O X2VDD — ANT2_DIO105/ TDM1_RFS/ TIMER08 TDM1 Receive Frame Sync K7 I/O X2VDD — ANT2_DIO102/ TDM1_RXD TDM1 Receive Data J7 I/O X2VDD — TDM2 over RF3 ANT3_RX_CLK/ TDM2_TCK/ GPIO04 TDM2 Clock D1 I/O X2VDD — ANT3_DIO007/ TDM2_TFS TDM2 Transmit Frame Sync B3 I/O X2VDD — ANT3_DIO011/ TDM2_TXD TDM2 Transmit Data B1 I/O X2VDD — ANT3_DIO008/ TDM2_RCK/ CKSTP0_OUT_B TDM2 Receive Clock A2 I/O X2VDD — ANT3_DIO009/ TDM2_RFS/ CKSTP1_OUT_B TDM2 Receive Frame Sync C3 I/O X2VDD — ANT3_DIO010/ TDM2_RXD TDM2 Receive Data D4 I/O X2VDD — SerDes SD_TX03 Tx Data out AE19 O XPADVDD — SD_TX02 Tx Data out AE21 O XPADVDD — SD_TX01 Tx Data out AE23 O XPADVDD — SD_TX00 Tx Data out AE25 O XPADVDD — SD_TX_B03 Tx Data out, inverted AF19 O XPADVDD — SD_TX_B02 Tx Data out, inverted AF21 O XPADVDD — SD_TX_B01 Tx Data out, inverted AF23 O XPADVDD — SD_TX_B00 Tx Data out, inverted AF25 O XPADVDD — SD_RX03 Rx Data in AG18 I XCOREVDD — SD_RX02 Rx Data in AG20 I XCOREVDD — SD_RX01 Rx Data in AG22 I XCOREVDD — SD_RX00 Rx Data in AG24 I XCOREVDD — SD_RX_B03 Rx Data in, Inverted AH18 I XCOREVDD — SD_RX_B02 Rx Data in, Inverted AH20 I XCOREVDD — SD_RX_B01 Rx Data in, Inverted AH22 I XCOREVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 22 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note SD_RX_B00 Rx Data in, Inverted AH24 I XCOREVDD — SD_REF_CLK1 Reference clock AG26 I XCOREVDD — SD_REF_CLK1_B Reference clock, Inverted AH26 I XCOREVDD — SD_REF_CLK2 Reference clock AE17 I XCOREVDD — SD_REF_CLK2_B Reference clock, Inverted AF17 I XCOREVDD — SD_IMP_CAL_TX Transmitter impedance calibration AD18 I XPADVDD 6 SD_IMP_CAL_RX Receiver impedance calibration AD22 I XCOREVDD 6 SD_PLL1_TPA PLL test point analog AB20 O SD1AVDD — SD_PLL1_TPD PLL test point digital AC21 O XPADVDD — SD_PLL2_TPA PLL test point analog AB18 O SD2AVDD — SD_PLL2_TPD PLL test point digital AC19 O XPADVDD — CPRI Signals ANT3_DIO000/ CP_SYNC1 CPRI Sync B6 I/O X2VDD — ANT3_DIO001/ CP_SYNC2 CPRI Sync A5 I/O X2VDD — ANT3_DIO002/ CP_LOS1 CPRI LOS B5 I X2VDD — ANT3_DIO003/ CP_LOS2 CPRI LOS A4 I X2VDD — ANT3_DIO004/ CP_TX_INT_B CPRI Transmit Interrupt C4 O X2VDD — ANT3_DIO006/ CP_RX_INT_B CPRI Receive Interrupt A3 O X2VDD — ANT3_DIO005/ CP_RCLK CPRI Recovered Clock C5 O X2VDD — RF Interface 1 ANT1_REF_CLK Parallel Interface Reference Clock N1 I X1VDD — ANT1_AGC/ GPO58 AGC Control R3 O X1VDD 2 ANT1_TX_CLK/ TSEC_1588_ALARM_OUT2 Transmit Clock P5 O X1VDD — ANT1_RX_CLK/ TSEC_1588_TRIG_IN2/ GPIO95 Receive Clock P2 I X1VDD — ANT1_TXNRX/ TSEC_1588_PULSE_OUT2/ GPO19 TX_RX Control P3 O X1VDD — ANT1_ENABLE/ TSEC_1588_ALARM_OUT1 Antenna Enable P1 O X1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 23 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT1_TX_FRAME/ GPO20 Transmit Frame R4 O X1VDD 4, 13 ANT1_RX_FRAME/ GPIO80 Receive Frame R2 I X1VDD — ANT1_DIO000 Data L7 I/O X1VDD 2 ANT1_DIO001 Data N7 I/O X1VDD 2, 4 ANT1_DIO002 Data P7 I/O X1VDD 2 ANT1_DIO003 Data N5 I/O X1VDD 2 ANT1_DIO004 Data M7 I/O X1VDD ANT1_DIO005 Data M6 I/O X1VDD ANT1_DIO006 Data N6 I/O X1VDD 2 ANT1_DIO007 Data M3 I/O X1VDD 2 ANT1_DIO008 Data M2 I/O X1VDD 2 ANT1_DIO009 Data M5 I/O X1VDD 2 ANT1_DIO010 Data M1 I/O X1VDD 2 ANT1_DIO011 Data N3 I/O X1VDD 2 ANT1_DIO100/ GPIO81 Data P4 I X1VDD — ANT1_DIO101/ GPIO82 Data R1 I X1VDD — ANT1_DIO102/ GPIO83 Data R5 I X1VDD — ANT1_DIO103/ GPIO84 Data R7 I X1VDD — ANT1_DIO104/ GPIO85 Data T1 I X1VDD — ANT1_DIO105/ GPIO86 Data T3 I X1VDD — ANT1_DIO106/ GPIO87/ IRQ10 Data T5 I X1VDD — ANT1_DIO107/ GPIO88/ IRQ11 Data T6 I X1VDD — ANT1_DIO108/ GPIO21/ IRQ08 Data T7 I X1VDD — ANT1_DIO109/ GPIO22/ IRQ09 Data U1 I X1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 24 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT1_DIO110/ TIMER06/ GPIO23 Data U2 I X1VDD — ANT1_DIO111/ TIMER07/ GPIO24 Data U3 I X1VDD — RF Interface 2 ANT2_REF_CLK/ ANT3_AGC Parallel Interface Reference Clock K1 I X2VDD — ANT2_AGC/ GPO89 AGC Control G1 O X2VDD 2 ANT2_TX_CLK/ GPO90 Transmit Clock H5 O X2VDD — ANT2_RX_CLK/ GPIO91 Receive Clock J3 I X2VDD — ANT2_TXNRX/ DMA_DACK_B00 TX_RX Control H2 O X2VDD — ANT2_ENABLE/ USB_STP Antenna Enable J1 O X2VDD — ANT2_TX_FRAME/ DMA_DDONE_B00 Transmit Frame G4 O X2VDD 4, 13 ANT2_RX_FRAME/ DMA_DREQ_B00 Receive Frame H3 I X2VDD — ANT2_DIO000/ USB_D00/ GPIO25 Data E2 I/O X2VDD — ANT2_DIO001/ USB_D01/ GPIO26 Data E1 I/O X2VDD — ANT2_DIO002/ USB_D02/ GPIO27 Data J6 I/O X2VDD — ANT2_DIO003/ USB_D03/ GPIO28 Data J5 I/O X2VDD — ANT2_DIO004/ USB_D04/ GPIO29 Data E5 I/O X2VDD — ANT2_DIO005/ USB_D05/ GPIO30 Data G5 I/O X2VDD — ANT2_DIO006/ USB_D06/ GPIO31 Data F1 I/O X2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 25 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT2_DIO007/ USB_D07/ GPIO32 Data G3 I/O X2VDD — ANT2_DIO008/ USB_DIR/ GPIO33 Data F2 I/O X2VDD — ANT2_DIO009/ USB_CLK/ GPIO59 Data F4 I/O X2VDD — ANT2_DIO010/ USB_NXT/ GPIO60 Data F5 I/O X2VDD — ANT2_DIO011/ GPIO61 Data F3 I/O X2VDD — ANT2_DIO100/ TDM1_TCK Data H1 I X2VDD — ANT2_DIO101/ TDM1_TFS Data K5 I X2VDD — ANT2_DIO102/ TDM1_RXD Data J7 I X2VDD — ANT2_DIO103/ TDM1_TXD Data L5 I X2VDD — ANT2_DIO104/ TDM1_RCK/ GPIO92 Data K4 I X2VDD — ANT2_DIO105/ TDM1_RFS/ TIMER08 Data K7 I X2VDD — ANT2_DIO106/ IRQ04 Data L4 I X2VDD — ANT2_DIO107/ IRQ05 Data K3 I X2VDD — ANT2_DIO108/ IRQ06 Data L2 I X2VDD — ANT2_DIO109/ IRQ07 Data J2 I X2VDD — ANT2_DIO110 Data L3 I X2VDD — ANT2_DIO111 Data L1 I X2VDD — RF Interface 3 ANT2_REF_CLK/ ANT3_AGC AGC K1 O X2VDD — ANT3_TX_CLK Transmit Clock D3 O X2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 26 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT3_RX_CLK/ TDM2_TCK/ GPIO04 Receive Clock D1 I X2VDD — ANT3_TXNRX TX_RX Control C1 O X2VDD — ANT3_ENABLE Antenna Enable D5 O X2VDD — ANT3_TX_FRAME Transmit Frame E3 O X2VDD 2 ANT3_RX_FRAME/ GPIO05 Receive Frame C2 I X2VDD — ANT3_DIO000/ CP_SYNC1 Data B6 I/O X2VDD — ANT3_DIO001/ CP_SYNC2 Data A5 I/O X2VDD 4, 13 ANT3_DIO002/ CP_LOS1 Data B5 I/O X2VDD 4, 13 ANT3_DIO003/ CP_LOS2 Data A4 I/O X2VDD 4, 13 ANT3_DIO004/ CP_TX_INT_B Data C4 I/O X2VDD 4, 13 ANT3_DIO005/ CP_RCLK Data C5 I/O X2VDD 4, 13 ANT3_DIO006/ CP_RX_INT_B Data A3 I/O X2VDD 4, 13 ANT3_DIO007/ TDM2_TFS Data B3 I/O X2VDD — ANT3_DIO008/ TDM2_RCK/ CKSTP0_OUT_B Data A2 I/O X2VDD — ANT3_DIO009/ TDM2_RFS/ CKSTP1_OUT_B Data C3 I/O X2VDD 4, 13 ANT3_DIO010/ TDM2_RXD Data D4 I/O X2VDD 4, 13 ANT3_DIO011/ TDM2_TXD Data B1 I/O X2VDD — RF Interface 4 UART_RTS_B01/ SYS_DMA_DONE/ GPO45/ ANT4_AGC AGC Y27 O OVDD — ANT4_TX_CLK Transmit Clock W7 O X1VDD — ANT4_RX_CLK/ GPIO04/ TRIG_IN Receive Clock W5 I X1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 27 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT4_TXNRX TX_RX Control Y6 O X1VDD — ANT4_ENABLE/ SYS_DMA_DONE Antenna Enable Y2 O X1VDD — ANT4_TX_FRAME/ GPO06 Transmit Frame Y3 O X1VDD 2 ANT4_RX_FRAME/ GPIO05 Receive Frame Y5 I X1VDD — ANT4_DIO000/ TIMER05 Data U5 I/O X1VDD — ANT4_DIO001/ SYS_DMA_REQ Data U6 I/O X1VDD — ANT4_DIO002/ IRQ00 Data V1 I/O X1VDD — ANT4_DIO003/ IRQ01 Data V4 I/O X1VDD — ANT4_DIO004/ IRQ02 Data V2 I/O X1VDD — ANT4_DIO005/ IRQ03 Data V3 I/O X1VDD — ANT4_DIO006/ IRQ_OUT_B Data U7 I/O X1VDD — ANT4_DIO007/ MCP1_B Data V5 I/O X1VDD — ANT4_DIO008/ MCP0_B Data V7 I/O X1VDD — ANT4_DIO009/ CKSTP0_IN_B Data W1 I/O X1VDD — ANT4_DIO010/ CKSTP1_IN_B Data W3 I/O X1VDD — ANT4_DIO011/ SRESET_B Data W4 I/O X1VDD — System Control/Power Management HRESET_REQ_B Hard Reset Request Out T27 O OVDD 4 UART_CTS_B01/ SYS_DMA_REQ/ SRESET_B/ GPIO44/ IRQ05 Soft Reset over UART W22 I OVDD — ANT4_DIO011/ SRESET_B Soft Reset over RF 4 W4 I X1VDD — SPI1_CS2_B/ CKSTP0_OUT_B/ GPO75 Checkstop Out M25 O CVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 28 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note SPI1_CS3_B/ CKSTP1_OUT_B/ GPO76 Checkstop Out M23 O CVDD — READY/ ASLEEP/ READY_P1 Ready/Trigger Out/Asleep U21 O OVDD 2 UDE_B0 Unconditional Debug Event T21 I OVDD — UDE_B1 Unconditional Debug Event T22 I OVDD — EE0 DSP Debug Request T26 I OVDD — EE1 DSP Debug Acknowledge T25 O OVDD 2 TMP_DETECT Tamper Detect T23 I OVDD — UART_RTS_B00/ PPS_LED/ GPO43 UART0 Ready to Send AB26 O OVDD — AE28 I OVDD — Clocking SYSCLK System Clock D1_DDRCLK DDR PLL Reference Clock V28 I OVDD — D2_DDRCLK DDR PLL Reference Clock AC28 I OVDD — RTC Real Time Clock AG28 I OVDD — DSP_CLKIN DSP PLL Reference Clock W26 I OVDD — TSEC_1588_PULSE_OUT1/ PPS_OUT PPS Pulse Out AA24 O LVDD 2 I/O Voltage Select BVDD_VSEL00 BVDD Voltage Selection AB23 I OVDD — BVDD_VSEL01 BVDD Voltage Selection AA27 I OVDD — CVDD_VSEL CVDD Voltage Selection W25 I OVDD — LVDD_VSEL LVDD Voltage Selection AD26 I OVDD — XVDD1_VSEL XVDD 1 Voltage Selection AC27 I OVDD — XVDD2_VSEL XVDD 2 Voltage Selection AD28 I OVDD — Test SCAN_MODE_B Scan Mode R28 I OVDD 1 CFG_0_JTAG_MODE JTAG mode selection 0 U22 I OVDD 10 CFG_1_JTAG_MODE JTAG mode selection 1 V22 I OVDD 10 TEST_SEL_B Test Select U28 I OVDD 11 JTAG (Power Architecture) TCK Test Clock V23 I OVDD TDI Test Data In U26 I OVDD 3 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 29 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note TDO Test Data Out U25 O OVDD — TMS Test Mode Select U24 I OVDD 3 TRST_B Test Reset T28 I OVDD 3 JTAG (DSP) DSP_TCK Test Clock AA28 I OVDD — DSP_TDI Test Data In AC25 I OVDD 3 DSP_TDO Test Data Out AC24 O OVDD — DSP_TMS Test Mode Select AC26 I OVDD 3 DSP_TRST_B Test Reset AB25 I OVDD 3 Analog D1_MVREF DDR Reference Voltage J17 I G1VDD — D2_MVREF DDR Reference Voltage Y12 I G2VDD — TEMP_ANODE Temperature Diode Anode V27 I — 9 TEMP_CATHODE Temperature Diode Cathode W27 I — 9 SENSEVDD VDD Sensing Pin—MAPLE J13 I — — SENSEVDDC VDD Sensing Pin L20 I — — SENSEVSS GND Sensing Pin R20 I — — Timers USB_DIR/ GPIO02/ TIMER01/ MCP0_B Timer 1 P24 I/O CVDD — IFC_AD15/ GPIO41/ TIMER02 Timer 2 H28 I/O BVDD — USB_CLK/ UART_SIN02/ GPIO69/ IRQ11/ TIMER03 Timer 3 R24 I/O CVDD — UART_CTS_B00/ SIM_PD/ TIMER04/ GPIO42/ IRQ04 Timer 4 AB27 I/O OVDD — ANT4_DIO000/ TIMER05 Timer 5 U5 I/O X1VDD — ANT1_DIO110/ TIMER06/ GPIO23 Timer 6 U2 I/O X1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 30 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT1_DIO111/ TIMER07/ GPIO24 Timer 7 U3 I/O X1VDD — ANT2_DIO105/ TDM1_RFS/ TIMER08 Timer 8 K7 I/O X2VDD — OCeaN DMA SDHC_DATA03/ DMA_DDONE_B00/ CKSTP1_IN_B/ GPIO77 DMA done E25 I/O BVDD ANT2_TX_FRAME/ DMA_DDONE_B00 DMA done G4 O X2VDD SDHC_WP/ DMA_DREQ_B00/ CKSTP0_IN_B/ GPIO78 DMA request G23 I BVDD — ANT2_RX_FRAME/ DMA_DREQ_B00 DMA request H3 I X2VDD — SDHC_CD/ DMA_DACK_B00/ MCP1_B/ GPIO79/ IRQ10 DMA acknowledge C25 O BVDD — ANT2_TXNRX/ DMA_DACK_B00 DMA acknowledge H2 O X2VDD — System DMA ANT4_ENABLE/ SYS_DMA_DONE System DMA done Y2 O X1VDD — UART_RTS_B01/ SYS_DMA_DONE/ GPO45/ ANT4_AGC System DMA done Y27 O OVDD — UART_CTS_B01/ SYS_DMA_REQ/ SRESET_B/ GPIO44/ IRQ05 System DMA request W22 I OVDD — ANT4_DIO001/ SYS_DMA_REQ System DMA request U6 I X1VDD — P26 I CVDD — Interrupts USB_D04/ GPIO00/ IRQ00 External Interrupt BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 31 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT4_DIO002/ IRQ00 External Interrupt V1 I X1VDD — USB_D03/ GPIO01/ IRQ01 External Interrupt N25 I CVDD — ANT4_DIO003/ IRQ01 External Interrupt V4 I X1VDD — USB_D00/ IRQ02/ GPIO53 External Interrupt N28 I CVDD — ANT4_DIO004/ IRQ02 External Interrupt V2 I X1VDD — USB_NXT/ GPIO03/ IRQ03/ TRIG_IN External Interrupt R23 I CVDD — ANT4_DIO005/ IRQ03 External Interrupt V3 I X1VDD — UART_CTS_B00/ SIM_PD/ TIMER04/ GPIO42/ IRQ04 External Interrupt AB27 I OVDD — ANT2_DIO106/ IRQ04 External Interrupt L4 I X2VDD — UART_CTS_B01/ SYS_DMA_REQ/ SRESET_B/ GPIO44/ IRQ05 External Interrupt W22 I OVDD — ANT2_DIO107/ IRQ05 External Interrupt K3 I X2VDD — IFC_AD14/ GPIO40/ IRQ06 External Interrupt G28 I BVDD — ANT2_DIO108/ IRQ06 External Interrupt L2 I X2VDD — IFC_AD13/ GPIO39/ IRQ07 External Interrupt G27 I BVDD — ANT2_DIO109/ IRQ07 External Interrupt J2 I X2VDD — IFC_AD11/ GPIO37/ IRQ08 External Interrupt G25 I BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 32 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT1_DIO108/ GPIO21/ IRQ08 External Interrupt T7 I X1VDD — IFC_AD12/ GPIO38/ IRQ09 External Interrupt G26 I BVDD — ANT1_DIO109/ GPIO22/ IRQ09 External Interrupt U1 I X1VDD — SDHC_CD/ DMA_DACK_B00/ MCP1_B/ GPIO79/ IRQ10 External Interrupt C25 I BVDD — ANT1_DIO106/ GPIO87/ IRQ10 External Interrupt T5 I X1VDD — USB_CLK/ UART_SIN02/ GPIO69/ IRQ11/ TIMER03 External Interrupt R24 I CVDD — ANT1_DIO107/ GPIO88/ IRQ11 External Interrupt T6 I X1VDD — USB_STP/ IRQ_OUT_B/ GPO73 Interrupt Output R25 O CVDD — ANT4_DIO006/ IRQ_OUT_B Interrupt Output U7 O X1VDD — GPIO USB_D04/ GPIO00/ IRQ00 General Purpose I/O P26 I/O CVDD — USB_D03/ GPIO01/ IRQ01 General Purpose I/O N25 I/O CVDD — USB_DIR/ GPIO02/ TIMER01/ MCP0_B General Purpose I/O P24 I/O CVDD — USB_NXT/ GPIO03/ IRQ03/ TRIG_IN General Purpose I/O R23 I/O CVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 33 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT3_RX_CLK/ TDM2_TCK/ GPIO04 General Purpose I/O D1 I/O X2VDD — ANT4_RX_FRAME/ GPIO05 General Purpose I/O Y5 I/O X1VDD — ANT1_DIO108/ GPIO21/ IRQ08 General Purpose I/O T7 I/O X1VDD — ANT1_DIO109/ GPIO22/ IRQ09 General Purpose I/O U1 I/O X1VDD — ANT1_DIO110/ TIMER06/ GPIO23 General Purpose I/O U2 I/O X1VDD — ANT1_DIO111/ TIMER07/ GPIO24 General Purpose I/O U3 I/O X1VDD — ANT2_DIO000/ USB_D00/ GPIO25 General Purpose I/O E2 I/O X2VDD — ANT2_DIO001/ USB_D01/ GPIO26 General Purpose I/O E1 I/O X2VDD — ANT2_DIO002/ USB_D02/ GPIO27 General Purpose I/O J6 I/O X2VDD — ANT2_DIO003/ USB_D03/ GPIO28 General Purpose I/O J5 I/O X2VDD — ANT2_DIO004/ USB_D04/ GPIO29 General Purpose I/O E5 I/O X2VDD — ANT2_DIO005/ USB_D05/ GPIO30 General Purpose I/O G5 I/O X2VDD — ANT2_DIO006/ USB_D06/ GPIO31 General Purpose I/O F1 I/O X2VDD — ANT2_DIO007/ USB_D07/ GPIO32 General Purpose I/O G3 I/O X2VDD — ANT2_DIO008/ USB_DIR/ GPIO33 General Purpose I/O F2 I/O X2VDD — IFC_AD08/ GPIO34 General Purpose I/O E28 I/O BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 34 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note IFC_AD09/ GPIO35 General Purpose I/O F27 I/O BVDD — IFC_AD10/ GPIO36 General Purpose I/O F28 I/O BVDD — IFC_AD11/ GPIO37/ IRQ08 General Purpose I/O G25 I/O BVDD — IFC_AD12/ GPIO38/ IRQ09 General Purpose I/O G26 I/O BVDD — IFC_AD13/ GPIO39/ IRQ07 General Purpose I/O G27 I/O BVDD — IFC_AD14/ GPIO40/ IRQ06 General Purpose I/O G28 I/O BVDD — IFC_AD15/ GPIO41/ TIMER02 General Purpose I/O H28 I/O BVDD — UART_CTS_B00/ SIM_PD/ TIMER04/ GPIO42/ IRQ04 General Purpose I/O AB27 I/O OVDD — UART_CTS_B01/ SYS_DMA_REQ/ SRESET_B/ GPIO44/ IRQ05 General Purpose I/O W22 I/O OVDD — IIC1_SDA/ GPIO46 General Purpose I/O V25 I/O OVDD — IIC1_SCL/ GPIO47 General Purpose I/O V24 I/O OVDD — SDHC_CMD/ SIM_RST_B/ GPIO48 General Purpose I/O C26 I/O BVDD — SDHC_DATA00/ SIM_TRXD/ GPIO49 General Purpose I/O D25 I/O BVDD — SDHC_DATA01/ SIM_SVEN/ GPIO50 General Purpose I/O F23 I/O BVDD — SDHC_DATA02/ SIM_PD/ GPIO51 General Purpose I/O F24 I/O BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 35 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note USB_D00/ IRQ02/ GPIO53 General Purpose I/O N28 I/O CVDD — SPI1_MOSI/ UART_SIN03/ SIM_SVEN/ GPIO54 General Purpose I/O L22 I/O CVDD — SPI1_MISO/ UART_CTS_B03/ SIM_RST_B/ GPIO55 General Purpose I/O M22 I/O CVDD — UART_SIN01/ GPIO57 General Purpose I/O Y28 I/O OVDD — ANT2_DIO009/ USB_CLK/ GPIO59 General Purpose I/O F4 I/O X2VDD — ANT2_DIO010/ USB_NXT/ GPIO60 General Purpose I/O F5 I/O X2VDD — ANT2_DIO011/ GPIO61 General Purpose I/O F3 I/O X2VDD — USB_D06/ UART_CTS_B02/ GPIO62 General Purpose I/O P25 I/O CVDD — USB_D05/ UART_RTS_B02/ GPIO63 General Purpose I/O R22 I/O CVDD — USB_CLK/ UART_SIN02/ GPIO69/ IRQ11/ TIMER03 General Purpose I/O R24 I/O CVDD — USB_D07/ UART_SOUT02/ GPIO70 General Purpose I/O P28 I/O CVDD — USB_D02/ IIC2_SDA/ GPIO71 General Purpose I/O N26 I/O CVDD — USB_D01/ IIC2_SCL/ GPIO72 General Purpose I/O N27 I/O CVDD — SDHC_DATA03/ DMA_DDONE_B00/ CKSTP1_IN_B/ GPIO77 General Purpose I/O E25 I/O BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 36 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note SDHC_WP/ DMA_DREQ_B00/ CKSTP0_IN_B/ GPIO78 General Purpose I/O G23 I/O BVDD — SDHC_CD/ DMA_DACK_B00/ MCP1_B/ GPIO79/ IRQ10 General Purpose I/O C25 I/O BVDD — ANT1_RX_FRAME/ GPIO80 General Purpose I/O R2 I/O X1VDD — ANT1_DIO100/ GPIO81 General Purpose I/O P4 I/O X1VDD — ANT1_DIO101/ GPIO82 General Purpose I/O R1 I/O X1VDD — ANT1_DIO102/ GPIO83 General Purpose I/O R5 I/O X1VDD — ANT1_DIO103/ GPIO84 General Purpose I/O R7 I/O X1VDD — ANT1_DIO104/ GPIO85 General Purpose I/O T1 I/O X1VDD — ANT1_DIO105/ GPIO86 General Purpose I/O T3 I/O X1VDD — ANT1_DIO106/ GPIO87/ IRQ10 General Purpose I/O T5 I/O X1VDD — ANT1_DIO107/ GPIO88/ IRQ11 General Purpose I/O T6 I/O X1VDD — ANT2_RX_CLK/ GPIO91 General Purpose I/O J3 I/O X2VDD — ANT2_DIO104/ TDM1_RCK/ GPIO92 General Purpose I/O K4 I/O X2VDD — ANT1_RX_CLK/ TSEC_1588_TRIG_IN2/ GPIO95 General Purpose I/O P2 I/O X1VDD — GPO ANT4_TX_FRAME/ GPO06 General Purpose Output Y3 O X1VDD — IFC_ADDR16/ GPO08 General Purpose Output H26 O BVDD — IFC_ADDR17/ GPO09 General Purpose Output H25 O BVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 37 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note IFC_ADDR18/ GPO10 General Purpose Output H24 O BVDD — IFC_ADDR19/ GPO11 General Purpose Output H22 O BVDD — IFC_ADDR20/ GPO12 General Purpose Output H21 O BVDD — IFC_ADDR21/ GPO13 General Purpose Output J28 O BVDD — IFC_ADDR22/ GPO14 General Purpose Output J27 O BVDD — IFC_ADDR23/ GPO15 General Purpose Output J25 O BVDD — IFC_ADDR24/ GPO16 General Purpose Output J24 O BVDD — IFC_ADDR25/ GPO17 General Purpose Output J23 O BVDD — IFC_ADDR26/ GPO18 General Purpose Output J22 O BVDD — ANT1_TXNRX/ TSEC_1588_PULSE_OUT2/ GPO19 General Purpose Output P3 O X1VDD — ANT1_TX_FRAME/ GPO20 General Purpose Output R4 O X1VDD — UART_RTS_B00/ PPS_LED/ GPO43 General Purpose Output AB26 O OVDD — UART_RTS_B01/ SYS_DMA_DONE/ GPO45/ ANT4_AGC General Purpose Output Y27 O OVDD — IFC_CLE/ GPO48 General Purpose Output L25 O BVDD — IFC_OE_B/ GPO49 General Purpose Output K23 O BVDD — IFC_RB_B/ GPO50 General Purpose Output K25 O BVDD — IFC_WE_B/ GPO52 General Purpose Output L26 O BVDD — IFC_AVD/ GPO54 General Purpose Output L28 O BVDD — IFC_CS_B00/ GPO55 General Purpose Output K21 O BVDD — UART_SOUT01/ GPO56 General Purpose Output W23 O OVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 38 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note ANT1_AGC/ GPO58 General Purpose Output R3 O X1VDD — IFC_CS_B01/ GPO64 General Purpose Output K28 O BVDD — IFC_CS_B02/ GPO65 General Purpose Output L24 O BVDD — IFC_WP_B/ GPO66 General Purpose Output K26 O BVDD — IFC_BCTL/ GPO67 General Purpose Output K22 O BVDD — IFC_CLK00/ GPO68 General Purpose Output K27 O BVDD — USB_STP/ IRQ_OUT_B/ GPO73 General Purpose Output R25 O CVDD — SPI1_CS1_B/ UART_SOUT03/ GPO74 General Purpose Output M24 O CVDD — SPI1_CS2_B/ CKSTP0_OUT_B/ GPO75 General Purpose Output M25 O CVDD — SPI1_CS3_B/ CKSTP1_OUT_B/ GPO76 General Purpose Output M23 O CVDD — ANT2_AGC/ GPO89 General Purpose Output G1 O X2VDD — ANT2_TX_CLK/ GPO90 General Purpose Output H5 O X2VDD — SPI2_CS2_B/ GPO93 General Purpose Output A8 O X2VDD — SPI2_CS3_B/ GPO94 General Purpose Output D6 O X2VDD — Power-On-Reset Configuration cfg_dsp_pll[0]/IFC_AD00 CCB Clock PLL Ratios A27 I BVDD 2 cfg_dsp_pll[1]/IFC_AD01 CCB Clock PLL Ratios B28 I BVDD 2 cfg_dsp_pll[2]/IFC_AD02 CCB Clock PLL Ratios C28 I BVDD 2 cfg_core0_pll[0]/IFC_AD03 e500 Core 0 PLL Ratios D26 I BVDD 2 cfg_core0_pll[1]/IFC_AD04 e500 Core 0 PLL Ratios D27 I BVDD 2 cfg_core0_pll[2]/IFC_AD05 e500 Core 0 PLL Ratios D28 I BVDD 2 cfg_core1_pll[0]/IFC_CLE/ GPO48 e500 Core 1 PLL Ratios L25 I BVDD 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 39 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note cfg_core1_pll[1]/IFC_BCTL/ GPO67 e500 Core 1 PLL Ratios K22 I BVDD 2 cfg_core1_pll[2]/IFC_WP_B/ GPO66 e500 Core 1 PLL Ratios K26 I BVDD 2 cfg_d1_ddr_pll[0]/IFC_AD07 DDR Complex Clock PLL Ratios E26 I BVDD 2 cfg_d1_ddr_pll[1]/ IFC_ADDR22/GPO14 DDR Complex Clock PLL Ratios J27 I BVDD 2 cfg_core0_speed/IFC_AD06 Core 0 Speed F25 I BVDD 2 cfg_core1_speed/EC_MDIO Core 1 Speed Y24 I LVDD 2 cfg_dsp_pll[0]/EC_MDC DSP Subsystem PLL Configurations AA22 I LVDD 2 cfg_dsp_pll[1]/IFC_ADDR16/ GPO08 DSP Subsystem PLL Configurations H26 I BVDD 2 cfg_dsp_pll[2]/IFC_ADDR17/ GPO09 DSP Subsystem PLL Configurations H25 I BVDD 2 cfg_dsp_pll[3]/IFC_ADDR18/ GPO10 DSP Subsystem PLL Configurations H24 I BVDD 2 cfg_dsp_pll[4]/ TSEC_1588_CLK_OUT/ CLK_OUT DSP Subsystem PLL Configurations AA23 I LVDD 2 H22 I BVDD 2 AA24 I LVDD 2 cfg_boot_seq[0]/IFC_ADDR19/ Boot Sequencer Configuration GPO11 cfg_boot_seq[1]/ TSEC_1588_PULSE_OUT1/ PPS_OUT Boot Sequencer Configuration cfg_plat_speed/IFC_ADDR20/ GPO12 Platform Speed H21 I BVDD 2 cfg_sys_speed/IFC_ADDR21/ GPO13 System Speed J28 I BVDD 2 cfg_ifc_pb[0]/IFC_ADDR23/ GPO15 IFC Pages Per Block J25 I BVDD 2 cfg_ifc_pb[1]/IFC_ADDR25/ GPO17 IFC Pages Per Block J23 I BVDD 2 cfg_ifc_pb[2]/IFC_ADDR26/ GPO18 IFC Pages Per Block J22 I BVDD 2 cfg_d1_ddr_speed[0]/ IFC_ADDR24/GPO16 DDR Speed J24 I BVDD 2 cfg_d1_ddr_speed[1]/ UART_SOUT00 DDR Speed Y25 I OVDD 2 cfg_cpu0_boot/IFC_OE_B/ GPO49 CPU Boot Configuration K23 I BVDD 2 cfg_d1_dram_type/IFC_AVD/ GPO54 DDR1 DRAM Type L28 I BVDD 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 40 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note R3 I X1VDD 2 cfg_d2_dram_type/ ANT1_AGC/ GPO58 DDR2 DRAM Type cfg_ifc_ecc[0]/ UART_RTS_B00/ PPS_LED/GPO43 IFC ECC Enable Configuration AB26 I OVDD 2 cfg_ifc_ecc[1]/UART_SOUT01/ GPO56 IFC ECC Enable Configuration W23 I OVDD 2 cfg_host_agt/UART_RTS_B01/ SYS_DMA_DONE/ GPO45/ ANT4_AGC Host/Agent Configuration Y27 I OVDD 2 cfg_ifc_adm_mode/IFC_WE_B/ IFC Address Shift Mode Configuration GPO52 L26 I BVDD 2 cfg_ifc_flash_mode/EE1 IFC Flash Mode Configuration T25 I OVDD 2 cfg_srds_io_ports[0]/READY/ ASLEEP/READY_P1 SerDes I/O Port Selection U21 I OVDD 2 cfg_srds_io_ports[1]/ ANT1_DIO000 SerDes I/O Port Selection L7 I X1VDD 2 cfg_srds_io_ports[2]/ ANT1_DIO010 SerDes I/O Port Selection M1 I X1VDD 2 cfg_srds_io_ports[3]/ ANT1_DIO011 SerDes I/O Port Selection N3 I X1VDD 2 cfg_srds_io_ports[4]/ ANT3_TX_FRAME SerDes I/O Port Selection E3 I X2VDD 2 cfg_srds_io_ports[5]/ ANT4_TX_FRAME/ GPO06 SerDes I/O Port Selection Y3 I X1VDD 2 cfg_srds_io_ports[6]/ SPI2_MOSI SerDes I/O Port Selection E7 I X2VDD 2 cfg_rom_loc[0]/ANT1_DIO006 Boot ROM Location N6 I X1VDD 2 cfg_rom_loc[1]/ANT1_DIO007 Boot ROM Location M3 I X1VDD 2 cfg_rom_loc[2]/ANT1_DIO008 Boot ROM Location M2 I X1VDD 2 cfg_rom_loc[3]/ANT2_AGC/ GPO89 Boot ROM Location G1 I X2VDD 2 cfg_srds_pll_timeout_en/ ANT1_DIO001 SerDes PLL Timeout Enable N7 I X1VDD 2, 4 cfg_d1_ddr_half_full_mode/ ANT1_DIO002 Power Architecture DDR Mode P7 I X1VDD 2 cfg_d2_ddr_half_full_mode/ ANT1_DIO003 DSP DDR Mode N5 I X1VDD 2 cfg_srds_refclk/ANT1_DIO009 SerDes Reference Clock Configuration M5 I X1VDD 2 Power Supply BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 41 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note AVDD_PLAT Platform PLL Supply G7 — AVDD_PLAT — AVDD_CORE0 Core PLL Supply N20 — AVDD_CORE0 — AVDD_CORE1 Core PLL Supply P20 — AVDD_CORE1 — AVDD_D1_DDR DDR PLL Supply M20 — AVDD_D1_DDR — AVDD_D2_DDR DDR PLL Supply AA1 — AVDD_D2_DDR — AVDD_DSP DSP PLL Supply Y16 — AVDD_DSP — AVDD_MAPLE MAPLE PLL Supply Y20 — AVDD_MAPLE — SD1AVDD SerDes PLL Supply AC22 — SD1AVDD — SD2AVDD SerDes PLL Supply AB19 — SD2AVDD — POVDD1 Secure Fuse Programming Overdrive N23 — POVDD1 8 POVDD2 Central Fuse Programming Overdrive—DSP P23 — — 8 POVDD3 Central Fuse Programming Overdrive—DSP AA16 — — 8 FA_VDD POSt VDD Y7 — — 7 VDDC Core/Platform Supply J14 — VDDC — VDDC Core/Platform Supply K14 — VDDC — VDDC Core/Platform Supply L14 — VDDC — VDDC Core/Platform Supply M14 — VDDC — VDDC Core/Platform Supply N14 — VDDC — VDDC Core/Platform Supply P10 — VDDC — VDDC Core/Platform Supply P12 — VDDC — VDDC Core/Platform Supply P14 — VDDC — VDDC Core/Platform Supply R10 — VDDC — VDDC Core/Platform Supply R12 — VDDC — VDDC Core/Platform Supply R14 — VDDC — VDDC Core/Platform Supply T10 — VDDC — VDDC Core/Platform Supply T12 — VDDC — VDDC Core/Platform Supply T14 — VDDC — VDDC Core/Platform Supply U10 — VDDC — VDDC Core/Platform Supply U12 — VDDC — VDDC Core/Platform Supply U14 — VDDC — VDDC Core/Platform Supply V10 — VDDC — VDDC Core/Platform Supply V12 — VDDC — VDDC Core/Platform Supply V14 — VDDC — VDDC Core/Platform Supply W10 — VDDC — VDDC Core/Platform Supply W12 — VDDC — VDDC Core/Platform Supply W14 — VDDC — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 42 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note VDDC Core/Platform Supply Y10 — VDDC — VDDC Core/Platform Supply Y14 — VDDC — VDDC Core/Platform Supply J16 — VDDC — VDDC Core/Platform Supply J18 — VDDC — VDDC Core/Platform Supply K16 — VDDC — VDDC Core/Platform Supply K18 — VDDC — VDDC Core/Platform Supply L16 — VDDC — VDDC Core/Platform Supply L18 — VDDC — VDDC Core/Platform Supply M16 — VDDC — VDDC Core/Platform Supply M18 — VDDC — VDDC Core/Platform Supply N16 — VDDC — VDDC Core/Platform Supply N18 — VDDC — VDDC Core/Platform Supply P16 — VDDC — VDDC Core/Platform Supply P18 — VDDC — VDDC Core/Platform Supply R16 — VDDC — VDDC Core/Platform Supply R18 — VDDC — VDDC Core/Platform Supply T16 — VDDC — VDDC Core/Platform Supply T18 — VDDC — VDDC Core/Platform Supply U16 — VDDC — VDDC Core/Platform Supply U18 — VDDC — VDDC Core/Platform Supply V16 — VDDC — VDDC Core/Platform Supply V18 — VDDC — VDDC Core/Platform Supply W16 — VDDC — VDDC Core/Platform Supply W18 — VDDC — VDDC Core/Platform Supply Y18 — VDDC — VDD MAPLE Supply J10 — VDD — VDD MAPLE Supply J12 — VDD — VDD MAPLE Supply K10 — VDD — VDD MAPLE Supply K12 — VDD — VDD MAPLE Supply L10 — VDD — VDD MAPLE Supply L12 — VDD — VDD MAPLE Supply M10 — VDD — VDD MAPLE Supply M12 — VDD — VDD MAPLE Supply N10 — VDD — VDD MAPLE Supply N12 — VDD — G1VDD DDR Supply B13 — G1VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 43 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note G1VDD DDR Supply E11 — G1VDD — G1VDD DDR Supply H9 — G1VDD — G1VDD DDR Supply H10 — G1VDD — G1VDD DDR Supply H11 — G1VDD — G1VDD DDR Supply H12 — G1VDD — G1VDD DDR Supply H13 — G1VDD — G1VDD DDR Supply H14 — G1VDD — G1VDD DDR Supply H15 — G1VDD — G1VDD DDR Supply H16 — G1VDD — G1VDD DDR Supply H17 — G1VDD — G1VDD DDR Supply H18 — G1VDD — G1VDD DDR Supply H19 — G1VDD — G1VDD DDR Supply H20 — G1VDD — G1VDD DDR Supply B18 — G1VDD — G1VDD DDR Supply B23 — G1VDD — G1VDD DDR Supply D20 — G1VDD — G1VDD DDR Supply E15 — G1VDD — G2VDD DDR Supply AC3 — G2VDD — G2VDD DDR Supply AC10 — G2VDD — G2VDD DDR Supply AA8 — G2VDD — G2VDD DDR Supply AA9 — G2VDD — G2VDD DDR Supply AA10 — G2VDD — G2VDD DDR Supply AA11 — G2VDD — G2VDD DDR Supply AA12 — G2VDD — G2VDD DDR Supply AA13 — G2VDD — G2VDD DDR Supply AA14 — G2VDD — G2VDD DDR Supply AA15 — G2VDD — G2VDD DDR Supply AD6 — G2VDD — G2VDD DDR Supply AD13 — G2VDD — G2VDD DDR Supply AF2 — G2VDD — G2VDD DDR Supply AG4 — G2VDD — G2VDD DDR Supply AG9 — G2VDD — G2VDD DDR Supply AG12 — G2VDD — G2VDD DDR Supply AC15 — G2VDD — LVDD Ethernet Supply Y23 — LVDD — LVDD Ethernet Supply AA25 — LVDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 44 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note BVDD IFC, eSDHC, USIM Supply B26 — BVDD — BVDD IFC, eSDHC, USIM Supply E24 — BVDD — BVDD IFC, eSDHC, USIM Supply F26 — BVDD — BVDD IFC, eSDHC, USIM Supply G24 — BVDD — BVDD IFC, eSDHC, USIM Supply J20 — BVDD — BVDD IFC, eSDHC, USIM Supply J26 — BVDD — BVDD IFC, eSDHC, USIM Supply K20 — BVDD — BVDD IFC, eSDHC, USIM Supply K24 — BVDD — CVDD USB, eSPI, DUART, I2C, USIM Supply N22 — CVDD — CVDD USB, eSPI, DUART, I2C, USIM Supply P22 — CVDD — CVDD USB, eSPI, DUART, I2C, USIM Supply M26 — CVDD — CVDD USB, eSPI, DUART, I2C, USIM Supply R21 — CVDD — CVDD USB, eSPI, DUART, I2C, USIM Supply R26 — CVDD — OVDD DUART, System, I2C, JTAG Supply U20 — OVDD — OVDD DUART, System, I2C, JTAG Supply V20 — OVDD — OVDD DUART, System, I2C, JTAG Supply V21 — OVDD — OVDD DUART, System, I2C, JTAG Supply V26 — OVDD — OVDD DUART, System, I2C, JTAG Supply U23 — OVDD — OVDD DUART, System, I2C, JTAG Supply AD27 — OVDD — X1VDD RF Supply N2 — X1VDD — X1VDD RF Supply N4 — X1VDD — X1VDD RF Supply N8 — X1VDD — X1VDD RF Supply U4 — X1VDD — X1VDD RF Supply W2 — X1VDD — X1VDD RF Supply W6 — X1VDD — X1VDD RF Supply P8 — X1VDD — X1VDD RF Supply R6 — X1VDD — X1VDD RF Supply R8 — X1VDD — X1VDD RF Supply T8 — X1VDD — X1VDD RF Supply U8 — X1VDD — X1VDD RF Supply V8 — X1VDD — X1VDD RF Supply W8 — X1VDD — X1VDD RF Supply Y8 — X1VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface B4 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface C6 — X2VDD — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 45 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface G2 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface J4 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface J8 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface K6 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface K8 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface L8 — X2VDD — X2VDD eSPI2, USB, TDM1, TDM2, RF Parallel Interface M8 — X2VDD — XCOREVDD SerDes Core Logic Supply AH19 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AH23 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AH27 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AG25 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AF16 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AG17 — XCOREVDD — XCOREVDD SerDes Core Logic Supply AG21 — XCOREVDD — XPADVDD SerDes Transceiver Supply AA19 — XPADVDD — XPADVDD SerDes Transceiver Supply AA20 — XPADVDD — XPADVDD SerDes Transceiver Supply AF18 — XPADVDD — XPADVDD SerDes Transceiver Supply AE20 — XPADVDD — XPADVDD SerDes Transceiver Supply AF22 — XPADVDD — XPADVDD SerDes Transceiver Supply AF26 — XPADVDD — XPADVDD SerDes Transceiver Supply AE24 — XPADVDD — Ground VSS Platform and Core Ground A9 — — — VSS Platform and Core Ground A26 — — — VSS Platform and Core Ground B2 — — — VSS Platform and Core Ground B8 — — — VSS Platform and Core Ground B11 — — — VSS Platform and Core Ground B15 — — — VSS Platform and Core Ground B21 — — — VSS Platform and Core Ground C27 — — — VSS Platform and Core Ground D17 — — — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 46 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note VSS Platform and Core Ground D22 — — — VSS Platform and Core Ground D24 — — — VSS Platform and Core Ground E27 — — — VSS Platform and Core Ground F18 — — — VSS Platform and Core Ground F21 — — — VSS Platform and Core Ground H23 — — — VSS Platform and Core Ground H27 — — — VSS Platform and Core Ground J15 — — — VSS Platform and Core Ground J19 — — — VSS Platform and Core Ground J21 — — — VSS Platform and Core Ground K15 — — — VSS Platform and Core Ground K17 — — — VSS Platform and Core Ground K19 — — — VSS Platform and Core Ground L15 — — — VSS Platform and Core Ground L17 — — — VSS Platform and Core Ground L19 — — — VSS Platform and Core Ground L27 — — — VSS Platform and Core Ground L21 — — — VSS Platform and Core Ground L23 — — — VSS Platform and Core Ground M15 — — — VSS Platform and Core Ground M17 — — — VSS Platform and Core Ground M19 — — — VSS Platform and Core Ground M21 — — — VSS Platform and Core Ground N15 — — — VSS Platform and Core Ground N17 — — — VSS Platform and Core Ground N19 — — — VSS Platform and Core Ground N21 — — — VSS Platform and Core Ground N24 — — — VSS Platform and Core Ground P27 — — — VSS Platform and Core Ground P15 — — — VSS Platform and Core Ground P17 — — — VSS Platform and Core Ground P19 — — — VSS Platform and Core Ground P21 — — — VSS Platform and Core Ground R15 — — — VSS Platform and Core Ground R17 — — — VSS Platform and Core Ground R19 — — — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 47 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note VSS Platform and Core Ground T15 — — — VSS Platform and Core Ground T17 — — — VSS Platform and Core Ground T19 — — — VSS Platform and Core Ground T20 — — — VSS Platform and Core Ground T24 — — — VSS Platform and Core Ground U27 — — — VSS Platform and Core Ground U15 — — — VSS Platform and Core Ground U17 — — — VSS Platform and Core Ground U19 — — — VSS Platform and Core Ground V15 — — — VSS Platform and Core Ground V17 — — — VSS Platform and Core Ground V19 — — — VSS Platform and Core Ground W15 — — — VSS Platform and Core Ground W17 — — — VSS Platform and Core Ground W19 — — — VSS Platform and Core Ground W20 — — — VSS Platform and Core Ground W21 — — — VSS Platform and Core Ground W24 — — — VSS Platform and Core Ground W28 — — — VSS Platform and Core Ground Y21 — — — VSS Platform and Core Ground Y15 — — — VSS Platform and Core Ground Y17 — — — VSS Platform and Core Ground Y19 — — — VSS Platform and Core Ground Y26 — — — VSS Platform and Core Ground AB28 — — — VSS Platform and Core Ground AA21 — — — VSS Platform and Core Ground AD16 — — — VSS Platform and Core Ground AE27 — — — VSS Platform and Core Ground AF28 — — — VSS Platform and Core Ground AG16 — — — VSS Platform and Core Ground AD1 — — — VSS Platform and Core Ground AE4 — — — VSS Platform and Core Ground AE8 — — — VSS Platform and Core Ground AE11 — — — VSS Platform and Core Ground AF14 — — — VSS Platform and Core Ground AG7 — — — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 48 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note VSS Platform and Core Ground C7 — — — VSS Platform and Core Ground D2 — — — VSS Platform and Core Ground D7 — — — VSS Platform and Core Ground D9 — — — VSS Platform and Core Ground E4 — — — VSS Platform and Core Ground E8 — — — VSS Platform and Core Ground F6 — — — VSS Platform and Core Ground F7 — — — VSS Platform and Core Ground F8 — — — VSS Platform and Core Ground F13 — — — VSS Platform and Core Ground G6 — — — VSS Platform and Core Ground G8 — — — VSS Platform and Core Ground H4 — — — VSS Platform and Core Ground H6 — — — VSS Platform and Core Ground H7 — — — VSS Platform and Core Ground H8 — — — VSS Platform and Core Ground J9 — — — VSS Platform and Core Ground J11 — — — VSS Platform and Core Ground K2 — — — VSS Platform and Core Ground K9 — — — VSS Platform and Core Ground K11 — — — VSS Platform and Core Ground K13 — — — VSS Platform and Core Ground L6 — — — VSS Platform and Core Ground L9 — — — VSS Platform and Core Ground L11 — — — VSS Platform and Core Ground L13 — — — VSS Platform and Core Ground M11 — — — VSS Platform and Core Ground M13 — — — VSS Platform and Core Ground M4 — — — VSS Platform and Core Ground M9 — — — VSS Platform and Core Ground N9 — — — VSS Platform and Core Ground N11 — — — VSS Platform and Core Ground N13 — — — VSS Platform and Core Ground P9 — — — VSS Platform and Core Ground P11 — — — VSS Platform and Core Ground P13 — — — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 49 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note VSS Platform and Core Ground R9 — — — VSS Platform and Core Ground R11 — — — VSS Platform and Core Ground R13 — — — VSS Platform and Core Ground P6 — — — VSS Platform and Core Ground T2 — — — VSS Platform and Core Ground T4 — — — VSS Platform and Core Ground T9 — — — VSS Platform and Core Ground T11 — — — VSS Platform and Core Ground T13 — — — VSS Platform and Core Ground AB1 — — — VSS Platform and Core Ground AB5 — — — VSS Platform and Core Ground AB7 — — — VSS Platform and Core Ground AA2 — — — VSS Platform and Core Ground Y1 — — — VSS Platform and Core Ground Y4 — — — VSS Platform and Core Ground Y9 — — — VSS Platform and Core Ground Y11 — — — VSS Platform and Core Ground Y13 — — — VSS Platform and Core Ground W9 — — — VSS Platform and Core Ground W11 — — — VSS Platform and Core Ground W13 — — — VSS Platform and Core Ground V9 — — — VSS Platform and Core Ground V11 — — — VSS Platform and Core Ground V13 — — — VSS Platform and Core Ground V6 — — — VSS Platform and Core Ground U9 — — — VSS Platform and Core Ground U11 — — — VSS Platform and Core Ground U13 — — — XCOREVSS SerDes Core Logic Ground AH17 — — — XCOREVSS SerDes Core Logic Ground AH21 — — — XCOREVSS SerDes Core Logic Ground AH25 — — — XCOREVSS SerDes Core Logic Ground AG19 — — — XCOREVSS SerDes Core Logic Ground AG23 — — — XCOREVSS SerDes Core Logic Ground AG27 — — — XCOREVSS SerDes Core Logic Ground AF27 — — — XCOREVSS SerDes Core Logic Ground AD17 — — — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 50 Freescale Semiconductor Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note XCOREVSS SerDes Core Logic Ground AD20 — — — XCOREVSS SerDes Core Logic Ground AD24 — — — XCOREVSS SerDes Core Logic Ground AD25 — — — XCOREVSS SerDes Core Logic Ground AE16 — — — XCOREVSS SerDes Core Logic Ground AA17 — — — XCOREVSS SerDes Core Logic Ground AB17 — — — XCOREVSS SerDes Core Logic Ground AC17 — — — XCOREVSS SerDes Core Logic Ground AB21 — — — XCOREVSS SerDes Core Logic Ground AB22 — — — XCOREVSS SerDes Core Logic Ground AC23 — — — XPADVSS SerDes Transceiver Ground AF20 — — — XPADVSS SerDes Transceiver Ground AC18 — — — XPADVSS SerDes Transceiver Ground AE18 — — — XPADVSS SerDes Transceiver Ground AE22 — — — XPADVSS SerDes Transceiver Ground AE26 — — — XPADVSS SerDes Transceiver Ground AF24 — — — XPADVSS SerDes Transceiver Ground AD19 — — — XPADVSS SerDes Transceiver Ground AD21 — — — XPADVSS SerDes Transceiver Ground AD23 — — — SD2AGND SerDes PLL Ground AA18 — — — SD1AGND SerDes PLL Ground AC20 — — — No Connect BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 51 Pin Assignments Table 1. BSC9132 Pinout Listing (continued) Signal Signal Description Pin Number Pin Type Power Supply Note NC Address Parity Error E19 — — — NC Address Parity Error AH4 — — — These are test signals for factory use only and must be pulled up (with 100 Ω–1 kΩ) to OVDD for normal operation. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-k pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pull up or active driver is needed. 3 These pins have weak internal pull-up P-FETs that are always enabled. 4 This pin must NOT be pulled down during power-on reset. 5 This pin is an open drain signal. 6 This pin should be pulled down with 200Ω ± 1% resistor when used in autocalibration mode. 7 This pin should be pulled down to VSS with 10 kΩ. 8 This pin is used for fuse programming. Should be tied to VSS for normal operation (fuse read). See section Section 2.2, “Power Sequencing,” for more details. 9 This pin may be connected to a temperature diode monitoring device such as the Analog Devices, ADT7461A™. If a temperature diode monitoring device will not be connected, these pins may be connected to test point or left as a no connect. 10 Pin should be pulled high or low depending on the JTAG topology selected. Refer to Section 3.11, “JTAG Configuration Signals.” 11 This pin should be tied to GND/VSS when MAPLE is powered down; otherwise it should be tied to OVDD. 12 This pin is an open-drain signal if the IIC2 pin is selected. 13 It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-k pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pull up or active driver is needed. 14 MDIC00 is grounded through an 36.5 O precision 1% resistor and MDIC01 is connected to GVDD through an 36.5 O precision 1% resistor. These pins are used for automatic calibration of the DDR3/DDR3L IOs. 15 This pin should be pulled up to power rail with 10 kΩ. 16 Do not use this pin as CD pin. 17 This pin should be pulled down to GND with 10 kΩ. 18 This pin is a reset configuration pin without default value. 1 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 52 Freescale Semiconductor Electrical Characteristics 2 Electrical Characteristics This section provides the AC and DC electrical specifications. This device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications. 2.1 Overall DC Electrical Characteristics This section covers the ratings, conditions, and other characteristics. 2.1.1 Absolute Maximum Ratings This table provides the absolute maximum ratings. Table 2. Absolute Maximum Ratings1 Characteristic Symbol Max Value Unit Note Platform supply voltage VDDC –0.3 to 1.05 V — MAPLE-B2P supply voltage VDD –0.3 to 1.05 V — AVDD_CORE[0–1] AVDD_D[1–2]_DDR AVDD_PLAT AVDD_DSP AVDD_MAPLE SD[1–2]AVDD –0.3 to 1.05 V 2 POVDD1 POVDD2 POVDD3 –0.3 to 1.65 V — GVDD[1–2] –0.3 to 1.65 –0.3 to 1.45 V — Three-speed Ethernet, Ethernet management (eTSEC) and 1588 LVDD –0.3 to 3.63 –0.3 to 2.75 V — IFC, eSDHC, USIM BVDD –0.3 to 3.63 –0.3 to 2.75 –0.3 to 1.98 V 3 DUART1, SYSCLK, system control and power management, I2C1, clocking, I/O voltage select, and JTAG I/O voltage OVDD –0.3 to 3.63 V — USB, eSPI1, DUART2, I2C2, USIM CVDD –0.3 to 3.63 –0.3 to 1.98 V 3, 4 RF parallel interface X1VDD –0.3 to 3.63 –0.3 to 1.98 V — eSPI2, USB, TDM1, TDM2, RF parallel interface X2VDD –0.3 to 3.63 –0.3 to 1.98 V — SerDes pad voltage XPADVDD –0.3 to 1.65 V — SerDes core voltage XCOREVDD –0.3 to 1.05 V — PLL supply voltage Fuse programming supply DDR3/DDR3L DRAM I/O voltage BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 53 Electrical Characteristics Table 2. Absolute Maximum Ratings1 (continued) Characteristic Input voltage Symbol Max Value Unit Note MVIN –0.3 to (GVDD + 0.3) V 5, 10 MVREF –0.3 to (GVDD/2 + 0.3) V 10 Ethernet signals LVIN –0.3 to (LVDD + 0.3) V 6, 10 IFC, eSDHC, USIM signals BVIN –0.3 to (BVDD + 0.3) — 7, 10 DUART1, SYSCLK, system control and power management, I2C1, clocking, I/O voltage select, and JTAG I/O voltage OVIN –0.3 to (OVDD + 0.3) V 8, 10 USB, eSPI1, DUART2, I2C2, USIM CVIN –0.3 to (CVDD + 0.3) V 4, 10 RF parallel interface X1VIN –0.3 to (X1VDD + 0.3) V 9, 10 eSPI2, USB, TDM1, TDM2, RF parallel interface X2VIN –0.3 to (X2VDD + 0.3) V 9, 10 TSTG –55 to 150 °C — DDR3/DDR3L DRAM signals DDR3/DDR3L DRAM reference Storage temperature range Note: 1 Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device. 2 AV DD is measured at the input to the filter and not at the pin of the device. 3 USIM pins are multiplexed with the pins of other interfaces. Check Table 3 for which power supply is used (BV DD or a CVDD) for each particular USIM pin. 4 Caution: CV must not exceed CV IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 5 Caution: MV must not exceed GV IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 6 Caution: LV must not exceed LV IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 7 Caution: BV must not exceed BV IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 8 Caution: OV must not exceed OV IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 9 Caution: X[1-2]V must not exceed X[1-2]V IN DD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. 10 (C,X,B,G,L,O,R)VDD and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 7. 2.1.2 Recommended Operating Conditions This table provides the recommended operating conditions for this device. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed. Table 3. Recommended Operating Conditions Characteristic Symbol Recommended Value Unit Note Platform supply voltage VDDC 1 + 50 mV / – 30mV V 1 MAPLE-B2P supply voltage VDD 1 + 50 mV / – 30mV V — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 54 Freescale Semiconductor Electrical Characteristics Table 3. Recommended Operating Conditions (continued) Characteristic Symbol Recommended Value Unit Note PLL supply voltage AVDD_CORE[0–1] AVDD_D[1–2]_DDR AVDD_PLAT AVDD_DSP AVDD_MAPLE SD[1–2]AVDD 1 + 50 mV / – 30mV V 1 Fuse supply voltage POVDD1 1.5 V ± 75 mV V 1 DDR3 DRAM I/O voltage G[1–2]VDD 1.5 V ± 75 mV — — DDR3L DRAM I/O voltage G[1–2]VDD 1.35 V +100mV/ –67mV — — Three-speed Ethernet, Ethernet management (eTSEC) and 1588 LVDD 3.3 V ± 165 mV 2.5 V ± 125 mV V — DUART1, SYSCLK, system control and power management, I2C1, clocking, I/O voltage select, and JTAG I/O voltage OVDD 3.3 V ± 165 mV V — IFC, eSDHC, USIM BVDD 3.3 V ± 165 mV 2.5 V ± 125 mV 1.8 V ± 90 mV V 2 USB, eSPI1, DUART2, I2C2, USIM CVDD 3.3 V ± 165 mV 1.8 V ± 90 mV V 2 RF parallel interface X1VDD 3.3 V ± 165 mV 1.8 V ± 90 mV V — eSPI2, USB, TDM1, TDM2, RF parallel interface X2VDD 3.3 V ± 165 mV 1.8 V ± 90 mV V — SerDes pad voltage XPADVDD 1.5 V ± 75 mV V — SerDes core voltage XCOREVDD 1.0 V ± 50 mV V — MVIN GND to GVDD V — MVREF GND to GVDD/2 V — Ethernet, USB LVIN GND to LVDD V — IFC, eSDHC signals BVIN GND to BVDD V — DUART1, SYSCLK, system control and power management, eSPI, I2C1, USIM, clocking, I/O voltage select, and JTAG I/O voltage OVIN GND to OVDD V — USB, eSPI, eSDHC, DUART2, I2C2, USIM CVIN GND to CVDD V — RF parallel interface X1VIN GND to X1VDD V — eSPI2, USB, TDM1, TDM2, RF parallel interface X2VIN GND to X2VDD V — CINMAX 10 pF 3 Standard TA/TJ TA = 0 (min) to TJ = 105 (max) °C — Extended TA/TJ TA = –40 (min) to TJ = 105 (max) °C — Secure boot fuse programming TA/TJ TA = 0 (min) to TJ = 70 (max) °C 1 Input voltage DDR3/DDR3L DRAM DDR3/DDR3L DRAM reference Maximum input capacitance Operating Temperature range BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 55 Electrical Characteristics Table 3. Recommended Operating Conditions (continued) Characteristic Symbol Recommended Value Unit Note Note: 1 Caution: POVDD1 must be supplied 1.5 V and the device must operate in the specified fuse programming temperature range only during secure boot fuse programming. For all other operating conditions, POVDD1 must be tied to GND, subject to the power sequencing constraints shown in Section 2.2, “Power Sequencing.” 2 USIM pins are multiplexed with the pins of other interfaces. Check Table 3 for which power supply is used (BVDD or a CVDD) for each particular USIM pin. 3 Unless otherwise stated in an interface’s DC specifications, the maximum allowed input capacitance in this table is a general recommendation for signals. This figure shows the undershoot and overshoot voltages at the interfaces. B/G/L/O/XVVDD + 20% B/G/L/O/XVVDD + 5% B/G/L/O/XVVDD VIH GND GND – 0.3 V VIL GND – 0.7 V Not to Exceed 10% of tCLOCK1 Note: 1. tCLOCK refers to the clock period associated with the respective interface: For I2C and JTAG, tCLOCK references SYSCLK. For DDR, tCLOCK references MCLK. For eTSEC, tCLOCK references TSECn_GTX_CLK125. For IFC, tCLOCK references IFC_CLK. Figure 7. Overshoot/Undershoot Voltage for BVDD/GVDD/LVDD/OVDD/X1VDD/X2VDD The core voltage must always be provided at nominal 1 V (see Table 3 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 3. The input voltage threshold scales with respect to the associated I/O supply voltage. OVDD and LVDD based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR3 SDRAM interface uses a differential receiver referenced the externally supplied MVREF signal (nominally set to GVDD/2). The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 56 Freescale Semiconductor Electrical Characteristics 2.1.3 Output Driver Characteristics This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates. Table 4. Output Drive Capability Driver Type Output Impedance (Ω) Supply Voltage Note 47 ± 7 BVDD = 3.3/2.5/1.8 V — IFC, GPIO[0:7], eSDHC DDR3 (programmable) 16 GVDD = 1.5 V DDR3 32 (half strength mode) GVDD = 1.35 V DDR3L eTSEC, USB 2 DUART1, system control, I C1, USIM, JTAG 2 USB, eSPI1, DUART2, I C2, USIM RF parallel interface eSPI2, USB, TDM1, TDM2, RF parallel interface 1 47 ± 7 LVDD = 3.3/2.5 V — 47 ± 7 OVDD = 3.3 V 2 47 ± 7 CVDD = 3.3/1.8 V 2 LVCMOS X1VDD = 3.3/1.8 V — — X2VDD = 3.3/1.8 V — Note: 1 The drive strength of the DDR3 interface in half-strength mode is at T = 125°C and at GV j DD (min). 2 USIM pins are multiplexed with the pins of other interfaces. Check Table 3 for which power supply is used (BV DD or a CVDD) for each particular USIM pin. 2.2 Power Sequencing The device requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up: 1. 2. 3. VDD, VDDC, AVDD (all PLL supplies), XCOREVDD LVDD, BVDD, CVDD, OVDD, X1VDD, X2VDD, G1VDD, G2VDD, XPADVDD For secure boot fuse programming: After deassertion of HRESET_B, drive POVDD1 = 1.5 V after a required minimum delay per Table 5. After fuse programming is completed, it is required to return POVDD1 = GND before the system is power cycled (HRESET_B assertion) or powered down (VDDC ramp down) per the required timing specified in Table 5. See Section 3.14, “Security Fuse Processor,” for additional details. WARNING Only 100,000 POR cycles are permitted per lifetime of a device. Only one secure boot fuse programming event is permitted per lifetime of a device. No activity other than that required for secure boot fuse programming is permitted while POVDD1 driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while POVDD1 = GND. POVDD2 and POVDD3 are always tied to GND. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 57 Electrical Characteristics This figure provides the POVDD1 timing diagram. Fuse programming 1 POVDD1 10% POVDD1 10% POVDD1 90% VDD_PL tPOVDD_VDD VDDC HRESET_B tPOVDD_PROG 90% OVDD 90% OVDD tPOVDD_RST tPOVDD_DELAY NOTE: POVDD must be stable at 1.5 V prior to initiating fuse programming. Figure 8. POVDD1 Timing Diagram This table provides information on the power-down and power-up sequence parameters for POVDD1. Table 5. POVDD1 Timing 5 Driver Type Min Max Unit Note tPOVDD_DELAY 1500 — tSYSCLK 1 tPOVDD_PROG 0 — μs 2 tPOVDD_VDD 0 — μs 3 tPOVDD_RST 0 — μs 4 Note: 1. Delay required from the deassertion of HRESET_B to driving POVDD1 ramp up. Delay measured from HRESET_B deassertion at 90% OVDD to 10% POVDD1 ramp up. 2. Delay required from fuse programming finished to POVDD1 ramp down start. Fuse programming must complete while POVDD1 is stable at 1.5 V. No activity other than that required for secure boot fuse programming is permitted while POVDD1 driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while POVDD1 = GND. After fuse programming is completed, it is required to return POVDD1 = GND. 3. Delay required from POVDD1 ramp down complete to VDDC ramp down start. POVDD1 must be grounded to minimum 10% POVDD1 before VDDC is at 90% VDDC. 4. Delay required from POVDD1 ramp down complete to HRESET_B assertion. POVDD1 must be grounded to minimum 10% POVDD1 before HRESET_B assertion reaches 90% OVDD. 5. Only one secure boot fuse programming event is permitted per lifetime of a device. All supplies must be at their stable values within 50 ms. Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs. In order to guarantee MCKE low during power-up, the above sequencing for GVDD is required. If there is no concern about any of the DDR signals being in an indeterminate state during power-up, the sequencing for GVDD is not required. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 58 Freescale Semiconductor Electrical Characteristics 2.3 Power-Down Requirements The power-down cycle must complete such that power supply values are below 0.4 V before a new power-up cycle can be started. 2.4 RESET Initialization This section describes the AC electrical specifications for the RESET initialization timing requirements. Table 6 provides the RESET initialization AC timing specifications. Table 6. RESET Initialization Timing Specifications Parameter Min Max Unit Note Required assertion time of HRESET_B 600 — μs 1, 2, 5 Minimum assertion time of TRESET_B simultaneous to HRESET_B assertion 25 — ns 3 Minimum assertion time for SRESET_B 3 — tSYSCLK 4 PLL input setup time with stable SYSCLK before HRESET_B negation 25 — μs — Input setup time for POR configurations (other than PLL configuration) with respect to negation of HRESET_B 4 — tSYSCLK 4 Input hold time for all POR configurations (including PLL configuration) with respect to negation of HRESET_B 2 — tSYSCLK 4 Maximum valid-to-high impedance time for actively driven POR configurations with respect to negation of HRESET_B — 8 tSYSCLK 4 Note: 1. There may be some extra current leakage when driving signals high during this time. 2. Reset assertion timing requirements for DDR3 DRAMs may differ. 3. TRST is an asynchronous level sensitive signal. For guidance on how this requirement can be met, refer to the JTAG signal termination guidelines in Section 3.11.1, “Termination of Unused Signals.” 4. SYSCLK is the primary clock input. 5. Reset initialization should start only after all power supplies are stable. This table provides the PLL lock times. Table 7. PLL Lock Times Parameter PLL lock times 2.5 Min Max Unit Note — 100 μs — Power-on Ramp Rate This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum power-on ramp rate is required to avoid falsely triggering the ESD circuitry. Table 8 provides the power supply ramp rate specifications. Table 8. Power Supply Ramp Rate Parameter Min Max Unit Required ramp rate — 36000 V/s Required ramp time — 50 ms BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 59 Electrical Characteristics Table 8. Power Supply Ramp Rate (continued) Parameter Min Max Unit Note: 1. Ramp rate is specified as a linear ramp from 10 to 90% of the nominal voltage of the specific voltage supply. 2. All MCKE signals must remain low during the power up sequence. 2.6 Power Characteristics This table shows the power dissipations of the VDDC and VDD supplies for various operating DSP and core complex bus clock (CCB_clk) frequencies versus the core and DDR clock frequencies. Table 9. Core Power Dissipation PA/DSP MAPLE PA Core DSP Core CCB DDR eTVPE Power Mode Frequency Frequency Frequency VDDC (V) Frequency Frequency (MHz) (MHz) (MHz) (MHz) (MHz) Typical 1200 1200 600 1333 800 1 VDD (V) Junction VDDC + VDD Temp (°C) Power (W) 1 Thermal 65 8.9 1, 2 105 11.9 1, 3, 5 14.8 1, 4, 5 65 8.7 1, 2 105 11.3 1, 3, 5 13.9 1, 4, 5 Maximum Typical 1000 1000 500 1333 800 1 1 Thermal Note Maximum Note: 1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies. 2. Typical power is a measured value while running a typical use case using the nominal process and recommended core, platform voltages (VDDC), and MAPLE (VDD) at 65 °C junction temperature (see Table 3). 3. Thermal power is the power measured while running a 50% (Cores) and 40% (Platform) utilization case, using the worst case process and recommended core, platform voltages (VDDC), and MAPLE (VDD) at maximum operating junction temperature (see Table 3). 4. Maximum power is measured while running a maximum power pattern using the worst case process, and recommended core, platform voltages (VDDC), and MAPLE (VDD) at maximum operating junction temperature (see Table 3). 5. An estimated IO power while running a USE case using the nominal process and recommended voltages is 1.5 W (see Table 3). Table 10. I/O Power PS# I/O Primary pin name Pin width Voltage domain Recommended value Current max Typical current (A) Max (A) OVDD 37 General I/O supply 3.3V — 0.178 0.266 BVDD 46 Local Bus and GPIO I/O supply 1.8V/ 2.5V/ 3.3V — 0.097 0.148 3 LVDD 32 TSEC I/O supply 3.3V/ 2.5V — 0.051 0.076 3 CVDD 19 ULPI/SPI/UART/SIM I/O supply 3.3V/ 1.8V — 0.030 0.045 3 GVDD1 — DDR1 (PPC Side) I/O supply 1.5V/ 1.35V — 0.710 0.950 1, 2, 3 GVDD2 — DDR2 (DSP Side) I/O supply 1.5V/ 1.35V — 0.710 0.950 1, 2, 3 X1VDD — ANT1I/O supply 3.3V/ 1.8V — 0.098 0.140 3 X2VDD — ANT2, ANT3 I/O supply 3.3V/ 1.8V — 0.098 0.140 3 Note BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 60 Freescale Semiconductor Electrical Characteristics Table 10. I/O Power (continued) PS# Primary pin name Pin width Voltage domain Recommended value Current max Typical current (A) Max (A) Note SVDD — SerDes Core logic supply 1.0V — 0.144 0.144 — XVDD — SerDes I/O supply 1.5V — 0.058 0.058 — AVDD_CORE0 — Core 0 PLL supply — — AVDD_CORE1 — Core 1 PLL supply — — AVDD_DSP — DSP PLL supply — — AVDD_PLAT — Platform PLL supply AVDD_D1_DDR — DDR PLL supply AVDD_D2_DDR — DDR PLL supply — — SDAVDD1 — SerDes PLL supply — — SDAVDD2 — SerDes PLL supply — — SD Analog 1.0V — 0.005 — 0.015 — — Note: 1 For DDR typical, it is 40% DIMM utilization. 2 For DDR max, it is 75% DIMM utilization. 3 For I/O with different possible voltages, the currents listed above are for the higher voltage. 2.7 Input Clocks This section provides information about the system clock specifications, spread spectrum sources, real time clock specifications, TDM clock specifications, and other input sources. 2.7.1 System Clock and DDR Clock Specifications This table provides the system clock (SYSCLK) and DDR clock (DDRCLK) 3.3 V DC specifications. Table 11. SYSCLK/DDRCLK DC Electrical Characteristics At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter Symbol Min Typical Max Unit Note Input high voltage VIH 2.0 — — V 1 Input low voltage VIL — — 0.8 V 1 Input capacitance CIN — 7 15 pf — Input current (VIN= 0 V or VIN = VDDC) IIN — — ±50 μA 2 Note: 1. Note that the min VILand max VIH values are based on the respective min and max OVIN values found in Table 3. 2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 3. This table provides the system clock (SYSCLK) and DDR clock (DDRCLK) AC timing specifications. Table 12. SYSCLK/DDRCLK AC Timing Specifications At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter/Condition SYSCLK frequency Symbol Min Typ Max Unit Note fSYSCLK 66 — 100 MHz 1, 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 61 Electrical Characteristics Table 12. SYSCLK/DDRCLK AC Timing Specifications (continued) At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter/Condition Symbol Min Typ Max Unit Note SYSCLK cycle time tSYSCLK 7.5 — 10 ns 1, 2 DDRCLK frequency fDDRCLK 66 — 166 MHz 1 DDRCLK cycle time tDDRCLK 6.0 — 15.15 ns — SYSCLK/DDRCLK duty cycle tKHK/ tSYSCLK/DDRCLK 40 — 60 % 2 SYSCLK/DDRCLK slew rate — 1 — 4 V/ns 3 SYSCLK/DDRCLK peak period jitter — — — ± 150 ps — SYSCLK/DDRCLK jitter phase noise at –56 dBc — — — 500 kHz 4 AC Input Swing Limits at 3.3 V OVDD ΔVAC 1.9 — — V — Note: 1. Caution: The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequency do not exceed their respective maximum or minimum operating frequencies. 2. Measured at the rising edge and/or the falling edge at OVDD/2. 3. Slew rate as measured from ±0.3 ΔVAC at the center of peak to peak voltage at clock input. 4. Phase noise is calculated as FFT of TIE jitter. 2.7.2 DSP Clock (DSPCLKIN) Specifications This table provides the DSP clock (DSPCLKIN) 3.3 V DC specifications. Table 13. DSPCLKIN DC Electrical Characteristics At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter Symbol Min Typical Max Unit Note Input high voltage VIH 2.0 — — V 1 Input low voltage VIL — — 0.8 V 1 Input capacitance CIN — 7 15 pf — Input current (VIN= 0 V or VIN = VDDC) IIN — — ±50 μA 2 Note: 1. Note that the min VILand max VIH values are based on the respective min and max OVIN values found in Table 3. 2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 3. This table provides the DSP clock (DSPCLKIN) AC timing specifications. Table 14. DSPCLKIN AC Timing Specifications At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter/Condition Symbol Min Typical Max Unit Note DSPCLKIN frequency fSYSCLK 66 — 133 MHz 1, 2 DSPCLKIN cycle time tSYSCLK 7.5 — 10 ns 1, 2 DSPCLKIN duty cycle tKHK/ tSYSCLK 40 — 60 % 2 DSPCLKIN slew rate — 1 — 4 V/ns 3 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 62 Freescale Semiconductor Electrical Characteristics Table 14. DSPCLKIN AC Timing Specifications (continued) At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter/Condition Symbol Min Typical Max Unit Note DSPCLKIN peak period jitter — — — ±150 ps — DSPCLKIN jitter phase noise at –56 dBc — — — 500 kHz 4 ΔVAC 1.9 — — V — AC Input Swing Limits at 3.3 V OVDD Note: 1. Caution: The relevant clock ratio settings must be chosen such that the resulting DSPCLKIN frequency do not exceed their respective maximum or minimum operating frequencies. 2. Measured at the rising edge and/or the falling edge at OVDD/2. 3. Slew rate as measured from ±0.3 ΔVAC at the center of peak to peak voltage at clock input. 4. Phase noise is calculated as FFT of TIE jitter. 2.7.3 Spread Spectrum Sources Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in this table considers short-term (cycle-to-cycle) jitter only and the clock generator’s cycle-to-cycle output jitter should meet the input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns, and the device is compatible with spread spectrum sources if the recommendations listed in this table are observed. Table 15. Spread Spectrum Clock Source Recommendations At recommended operating conditions. See Table 3. Parameter Min Max Unit Note Frequency modulation — 60 kHz — Frequency spread — 1.0 % 1, 2 Note: 1. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the minimum and maximum specifications given in Table 99. 2. Maximum spread spectrum frequency may not result in exceeding any maximum operating frequency of the device CAUTION The processor’s minimum and maximum SYSCLK, core, and VCO frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated e500 core frequency should avoid violating the stated limits by using down-spreading only. 2.7.4 Real Time Clock Specifications The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter specification. The minimum pulse width of the RTC signal should be greater than 2x the period of the CCB clock. That is, minimum clock high time is 2 × tCCB, and minimum clock low time is 2 × tCCB. There is no minimum RTC frequency; RTC may be grounded if not needed. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 63 Electrical Characteristics 2.7.5 RF Parallel Interface Clock Specifications The following table lists the RF parallel interface clock DC electrical characteristics. Table 16. RF Parallel Reference Clock DC Electrical Characteristics Parameter Symbol Min Typical Max Unit Note Input high voltage VIH 2.0 — — V 1 Input low voltage VIL — — 0.8 V 1 Input capacitance CIN — 7 15 C — Input current (VIN= 0 V or VIN = VDDC) IIN — — ±50 μA 2 Note: 1. The max VIH, and min VIL values can be found in Table 3. 2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 3. The following table lists the RF parallel interface clock AC electrical characteristics. Table 17. RF Parallel Reference Clock AC Electrical Characteristics At recommended operating conditions with OVDD = 3.3 V ± 165 mV Parameter/Condition Symbol Min Typical Max Unit Note ANTn_REF_CLK frequency fANT_REF_CLK — 19.2 — MHz — ANTn_REF_CLK cycle time tANT_REF_CLK — 52 — ns — ANTn_REF_CLK duty cycle tKHK/tANT_REF_CLK 48 50 52 % — ANTn_REF_CLK slew rate — 1 — 4 V/ns 1 ANTn_REF_CLK peak period jitter — — — ±100 ps — ΔVAC 1.9 — — V — AC Input Swing Limits at 3.3 V OVDD Note: 1. Slew rate as measured from ±0.3 ΔVAC at the center of peak to peak voltage at clock input. 2.7.6 Other Input Clocks A description of the overall clocking of this device is available in the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual in the form of a clock subsystem block diagram. For information about the input clock requirements of other functional blocks such as SerDes, Ethernet Management, eSDHC, and IFC, see the specific interface section. 2.8 DDR3 and DDR3L SDRAM Controller This section describes the DC and AC electrical specifications for the DDR3 and DDR3L SDRAM controller interface. Note that the required GVDD(typ) voltage is 1.5 V and 1.35 V when interfacing to DDR3 or DDR3L SDRAM, respectively. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 64 Freescale Semiconductor Electrical Characteristics 2.8.1 DDR3 and DDR3L SDRAM Interface DC Electrical Characteristics This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM. Table 18. DDR3 SDRAM Interface DC Electrical Characteristics At recommended operating condition with GVDD = 1.5 V1 Parameter Symbol Min Max Unit Note MVREFn 0.49 × GVDD 0.51 × GVDD V 2, 3, 4 Input high voltage VIH MVREFn + 0.100 GVDD V 5 Input low voltage VIL GND MVREFn – 0.100 V 5 I/O leakage current IOZ –50 50 μA 6 I/O reference voltage Note: 1. GVDD is expected to be within 50 mV of the DRAM’s voltage supply at all times. The DRAM’s and memory controller’s voltage supply may or may not be from the same source. 2. MVREFn is expected to be equal to 0.5 × GVDD and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREFn may not exceed ±1% of the DC value. 3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MVREFn with a min value of MVREFn – 0.04 and a max value of MVREFn + 0.04. VTT should track variations in the DC level of MVREFn. 4. The voltage regulator for MVREFn must be able to supply up to125 μA current. 5. Input capacitance load for DQ, DQS, and DQS_B are available in the IBIS models. 6. Output leakage is measured with all outputs disabled, 0 V ≤ VOUT ≤ GVDD. This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3L SDRAM. Table 19. DDR3L SDRAM Interface DC Electrical Characteristics At recommended operating condition with GVDD = 1.35 V1 Parameter Symbol Min Max Unit Note MVREFn 0.49 × GVDD 0.51 × GVDD V 2, 3, 4 Input high voltage VIH MVREFn + 0.090 GVDD V 5 Input low voltage VIL GND MVREFn – 0.090 V 5 Output high current (VOUT = 0.641 V) IOH — –23.3 mA 6, 7 Output low current (VOUT = 0.641 V) IOL 23.3 — mA 6, 7 I/O leakage current IOZ –50 50 μA 8 I/O reference voltage BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 65 Electrical Characteristics Table 19. DDR3L SDRAM Interface DC Electrical Characteristics (continued) At recommended operating condition with GVDD = 1.35 V1 Parameter Symbol Min Max Unit Note Note: 1. GVDD is expected to be within 50 mV of the DRAM’s voltage supply at all times. The DRAM’s and memory controller’s voltage supply may or may not be from the same source. 2. MVREFn is expected to be equal to 0.5 × GVDD and to track GVDD DC variations as measured at the receiver.Peak-to-peak noise on MVREFn may not exceed the MVREFn DC level by more than ±1% of GVDD (i.e. ±13.5 mV). 3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MVREFn with a min value of MVREFn – 0.04 and a max value of MVREFn + 0.04. VTT should track variations in the DC level of MVREFn. 4. The voltage regulator for MVREFn must be able to supply up to125 μA current. 5. Input capacitance load for DQ, DQS, and DQS_B are available in the IBIS models. 6. IOH and IOL are measured at GVDD = 1.282 V 7. See the IBIS model for the complete output IV curve characteristics. 8. Output leakage is measured with all outputs disabled, 0 V ≤ VOUT ≤ GVDD. This table provides the DDR controller interface capacitance for DDR3. Table 20. DDR3 SDRAM Capacitance At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter Symbol Min Max Unit Note Input/output capacitance: DQ, DQS, DQS_B CIO 6 8 pF — Delta input/output capacitance: DQ, DQS, DQS_B CDIO — 0.5 pF — This table provides the current draw characteristics for MVREFn. - Table 21. Current Draw Characteristics for MVREFn For recommended operating conditions, seeTable 3. Parameter Symbol Min Max Unit Note Current draw for DDR3 SDRAM for MVREFn IMVREFn — 700 μA — Current draw for DDR3L SDRAM for MVREFn IMVREFn — 700 μA — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 66 Freescale Semiconductor Electrical Characteristics 2.8.2 DDR3 and DDR3L SDRAM Interface AC Timing Specifications This section provides the AC timing specifications for the DDR SDRAM controller interface. The DDR controller supports DDR3 and DDR3L memories. Note that the required GVDD(typ) voltage is 1.5 V when interfacing to DDR3 SDRAM, and the required GVDD(typ) voltage is 1.35 V when interfacing to DDR3L SDRAM. 2.8.2.1 DDR3 and DDR3L SDRAM Interface Input AC Timing Specifications This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3 SDRAM. Table 22. DDR3 SDRAM Interface Input AC Timing Specifications For recommended operating conditions, see Table 3. Parameter Symbol Min VILAC — AC input low voltage > 1200 MHz data rate ≤ 1200 MHz data rate Max Unit Note V — V — MVREFn – 0.150 MVREFn – 0.175 AC input high voltage — VIHAC > 1200 MHz data rate ≤ 1200 MHz data rate MVREFn + 0.150 MVREFn + 0.175 This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3L SDRAM. Table 23. DDR3L SDRAM Interface Input AC Timing Specifications For recommended operating conditions, see Table 3. Parameter AC input low voltage > 1067 MHz data rate ≤ 1067 MHz data rate AC input high voltage > 1067 MHz data rate ≤ 1067 MHz data rate Symbol Min VILAC — Max Unit Note V — V — MVREFn – 0.135 MVREFn – 0.160 VIHAC — MVREFn + 0.135 MVREFn + 0.160 This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3/3L SDRAM. Table 24. DDR3 and DDR3L SDRAM Interface Input AC Timing Specifications At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter Symbol Min Max Unit Note tCISKEW — — ps 1 1333 MHz data rate –125 125 1200 MHz data rate –147.5 147.5 1066 MHz data rate –170 170 800 MHz data rate –200 200 667 MHz data rate –240 240 Controller Skew for MDQS—MDQ/MECC BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 67 Electrical Characteristics Table 24. DDR3 and DDR3L SDRAM Interface Input AC Timing Specifications (continued) At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter Symbol Min Max Unit Note tDISKEW — — ps 2 1333 MHz data rate –250 250 1200 MHz data rate –275 275 1066 MHz data rate –300 300 800 MHz data rate –425 425 667 MHz data rate –510 510 Tolerated Skew for MDQS—MDQ/MECC Note: 1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget. 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be determined by the following equation: tDISKEW = ±(T ÷ 4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute value of tCISKEW. This figure shows the DDR3 and DDR3L SDRAM interface input timing diagram. MCK[n]_B MCK[n] tMCK MDQS[n] tDISKEW MDQ[x] D0 D1 tDISKEW tDISKEW Figure 9. DDR3 and DDR3L SDRAM Interface Input Timing Diagram 2.8.2.2 DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications This table contains the output AC timing targets for the DDR3 and DDR3L SDRAM interface. Table 25. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter MCK[n] cycle time Symbol1 Min Max Unit Note tMCK 1.5 3 ns 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 68 Freescale Semiconductor Electrical Characteristics Table 25. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications (continued) At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter Symbol1 ADDR/CMD output setup with respect to MCK tDDKHAS Min Max 1333 MHz data rate 0.606 — 1200 MHz data rate 0.675 — 1066 MHz data rate 0.744 — 800 MHz data rate 0.917 — 667 MHz data rate 1.10 — ADDR/CMD output hold with respect to MCK tDDKHAX 1333 MHz data rate 0.606 — 1200 MHz data rate 0.675 — 1066 MHz data rate 0.744 — 800 MHz data rate 0.917 — 667 MHz data rate 1.10 — MCS[n]_B output setup with respect to MCK tDDKHCS 1333 MHz data rate 0.606 — 1200 MHz data rate 0.675 — 1066 MHz data rate 0.744 — 800 MHz data rate 0.917 — 667 MHz data rate 1.10 — MCS[n]_B output hold with respect to MCK tDDKHCX 1333 MHz data rate 0.606 — 1200 MHz data rate 0.675 — 1066 MHz data rate 0.744 — 800 MHz data rate 0.917 — 667 MHz data rate 1.10 — MCK to MDQS Skew tDDKHMH > 1066 MHz data rate –0.245 0.245 800 MHz data rate –0.375 0.375 667 MHz data rate –0.6 0.6 Unit Note ns 3 ns 3 ns 3 ns 3 ns 4 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 69 Electrical Characteristics Table 25. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications (continued) At recommended operating conditions with GVDD of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L. Parameter MDQ/MECC/MDM output setup with respect to MDQS Symbol1 Min Max tDDKHDS, tDDKLDS 1333 MHz data rate 250 — 1200 MHz data rate 275 — 1066 MHz data rate 300 — 800 MHz data rate 375 — 667 MHz data rate 450 — MDQ/MECC/MDM output hold with respect to MDQS tDDKHDX, tDDKLDX 1333 MHz data rate 250 — 1200 MHz data rate 275 — 1066 MHz data rate 300 — 800 MHz data rate 375 — 667 MHz data rate 450 — Unit Note ps 5 ps 5 MDQS preamble tDDKHMP 0.9 × tMCK — ns — MDQS postamble tDDKHME 0.4 × tMCK 0.6 × tMCK ns — Note: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. 2. All MCK/MCK_B and MDQS/MDQS_B referenced measurements are made from the crossing of the two signals. 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK_B, MCS_B, and MDQ/MECC/MDM/MDQS. 4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This is typically set to the same delay as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual for a description and explanation of the timing modifications enabled by use of these bits. 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor. NOTE For the ADDR/CMD setup and hold specifications in Table 25, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 70 Freescale Semiconductor Electrical Characteristics This figure shows the DDR3 and DDR3L SDRAM interface output timing for the MCK to MDQS skew measurement (tDDKHMH). MCK_B[n] MCK[n] tMCK tDDKHMH(max) = 0.6 ns or 0.375 ns MDQS tDDKHMH(min) = –0.6 ns or –0.375 ns MDQS Figure 10. tDDKHMH Timing Diagram This figure shows the DDR3 and DDR3L SDRAM output timing diagram. MCK_B MCK tMCK tDDKHAS, tDDKHCS tDDKHAX, tDDKHCX ADDR/CMD Write A0 NOOP tDDKHMP tDDKHMH MDQS[n] tDDKHME tDDKHDS tDDKLDS MDQ[x] D0 D1 tDDKLDX tDDKHDX Figure 11. DDR3 and DDR3L Output Timing Diagram BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 71 Electrical Characteristics This figure provides the AC test load for the DDR3 and DDR3Lcontroller bus. Output Z0 = 50 Ω RL = 50 Ω GVDD/2 Figure 12. DDR3 and DDR3L Controller Bus AC Test Load 2.8.2.3 DDR3 and DDR3L SDRAM Differential Timing Specifications This section describes the DC and AC differential timing specifications for the DDR3 SDRAM controller interface. Figure 13 shows the differential timing specification. GVDD VTR GVDD/2 VOX or VIX VCP GND Figure 13. DDR3, and DDR3L SDRAM Differential Timing Specifications NOTE VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK_B or MDQS_B). This table provides the DDR3 differential specifications for the differential signals MDQS/MDQS_B and MCK/MCK_B. Table 26. DDR3 SDRAM Differential Electrical Characteristics Parameter Symbol Min Max Unit Note Input AC Differential Cross-Point Voltage VIXAC 0.5 × GVDD – 0.150 0.5 × GVDD + 0.150 V 1 Output AC Differential Cross-Point Voltage VOXAC 0.5 × GVDD – 0.115 0.5 × GVDD + 0.115 V 1 Note: 1. I/O drivers are calibrated before making measurements. This table provides the DDR3 differential specifications for the differential signals MDQS/MDQS_B and MCK/MCK_B. Table 27. DDR3L SDRAM Differential Electrical Characteristics Parameter Symbol Min Max Unit Note Input AC Differential Cross-Point Voltage VIXAC 0.5 × GVDD – 0.135 0.5 × GVDD + 0.135 V 1 Output AC Differential Cross-Point Voltage VOXAC 0.5 × GVDD – 0.105 0.5 × GVDD + 0.105 V 1 Note: 1. I/O drivers are calibrated before making measurements. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 72 Freescale Semiconductor Electrical Characteristics 2.9 eSPI This section describes the DC and AC electrical specifications for the SPI. 2.9.1 eSPI1 DC Electrical Characteristics This table provides the DC electrical characteristics for the eSPI1 on the device operating on a 3.3 V power supply. Table 28. eSPI1 DC Electrical Characteristics (CVDD = 3.3 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2.0 — V 1 Input low voltage VIL — 0.8 V 1 Input current (0 V ≤ VIN ≤ CVDD) IIN — ±10 μA 2 Output high voltage (IOH = –6.0 mA) VOH 2.4 — V — Output low voltage (IOL = 6.0 mA) VOL — 0.5 V — Output low voltage (IOL = 3.2 mA) VOL — 0.4 V — Note: 1 The min V and max V values are based on the respective min and max OV values found in Table 3. IL IH IN 2 The symbol V , in this case, represents the OV symbol referenced in Section 2.1.2, “Recommended Operating Conditions.” IN IN This table provides the DC electrical characteristics for the eSPI1 and eSPI2 on the device operating on a 1.8 V power supply. Table 29. eSPI DC Electrical Characteristics (CVDD, X2VDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (0 V ≤ VIN ≤ CVDD/X2VDD) IIN — ±40 μA 2, 3 Output high voltage (IOH = –6.0 mA) VOH 1.35 — V — Output low voltage (IOL = 6.0 mA) VOL — 0.4 V — Note: 1 The min V and max V values are based on the respective min and max OV values found in Table 3. IL IH IN 2 The symbol V , in this case, represents the OV symbol referenced in Section 2.1.2, “Recommended Operating Conditions.” IN IN 3 eSPI1 is powered on CV , SPI2 is on X2V DD DD (see Table 3). 2.9.2 eSPI1 AC Timing Specifications This table provides the eSPI1 input and output AC timing specifications. Table 30. eSPI1 AC Timing Specifications For recommended operating conditions, see Table 3. Characteristic eSPI outputs—Master data (internal clock) hold time Symbol1 Min Max tNIKHOX 0.5 + (tPLATFORM_CLK/2) — Unit Note ns 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 73 Electrical Characteristics Table 30. eSPI1 AC Timing Specifications (continued) For recommended operating conditions, see Table 3. Symbol1 Min Max eSPI outputs—Master data (internal clock) delay tNIKHOV — 6.0 + (tPLATFORM_CLK/2) ns 2 SPI_CS outputs—Master data (internal clock) hold time tNIKHOX2 0 — ns 2 SPI_CS outputs—Master data (internal clock) delay tNIKHOV2 — 6.0 ns 2 eSPI inputs—Master data (internal clock) input setup time tNIIVKH 5 — ns — eSPI inputs—Master data (internal clock) input hold time tNIIXKH 0 — ns — Characteristic Unit Note Note: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V). 2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. This figure provides the AC test load for eSPI1. Output Z0 = 50 Ω RL = 50 Ω OVDD/2 Figure 14. eSPI1 AC Test Load This figure represents the AC timing from Table 30 in master mode (internal clock). Note that although the specifications are generally refer to the rising edge of the clock, Figure 14 also apply when the falling edge is the active edge. Also, note that the clock edge is selectable on eSPI1. SPICLK (output) tNIIVKH Input Signals: SPIMISO1 tNIIXKH tNIKHOX tNIKHOV Output Signals: SPIMOSI1 tNIKHOV2 Output Signals: SPI_CS[0:3]1 tNIKHOX2 Figure 15. eSPI1 AC Timing in Master Mode (Internal Clock) Diagram 2.10 DUART This section describes the DC and AC electrical specifications for the DUART interfaces. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 74 Freescale Semiconductor Electrical Characteristics 2.10.1 DUART DC Electrical Characteristics Table 31 and Table 33 provide the DC electrical characteristics for the two DUARTs on the device, which correspond to four UART interfaces. DUART1 is powered by OVDD, while DUART2 is powered by the CVDD. This table provides the DC timing parameters for the DUART interface operating from a 3.3 V power supply. Table 31. DUART DC Electrical Characteristics (OVDD, CVDD = 3.3 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (OVIN/CVIN = 0 V or OVIN/CVIN = OVDD/CVDD) IIN — ±40 μA 2 Output high voltage (OVDD/CVDD = mn, IOH = –2 mA) VOH 2.4 — V — Output low voltage (OVDD/CVDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max OVIN/CVIN values found in Figure 3. 2. Note that the symbol OVIN/CVIN represents the input voltage of the supply. It is referenced in Figure 3. This table provides the DC timing parameters for the DUART interface operating from a 1.8 V power supply. Table 32. DUART DC Electrical Characteristics (CVDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (CVIN = 0 V or CVIN = CVDD) IIN — ±40 μA 2 Output high voltage (CVDD = mn, IOH = –2 mA) VOH 1.35 — V — Output low voltage (CVDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN values found in Figure 3. 2. Note that the symbol CVIN represents the input voltage of the supply. It is referenced in Figure 3. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 75 Electrical Characteristics 2.10.2 DUART AC Electrical Specifications This table provides the AC timing parameters for the DUART interface. Table 33. DUART AC Timing Specifications Parameter Value Unit Note Minimum baud rate CCB clock/1,048,576 baud 1 Maximum baud rate CCB clock/16 baud 2 16 — 3 Oversample rate Note: 1. CCB clock refers to the platform clock. 2. Actual attainable baud rate is limited by the latency of interrupt processing. 3. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample. 2.11 Ethernet: Enhanced Three-Speed Ethernet (eTSEC) This section provides the AC and DC electrical characteristics for enhanced three-speed Ethernet10/100/1000 controller and MII management. 2.11.1 SGMII Interface Electrical Characteristics For SGMII interface electrical characteristics, see Section 2.20, “High-Speed Serial Interface (HSSI) DC Electrical Characteristics.” 2.11.2 2.11.2.1 MII Management MII Management DC Electrical Characteristics The MDC and MDIO are defined to operate at a supply voltage of 3.3 V and 2.5 V. The DC electrical characteristics for MDIO and MDC are provided in Table 34 and Table 35. Table 34. MII Management DC Electrical Characteristics At recommended operating conditions with LVDD = 3.3 V. Parameter Symbol Min Max Unit Note Input high voltage VIH 2.0 — V — Input low voltage VIL — 0.90 V — Input high current (LVDD = Max, VIN = 2.1 V) IIH — 40 μA 1 Input low current (LVDD = Max, VIN = 0.5 V) IIL –600 — μA 1 Output high voltage (LVDD = Min, IOH = –1.0 mA) VOH 2.4 LVDD + 0.3 V — Output low voltage (LVDD = Min, IOL = 1.0 mA) VOL GND 0.4 V — Note: 1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 2 and Table 3. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 76 Freescale Semiconductor Electrical Characteristics Table 35. MII Management DC Electrical Characteristics At recommended operating conditions with LVDD = 2.5 V. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.70 LVDD + 0.3 V — Input low voltage VIL –0.3 0.70 V — Input high current (VIN = LVDD,) IIH — 10 μA 1, 2 Input low current (VIN = GND) IIL –15 — μA — Output high voltage (LVDD = Min, IOH = –1.0 mA) VOH 2.00 LVDD + 0.3 V — Output low voltage (LVDD = Min, IOL = 1.0 mA) VOL GND – 0.3 0.40 V — Note: 1. EC1_MDC and EC1_MDIO operate on LVDD. 2. Note that the symbol VIN, in this case, represents the LVIN and TVIN symbols referenced in Table 3. 2.11.2.2 MII Management AC Electrical Specifications This table provides the MII management AC timing specifications. Table 36. MII Management AC Timing Specifications Symbol1 Min Typ Max Unit Note MDC frequency fMDC — 2.5 — MHz 2 MDC period tMDC — 400 — ns — MDC clock pulse width high tMDCH 32 — — ns — MDC to MDIO delay tMDKHDX (16*tplb_clk) – 3 — (16*tplb_clk) + 3 ns 3, 4 MDIO to MDC setup time tMDDVKH 5 — — ns — MDIO to MDC hold time tMDDXKH 0 — — ns — Parameter Note: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). 2. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency of the MgmtClk Clock EC_MDC). 3. This parameter is dependent on the platform clock frequency. The delay is equal to 16 platform clock periods ±3 ns. For example, with a platform clock of 333 MHz, the min/max delay is 48 ns ± 3 ns. Similarly, if the platform clock is 400 MHz, the min/max delay is 40 ns ± 3 ns. 4. tplb_clk is the platform (CCB) clock. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 77 Electrical Characteristics This figure shows the MII management interface timing diagram. tMDCR tMDC MDC tMDCF tMDCH MDIO (Input) tMDDVKH tMDDXKH MDIO (Output) tMDKHDX Figure 16. MII Management Interface Timing Diagram 2.11.3 2.11.3.1 eTSEC IEEE Std 1588 Electrical Specifications eTSEC IEEE Std 1588 DC Specifications This table shows IEEE Std 1588 DC electrical characteristics when operating at LVDD = 3.3 V supply. Table 37. eTSEC IEEE 1588 DC Electrical Characteristics (LVDD = 3.3 V) For recommended operating conditions with LVDD = 3.3 V. Parameter Symbol Min Max Unit Notes Input high voltage VIH 2.0 — V 2 Input low voltage VIL — 0.9 V 2 Input high current (LVDD = Max, VIN = 2.1 V) IIH — 40 μA 1 Input low current (LVDD = Max, VIN = 0.5 V) IIL –600 — μA 1 Output high voltage (LVDD = Min, IOH = –1.0 mA) VOH 2.4 — V — Output low voltage (LVDD = Min, IOL = 1.0 mA) VOL — 0.4 V — Note: 1. The min VILand max VIH values are based on the respective min and max LVIN values found in Table 3. 2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 2 and Table 3. This table shows the IEEE 1588 DC electrical characteristics when operating at LVDD = 2.5 V supply. Table 38. eTSEC IEEE 1588 DC Electrical Characteristics (LVDD = 2.5 V) For recommended operating conditions with LVDD = 2.5 V Parameter Symbol Min Max Unit Notes Input high voltage VIH 1.70 — V — Input low voltage VIL — 0.70 V — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 78 Freescale Semiconductor Electrical Characteristics Table 38. eTSEC IEEE 1588 DC Electrical Characteristics (LVDD = 2.5 V) (continued) For recommended operating conditions with LVDD = 2.5 V Parameter Symbol Min Max Unit Notes IIH — ±40 μA 2 Output high voltage (LVDD = min, IOH = –1.0 mA) VOH 2.00 — V — Output low voltage (LVDD = min, IOL = 1.0 mA) VOL — 0.40 V — Input current (LVIN = 0 V or LVIN = LVDD) Note: 1. The min VILand max VIH values are based on the respective min and max LVIN values found in Table 3. 2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 2 and Table 3. 2.11.3.2 eTSEC IEEE Std 1588 AC Specifications This table provides the IEEE Std 1588 AC timing specifications. Table 39. eTSEC IEEE 1588 AC Timing Specifications For recommended operating conditions, see Table 3 Parameter/Condition Symbol Min Typ Max Unit Note TSEC_1588_CLK clock period tT1588CLK 5 — TRX_CLK*7 ns 1, 3 TSEC_1588_CLK duty cycle tT1588CLKH /tT1588CLK 40 50 60 % — TSEC_1588_CLK peak-to-peak jitter tT1588CLKINJ — — 250 ps — Rise time eTSEC_1588_CLK (20%–80%) tT1588CLKINR 1.0 — 2.0 ns — Fall time eTSEC_1588_CLK (80%–20%) tT1588CLKINF 1.0 — 2.0 ns — TSEC_1588_CLK_OUT clock period tT1588CLKOUT 2 x tT1588CLK — — ns — TSEC_1588_CLK_OUT duty cycle tT1588CLKOTH /tT1588CLKOUT 30 50 70 % — tT1588OV 0.5 — 3.0 ns — tT1588TRIGH 2*tT1588CLK_MAX — — ns 2 TSEC_1588_PULSE_OUT TSEC_1588_TRIG_IN pulse width Note: 1.TRX_CLK is the max clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual for a description of TMR_CTRL registers. 2. It needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manualfor a description of TMR_CTRL registers. 3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 2800, 280, and 56 ns respectively. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 79 Electrical Characteristics Figure 17 shows the data and command output AC timing diagram. tT1588CLKOUT tT1588CLKOUTH TSEC_1588_CLK_OUT tT1588OV TSEC_1588_PULSE_OUT TSEC_1588_TRIG_OUT 1 eTSEC IEEE 1588 Output AC timing: The output delay is counted starting at the rising edge if tT1588CLKOUT is non-inverting. Otherwise, it is counted starting at the falling edge. Figure 17. eTSEC IEEE 1588 Output AC Timing This figure shows the data and command input AC timing diagram. tT1588CLK tT1588CLKH TSEC_1588_CLK TSEC_1588_TRIG_IN tT1588TRIGH Figure 18. eTSEC IEEE 1588 Input AC Timing 2.12 USB This section provides the AC and DC electrical specifications for the USB interface. 2.12.1 USB DC Electrical Characteristics This table provides the DC electrical characteristics for the ULPI interface when operating at 3.3 V. Table 40. USB DC Electrical Characteristics (CVDD/X2VDD = 3.3 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (CVIN/X2VIN = 0 V or CVIN/X2VIN = CVDD/X2VDD) IIN — ±40 μA 2 VOH 2.8 — V — Output high voltage (CVDD/X2VDD = min, IOH = –2 mA) BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 80 Freescale Semiconductor Electrical Characteristics Table 40. USB DC Electrical Characteristics (CVDD/X2VDD = 3.3 V) (continued) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note VOL — 0.3 V — Output low voltage (CVDD/X2VDD = min, IOL = 2 mA) Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN/X2VIN values found in Table 3. 2. Note that the symbol CVIN and X2VIN represent the input voltage of the power supplies. See Table 3. This table provides the DC electrical characteristics for the ULPI interface when operating at 1.8 V. Table 41. USB DC Electrical Characteristics (CVDD/X2VDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (CVIN/X2VIN = 0 V or CVIN/X2VIN = CVDD/X2VDD) IIN — ±40 μA 2 Output high voltage (CVDD/X2VDD = min, IOH = –2 mA) VOH 1.35 — V — Output low voltage (CVDD/X2VDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN/X2VIN values found in Table 3. 2. Note that the symbol CVIN/X2VIN represents the input voltage of the supply. See Table 3. 2.12.2 USB AC Electrical Specifications This table describes the general timing parameters of the USB interface of the device. Table 42. USB General Timing Parameters (ULPI Mode) For recommended operating conditions, see Table 3. Symbol1 Min Max Unit Note tUSCK 15 — ns 2, 3, 4, 5 Input setup to USB clock—all inputs tUSIVKH 4 — ns 2, 3, 4, 5 input hold to USB clock—all inputs tUSIXKH 1 — ns 2, 3, 4, 5 USB clock to output valid—all outputs tUSKHOV — 7 ns 2, 3, 4, 5 Output hold from USB clock—all outputs tUSKHOX 2 — ns 2, 3, 4, 5 Parameter USB clock cycle time BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 81 Electrical Characteristics Table 42. USB General Timing Parameters (ULPI Mode) (continued) For recommended operating conditions, see Table 3. Parameter Symbol1 Min Max Unit Note Note: 1. The symbols for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX symbolizes USB timing (US) for the USB clock reference (K) to go high (H) with respect to the output (O) going invalid (X) or output hold time. 2. All timings are in reference to USB clock. 3. All signals are measured from BVDD/2 of the rising edge of the USB clock to 0.4 × OVDD of the signal in question for 3.3 V signaling levels. 4. Input timings are measured at the pin. 5. For active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification. Figure 19 and Figure 20 provide the USB AC test load and signals, respectively. Output Z0 = 50 Ω RL = 50 Ω OVDD/2 Figure 19. USB AC Test Load USB0_CLK/USB1_CLK/DR_CLK tUSIVKH tUSIXKH Input Signals tUSKHOV tUSKHOX Output Signals: Figure 20. USB Signals BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 82 Freescale Semiconductor Electrical Characteristics This table provides the USB clock input (USB_CLK_IN) AC timing specifications. Table 43. USB_CLK_IN AC Timing Specifications Parameter/Condition Conditions Frequency range Steady state Clock frequency tolerance — Reference clock duty cycle Measured at 1.6 V Symbol Min Typ Max Unit fUSB_CLK_IN 59.97 60 60.03 MHz tCLK_TOL –0.05 0 0.05 % tCLK_DUTY 40 50 60 % tCLK_PJ — — 200 ps Total input jitter/time interval Peak-to-peak value measured with a second error order high-pass filter of 500 kHz bandwidth 2.13 Integrated Flash Controller (IFC) This section describes the DC and AC electrical specifications for the integrated flash controller. 2.13.1 IFC DC Electrical Characteristics This table provides the DC electrical characteristics for the integrated flash controller when operating at BVDD = 3.3 V. Table 44. Integrated Flash Controller DC Electrical Characteristics (3.3 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (VIN = 0 V or VIN = BVDD) IIN — ±40 μA 2 Output high voltage (BVDD = min, IOH = –2 mA) VOH 2.8 — V — Output low voltage (BVDD = min, IOH = 2 mA) VOL — 0.4 V — Note: 1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3. 2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended Operating Conditions.” This table provides the DC electrical characteristics for the integrated flash controller when operating at BVDD = 2.5 V. Table 45. Integrated Flash Controller DC Electrical Characteristics (2.5 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note Input high voltage VIH 1.7 — V 1 Input low voltage VIL — 0.7 V 1 Input current (VIN = 0 V or VIN = BVDD) IIN — ±40 μA 2 VOH 2.0 — V — Output high voltage (BVDD = min, IOH = –1 mA) BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 83 Electrical Characteristics Table 45. Integrated Flash Controller DC Electrical Characteristics (2.5 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note VOL — 0.4 V — Output low voltage (BVDD = min, IOL = 1 mA) Note: 1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3. 2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended Operating Conditions.” This table provides the DC electrical characteristics for the integrated flash controller when operating at BVDD = 1.8 V. Table 46. Integrated Flash Controller DC Electrical Characteristics (1.8 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (VIN = 0 V or VIN = BVDD) IIN — ±40 μA 2 Output high voltage (BVDD = min, IOH = –0.5 mA) VOH 1.35 — V — Output low voltage (BVDD = min, IOL = 0.5 mA) VOL — 0.4 V — Note: 1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3. 2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended Operating Conditions.” 2.13.2 IFC AC Timing Specifications This section describes the AC timing specifications for the integrated flash controller. 2.13.2.1 Test Condition This figure provides the AC test load for the integrated flash controller. Output Z0 = 50 Ω RL = 50 Ω BVDD/2 Figure 21. Integrated Flash Controller AC Test Load 2.13.2.2 IFC AC Timing Specifications All output signal timings are relative to the falling edge of any IFC_CLK. The external circuit must use the rising edge of the IFC_CLKs to latch the data. All input timings are relative to the rising edge of IFC_CLKs. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 84 Freescale Semiconductor Electrical Characteristics This table describes the timing specifications of the integrated flash controller interface. Table 47. IFC Timing Specifications (BVDD = 3.3 V, 2.5 V, and 1.8 V) For recommended operating conditions, see Table 3 Symbol1 Min Max Unit Note IFC_CLK cycle time tIBK 10 — ns — IFC_CLK duty cycle tIBKH/tIBK 45 55 % — Input setup tIBIVKH 4 — ns — Input hold tIBIXKH 1 — ns — Output delay tIBKLOV — 1.5 ns — Output hold tIBKLOX –2 — ns 5, 6 Parameter Note: 1. All signals are measured from BVDD/2 of rising/falling edge of IFC_CLK to BVDD/2 of the signal in question. 2. Skew measured between different IFC_CLK signals at BVDD/2. 3. For purposes of active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. 4. tIBONOT is a measurement of the maximum time between the negation of ALE and any change in AD when FTIM0_CSn[TEAHC] = 0. 5. Here the negative sign means output transit happens earlier than the falling edge of IFC_CLK. 6. Here a convention has been followed in which the more negative/less-positive the number, the smaller the number would be. For example –2 is smaller then –1 and –1 is smaller then 0. So if the min value of this parameter is shown as –2 ns than the for any part parameter’s measure will never go to –3ns though it can go to –1 ns. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 85 Electrical Characteristics This figure shows the AC timing diagram. IFC_CLK[m] tIBIVKH tIBIXKH Input Signals tIBKLOV tIBKLOX Output Signals AD (address phase) ALE tIBKLOX AD (data phase) Figure 22. Integrated Flash Controller Signals Figure 22 applies to all the controllers that IFC supports. For input signals, the AC timing data is used directly for all controllers. For output signals, each type of controller provides its own unique method to control the signal timing. The final signal delay value for output signals is the programmed delay plus the AC timing delay. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 86 Freescale Semiconductor Electrical Characteristics This figure shows how the AC timing diagram applies to GPCM. The same principle also applies to other controllers of IFC. IFC_CLK AD[0:31] address read data write data address teahc + tIBKLOV teadc + tIBKLOV ALE tacse + tIBKLOV CE_B taco + tIBKLOV trad + tIBKHOV OE_B tch + tIBKLOV tcs+ tIBKLOV WE_B twp + tIBKLOV BCTL read write 1 taco, trad, teahc, teadc, tacse, tcs, tch, twp are programmable. See the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual. 2 For output signals, each type of controller provides its own unique method to control the signal timing. The final signal delay value for output signals is the programmed delay plus the AC timing delay. Figure 23. GPCM Output Timing Diagram 2.14 Enhanced Secure Digital Host Controller (eSDHC) This section describes the DC and AC electrical specifications for the eSDHC interface. 2.14.1 eSDHC DC Electrical Characteristics This table provides the DC electrical characteristics for the eSDHC interface. Table 48. eSDHC Interface DC Electrical Characteristics At recommended operating conditions with BVDD = 3.3 V or 1.8 V. Characteristic Symbol Condition Min Max Unit Note Input high voltage VIH — 0.625 × BVDD — V 1 Input low voltage VIL — — 0.25 × BVDD V 1 Output high voltage VOH IOH = –100 uA at BVDD min 0.75 × BVDD — V — Output low voltage VOL IOL = 100uA at BVDD min — 0.125 × BVDD V — Output high voltage VOH IOH = –100 uA BVDD - 0.2 — V 2 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 87 Electrical Characteristics Table 48. eSDHC Interface DC Electrical Characteristics (continued) At recommended operating conditions with BVDD = 3.3 V or 1.8 V. Characteristic Output low voltage Input/output leakage current Symbol Condition Min Max Unit Note VOL IOL = 2 mA — 0.3 V 2 IIN/IOZ — –10 10 uA — Note: 1. Note that the min VILand max VIH values are based on the respective min and max BVIN values found in Figure 3. 2. Open drain mode for MMC cards only. 2.14.2 eSDHC AC Timing Specifications This table provides the eSDHC AC timing specifications as defined in Figure 25. Table 49. eSDHC AC Timing Specifications At recommended operating conditions with BVDD = 3.3 or 1.8 V Parameter Symbol1 SD_CLK clock frequency: SD/SDIO Full-speed/High-speed mode MMC Full-speed/High-speed mode fSFSCK SD_CLK clock low time—Full-speed/High-speed mode Min Max Unit Note 0 0 25/50 20/52 MHz 2, 4 tSFSCKL 10/7 — ns 4 SD_CLK clock high time—Full-speed/High-speed mode tSFSCKH 10/7 — ns 4 SD_CLK clock rise and fall times tSFSCKR/ tSFSCKF — 3 ns 4 Input setup times: SD_CMD, SD_DATx tSFSIVKH 2.5 — ns 3, 4 Input hold times: SD_CMD, SD_DATx tSFSIXKH 2.5 — ns 3, 4 Output delay time: SD_CLK to SD_CMD, SD_DATx valid tSFSKHOV — 3 ns 4 Output delay time: SD_CLK to SD_CMD, SD_DATx hold time tSFSKHOX –3 — ns 4 Note: 1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) (reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFHSKHOV symbolizes eSDHC high speed mode device timing (SHS) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). 2. In full speed mode, clock frequency value can be 0–25 MHz for a SD/SDIO card and 0–20 MHz for a MMC card. In high speed mode, clock frequency value can be 0–50 MHz for a SD/SDIO card and 0–52 MHz for a MMC card. 3. To satisfy setup timing, one way board routing delay between Host and Card, on SD_CLK, SD_CMD and SD_DATx should not exceed 1 ns for any high speed MMC card. For any high speed or default speed mode SD card, the one way board routing delay between Host and Card, on SD_CLK, SD_CMD and SD_DATx should not exceed 1.5 ns. 4. CCARD ≤10 pF, (1 card), and CL = CBUS + CHOST + CCARD ≤ 40 pF BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 88 Freescale Semiconductor Electrical Characteristics This figure provides the eSDHC clock input timing diagram. eSDHC External Clock operational mode VM VM VM tSFSCKL tSFSCKH tSFSCK tSFSCKF tSFSCKR VM = Midpoint Voltage (BVDD/2) Figure 24. eSDHC Clock Input Timing Diagram This figure provides the data and command input/output timing diagram. VM SD_CK External Clock VM VM VM tSFSIXKH tSFSIVKH SD_DAT/CMD Inputs SD_DAT/CMD Outputs tSFSKHOX tSFSKHOV VM = Midpoint Voltage (BVDD/2) Figure 25. eSDHC Data and Command Input/Output Timing Diagram Referenced to Clock 2.15 Programmable Interrupt Controller (PIC) Specifications This section describes the DC and AC electrical specifications for the PIC. 2.15.1 PIC DC Electrical Characteristics This table provides the DC electrical characteristics for the PIC interface when operating at CVDD/OVDD/BVDD/X1VDD/X2VDD = 3.3 V. Table 50. PIC DC Electrical Characteristics (3.3 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (CVIN/OVIN/BVIN/X1VIN/X2VIN = 0V or CVIN/OVIN/BVIN/X1VIN/X2VIN = CVDD/OVDD/BVDD/X1VDD/X2VDD) IIN — ±40 μA 2 VOH 2.4 — V — Output high voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOH = –2 mA) BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 89 Electrical Characteristics Table 50. PIC DC Electrical Characteristics (3.3 V) (continued) For recommended operating conditions, see Table 3. Parameter Output low voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOL = 2 mA) Symbol Min Max Unit Note VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN/OVIN/BVIN/X1VIN/X2VIN values found in Table 3. 2. Note that the symbol CVIN/OVIN/BVIN/X1VIN/X2VIN represents the input voltage of the supply. See Table 3. This table provides the DC electrical characteristics for the PIC interface when operating at LVDD/OVDD/BVDD/CVDD = 2.5 V. Table 51. PIC DC Electrical Characteristics (2.5 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.7 — V 1 Input low voltage VIL — 0.7 V 1 Input current (CVIN/OVIN/BVIN/X1VIN/X2VIN = 0V or CVIN/OVIN/BVIN/X1VIN/X2VIN = CVDD/OVDD/BVDD/X1VDD/X2VDD) IIN — ±40 μA 2 Output high voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOH = –2 mA) VOH 2.0 — V — Output low voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN/OVIN/BVIN/X1VIN/X2VIN values found in Table 3. 2. Note that the symbol CVIN/OVIN/BVIN/X1VIN/X2VIN represents the input voltage of the supply. See Table 3. This table provides the DC electrical characteristics for the PIC interface when operating at LVDD/OVDD/BVDD/CVDD = 1.8 V. Table 52. PIC DC Electrical Characteristics (1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (CVIN/OVIN/BVIN/X1VIN/X2VIN = 0V or CVIN/OVIN/BVIN/X1VIN/X2VIN = CVDD/OVDD/BVDD/X1VDD/X2VDD) IIN — ±40 μA 2 VOH 1.35 — V — Output high voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOH = –2 mA) BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 90 Freescale Semiconductor Electrical Characteristics Table 52. PIC DC Electrical Characteristics (1.8 V) (continued) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note VOL — 0.4 V — Output low voltage (CVDD/OVDD/BVDD/X1VDD/X2VDD = min, IOL = 2 mA) Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN/OVIN/BVIN/X1VIN/X2VIN values found in Table 3. 2. Note that the symbol CVIN/OVIN/BVIN/X1VIN/X2VIN represents the input voltage of the supply. See Table 3. 2.15.2 PIC AC Timing Specifications This table provides the PIC input and output AC timing specifications. Table 53. PIC Input AC Timing Specifications For recommended operating conditions, see Table 3 Parameter PIC inputs—minimum pulse width Symbol Min Max Unit Note tPIWID 3 — SYSCLK 1 Note: 1. PIC inputs and outputs are asynchronous to any visible clock. PIC outputs should be synchronized before use by any external synchronous logic. PIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working in edge-triggered mode. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 91 Electrical Characteristics 2.16 JTAG This section describes the AC electrical specifications for the IEEE Std 1149.1™ (JTAG) interface. This section applies to both the Power Architecture and DSP JTAG ports. The BSC9132 has multiple JTAG topology; see Section 3.11, “JTAG Configuration Signals,” for details. 2.16.1 JTAG DC Electrical Characteristics This table provides the JTAG DC electrical characteristics. Table 54. JTAG DC Electrical Characteristics For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2.1 — V 1 Input low voltage VIL — 0.8 V 1 Input current (OVIN = 0V or OVIN = OVDD) IIN — ±40 μA 2 Output high voltage (OVDD = min, IOH = –2 mA) VOH 2.4 — V — Output low voltage (OVDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max OVIN values found in Table 3 2. Note that the symbol OVIN represents the input voltage of the supply. It is referenced in Table 3. 2.16.2 JTAG AC Timing Specifications This table provides the JTAG AC timing specifications as defined in Figure 26 through Figure 29. Table 55. JTAG AC Timing Specifications For recommended operating conditions see Table 3. Symbol1 Min Max Unit Note JTAG external clock frequency of operation fJTG 0 33.3 MHz — JTAG external clock cycle time tJTG 30 — ns — tJTKHKL 15 — ns — tJTGR and tJTGF 0 2 ns — tTRST 25 — ns 2 Input setup times tJTDVKH 4 — ns — Input hold times tJTDXKH 10 — ns — Output valid times tJTKLDV 4 10 ns 3 Output hold times tJTKLDX 30 — ns 3 Parameter JTAG external clock pulse width measured at 1.4 V JTAG external clock rise and fall times TRST_B assert time BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 92 Freescale Semiconductor Electrical Characteristics Table 55. JTAG AC Timing Specifications (continued) For recommended operating conditions see Table 3. Parameter JTAG external clock to output high impedance Symbol1 Min Max Unit Note tJTKLDZ 4 10 ns — Note: 1. The symbols used for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the invalid state (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). 2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only. 3. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system. This figure provides the AC test load for TDO and the boundary-scan outputs. Z0 = 50 Ω Output RL = 50 Ω OVDD/2 Figure 26. AC Test Load for the JTAG Interface This figure provides the JTAG clock input timing diagram. JTAG External Clock VM VM VM tJTGR tJTKHKL tJTGF tJTG VM = Midpoint Voltage (OVDD/2) Figure 27. JTAG Clock Input Timing Diagram This figure provides the TRST_B timing diagram. TRST_B VM VM tTRST VM = Midpoint Voltage (OVDD/2) Figure 28. TRST_B Timing Diagram BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 93 Electrical Characteristics This figure provides the boundary-scan timing diagram. JTAG External Clock VM VM tJTDVKH tJTDXKH Boundary Data Inputs Input Data Valid tJTKLDV tJTKLDX Boundary Data Outputs Output Data Valid tJTKLDZ Boundary Data Outputs Output Data Valid VM = Midpoint Voltage (OVDD/2) Figure 29. Boundary-Scan Timing Diagram 2.17 I2C This section describes the DC and AC electrical characteristics for the two I2C interfaces. The input voltage for I2C1 is provided by a OVDD (3.3 V) power supply, while the input voltage for I2C2 is provided by a CVDD (3.3 V/1.8 V) power supply. 2.17.1 I2C DC Electrical Characteristics This table provides the DC electrical characteristics for the I2C interfaces operating from a 3.3 power supply. Table 56. I2C DC Electrical Characteristics (CVDD = 3.3 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Output low voltage VOL 0 0.4 V 2 Pulse width of spikes which must be suppressed by the input filter tI2KHKL 0 50 ns 3 Input current each I/O pin (input voltage is between 0.1 × OVDD and 0.9 × OVDD(max) II –10 10 μA 4 Capacitance for each I/O pin CI — 10 pF — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN values found in Table 3. 2. Output voltage (open drain or open collector) condition = 3 mA sink current. 3. See the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual for information on the digital filter used. 4. I/O pins obstruct the SDA and SCL lines if OVDD is switched off. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 94 Freescale Semiconductor Electrical Characteristics This table provides the DC timing parameters for the I2C interface operating from a 1.8 V power supply. Table 57. I2C DC Electrical Characteristics (CVDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (CVIN = 0 V or CVIN = CVDD) IIN — ±40 μA 2 Output high voltage (CVDD = mn, IOH = –2 mA) VOH 1.35 — V — Output low voltage (CVDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max CVIN values found in Figure 3. 2. Note that the symbol CVIN represents the input voltage of the supply. It is referenced in Figure 3. 2.17.2 I2C AC Electrical Specifications This table provides the AC timing parameters for the I2C interfaces. Table 58. I2C AC Electrical Specifications For recommended operating conditions see Table 3. All values refer to VIH (min) and VIL (max) levels (see Table 56) Symbol1 Min Max Unit Note SCL clock frequency fI2C 0 400 kHz 2 Low period of the SCL clock tI2CL 1.3 — μs — High period of the SCL clock tI2CH 0.6 — μs — Setup time for a repeated START condition tI2SVKH 0.6 — μs — Hold time (repeated) START condition (after this period, the first clock pulse is generated) tI2SXKL 0.6 — μs — Data setup time tI2DVKH 100 — ns — μs 3 — 0 — — Parameter Data hold time: tI2DXKL CBUS compatible masters I2C bus devices Data output delay time tI2OVKL — 0.9 μs 4 Set-up time for STOP condition tI2PVKH 0.6 — μs — Bus free time between a STOP and START condition tI2KHDX 1.3 — μs — Noise margin at the LOW level for each connected device (including hysteresis) VNL 0.1 × OVDD — V — Noise margin at the HIGH level for each connected device (including hysteresis) VNH 0.2 × OVDD — V — Capacitive load for each bus line Cb — 400 pF — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 95 Electrical Characteristics Table 58. I2C AC Electrical Specifications (continued) For recommended operating conditions see Table 3. All values refer to VIH (min) and VIL (max) levels (see Table 56) Symbol1 Parameter Min Max Unit Note Note: 1. The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2) with respect to the time data input signals (D) reaching the valid state (V) relative to the tI2C clock reference (K) going to the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the START condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative to the tI2C clock reference (K) going to the high (H) state or setup time. 2. The requirements for I2C frequency calculation must be followed. See Freescale application note AN2919, “Determining the I2C Frequency Divider Ratio for SCL.” 3. As a transmitter, the device provides a delay time of at least 300 ns for the SDA signal (referred to as the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of a START or STOP condition. When the device acts as the I2C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the device does not generate an unintended START or STOP condition. Therefore, the 300 ns SDA output delay time is not a concern. If under some rare condition, the 300 ns SDA output delay time is required for the device as transmitter, application note AN2919 referred to in note 4 below is recommended. 4. The maximum tI2OVKL has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal. This figure provides the AC test load for the I2C. Output Z0 = 50 Ω RL = 50 Ω OVDD/2 Figure 30. I2C AC Test Load This figure shows the AC timing diagram for the I2C bus. SDA tI2CF tI2DVKH tI2CL tI2KHKL tI2SXKL tI2CF tI2CR SCL tI2SXKL S tI2CH tI2DXKL, tI2OVKL tI2SVKH tI2PVKH Sr P S Figure 31. I2C Bus AC Timing Diagram 2.18 GPIO This section describes the DC and AC electrical specifications for the GPIO interface. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 96 Freescale Semiconductor Electrical Characteristics 2.18.1 GPIO DC Electrical Characteristics This table provides the DC electrical characteristics for the GPIO interface when operating from 3.3-V supply. Table 59. GPIO DC Electrical Characteristics (3.3 V) For recommended operating conditions, see Table 3 Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (BVIN = 0 V or BVIN = BVDD) IIN — ±40 μA 2 Output high voltage (BVDD = min, IOH = –2 mA) VOH 2.4 — V — Low-level output voltage (BVDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the min and max BVIN respective values found in Table 3. 2. Note that the symbol BVIN represents the input voltage of the supply. It is referenced in Table 3. This table provides the DC electrical characteristics for the GPIO interface when operating from 2.5-V supply. Table 60. GPIO DC Electrical Characteristics (2.5 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.7 — V 1 Input low voltage VIL — 0.7 V 1 Input current (BVIN = 0 V or BVIN = BVDD) IIN — ±40 μA 2 Output high voltage (BVDD = min, IOH = 2 mA) VOH 1.7 — V — Low-level output voltage (BVDD = min, IOL = 2 mA) VOL — 0.7 V — Note: 1. Note that the min VILand max VIH values are based on the min and max BVIN respective values found in Table 3. 2. Note that the symbol BVIN represents the input voltage of the supply. It is referenced in Table 3. This table provides the DC electrical characteristics for the GPIO interface when operating from 1.8-V supply. Table 61. GPIO DC Electrical Characteristics (1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.2 — V 1 Input low voltage VIL — 0.6 V 1 Input current (BVIN = 0 V or BVIN = BVDD) IIN — ±40 μA 2 Output high voltage (BVDD = min, IOH = –0.5 mA) VOH 1.35 — V — Low-level output voltage (BVDD = min, IOL = 0.5 mA) VOL — 0.4 V — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 97 Electrical Characteristics Table 61. GPIO DC Electrical Characteristics (1.8 V) (continued) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Note: 1. Note that the min VILand max VIH values are based on the min and max BVIN respective values found in Table 3. 2. Note that the symbol BVIN represents the input voltage of the supply. It is referenced in Table 3. 2.18.2 GPIO AC Timing Specifications This table provides the GPIO input and output AC timing specifications. Table 62. GPIO Input AC Timing Specifications For recommended operating conditions, see Table 3 Parameter Symbol Min Unit Note tPIWID 20 ns 1 GPIO inputs—minimum pulse width Note: 1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation. This figure provides the AC test load for the GPIO. Output Z0 = 50 Ω R L = 50 Ω OVDD/2 Figure 32. GPIO AC Test Load 2.19 TDM This section describes the DC and AC electrical specifications for the TDM. 2.19.1 TDM DC Electrical Characteristics This table provides the DC electrical characteristics for the TDM interface when operating at 3.3 V. Table 63. TDM DC Electrical Characteristics (X2VDD = 3.3 V) For recommended operating conditions, see Table 3. Characteristic Symbol Min Max Unit Note Input high voltage VIH 2.0 — V 1 Input low voltage VIL –0.3 0.8 V 1 Input current (X2VIN = 0 V or X2VIN = X2VDD) IIN — ±40 μA 2 Output high voltage (X2VDD = min, IOH = –2 mA) VOH 2.4 — V — Output low voltage (X2VDD = min, IOL = 2 mA) VOL — 0.4 V — BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 98 Freescale Semiconductor Electrical Characteristics Table 63. TDM DC Electrical Characteristics (X2VDD = 3.3 V) (continued) For recommended operating conditions, see Table 3. Characteristic Symbol Min Max Unit Note Note: 1. Note that the min VILand max VIH values are based on the min and max X2VIN respective values found in Table 3 2. Note that the symbol X2VIN represents the input voltage of the supply. It is referenced in Table 3 This table provides the DC electrical characteristics for the TDM interface when operating at 1.8 V. Table 64. TDM DC Electrical Characteristics (X2VDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (X2VIN = 0 V or X2VIN = X2VDD) IIN — ±40 μA 2 Output high voltage (X2VDD = min, IOH = –2 mA) VOH 1.35 — V — Output low voltage (X2VDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the min and max X2VIN respective values found in Table 3 2. Note that the symbol X2VIN represents the input voltage of the supply. It is referenced in Table 3 2.19.2 TDM AC Electrical Characteristics This table provides the input and output AC timing specifications for the TDM interface. Table 65. TDM AC Timing Specifications for 62.5 MHz1 Symbol2 Min Max Unit Note tDM 16.0 — ns 3 TDMxRCK/TDMxTCK high pulse width tDM_HIGH 7.0 — ns 3 TDMxRCK/TDMxTCK low pulse width tDM_LOW 7.0 — ns 3 TDM all input setup time tDMIVKH 3.6 — ns 4, 5 TDMxRD input hold time tDMRDIXKH 1.9 — ns 4, 8 TDMxTFS/TDMxRFS input hold time tDMFSIXKH 1.9 — ns 5 TDMxTCK high to TDMxTD output active tDM_OUTAC 2.5 — ns 7 TDMxTCK high to TDMxTD output valid tDMTKHOV — 9.8 ns 7, 9 TDMxTD hold time tDMTKHOX 2.5 — ns 7 TDMxTCK high to TDMxTD output high impedance tDM_OUTHI — 9.8 ns 7 TDMxTFS/TDMxRFS output valid tDMFSKHOV — 9.25 ns 6 TDMxTFS/TDMxRFS output hold time tDMFSKHOX 2.0 — ns 6 Parameter TDMxRCK/TDMxTCK BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 99 Electrical Characteristics Table 65. TDM AC Timing Specifications for 62.5 MHz1 (continued) Symbol2 Parameter Min Max Unit Note Note: Output values are based on 30 pF capacitive load. Note: Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. tDMxTCK and tDMxRCK are shown using the rising edge. 1. All values are based on a maximum TDM interface frequency of 62.5 MHz. 2. The symbols used for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tHIKHOX symbolizes the output internal timing (HI) for the time tserial memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X). 3. Relevant for all pins that function as TDM RX/TX clock—pins may be TDM_RCK and TDM_TCK, pending TDM port configuration. 4. Relevant for all pins that function as TDM receive data—pins may be TDM_RCK, TDM_RSN, TDM_RDT, TDM_TDT, pending TDM port configuration. 5. Relevant for all pins that function as TDM input frame sync (TX/RX)—pins may be TDM_TSN, TDM_RSN, pending TDM port configuration. 6. Relevant for all pins that function as TDM output frame sync (TX/RX)—pins may be TDM_TSN, TDM_RSN, pending TDM port configuration. 7. Relevant for all pins that function as TDM transmit data—pins may be TDM_RCK, TDM_RSN, TDM_RDT, TDM_TDT, pending TDM port configuration. 8. Applies to any TDM pin that functions as Rx data (including TDMxTD and others). 9. Represents the time from the positive clock edge to the valid data on the Tx data like; it applies to any TDM pin that functions as Tx data (including TDMxRD and others). This figure shows the TDM receive signal timing. tDM tDM_HIGH tDM_LOW TDMxRCK tDMIVKH tDMRDIXKH TDMxRD tDMIVKH tDMFSIXKH TDMxRFS tDMFSKHOV ~ ~ TDMxRFS (output) tDMFSKHOX Figure 33. TDM Receive Signals BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 100 Freescale Semiconductor Electrical Characteristics This figure shows the TDM transmit signal timing. tDM tDM_HIGH tDM_OUTHI tDMTKHOV tDM_OUTAC TDMxTD TDMxRCK tDMFSKHOV TDMxTFS (output) tDMFSIXKH tDMIVKH ~ ~ ~ ~ TDMxTCK tDM_LOW tDMTKHOX tDMFSKHOX TDMxTFS (input) Figure 34. TDM Transmit Signals This figure provides the AC test load for the TDM. Output Z0 = 50 Ω RL = 50 Ω VDDIO/2 Figure 35. TDM AC Test Load 2.20 High-Speed Serial Interface (HSSI) DC Electrical Characteristics The device features an HSSI that includes one 4-channel SerDes port (lanes 0 through 3) used for high-speed serial interface applications (PCI Express, CPRI, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the reset configuration word. Specific AC electrical characteristics are defined in Section 2.20.3, “HSSI AC Timing Specifications.” BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 101 Electrical Characteristics 2.20.1 SerDes 2.20.1.1 SerDes Signal Term Definitions The SerDes interface uses differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 36 shows how the signals are defined. Figure 36 shows the waveform for either a transmitter output (SD_TX[0:3] and SD_TX_B[0:3]) or a receiver input (SD_RX[0:3] and SD_RX_B[0:3]). Each signal swings between X volts and Y volts where X > Y. SD_TX[0:3] or SD_RX[0:3] X Volts Vcm = (X + Y)/2 SD_TX_B[0:3] or SD_RX_B[0:3] Y Volts Differential Swing, VID or VOD = X – Y Differential Peak Voltage, VDIFFp = |X – Y| Differential Peak-Peak Voltage, VDIFFpp = 2 × VDIFFp (not shown) Figure 36. Differential Voltage Definitions for Transmitter/Receiver This table lists the definitions based on this waveform. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment. Table 66. Differential Signal Definitions Term Definition Single-Ended Swing The transmitter output signals and the receiver input signals SD_TX[0:3], SD_TX_B[0:3], SD_RX[0:3] and SD_RX_B[0:3] each have a peak-to-peak swing of X – Y volts. This is also referred to as each signal wire’s single-ended swing. Differential Output Voltage, VOD (or Differential Output Swing): The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of the two complimentary output voltages: VSD_TX[0:3] – VSD_TX_B[0:3]. The VOD value can be either positive or negative. Differential Input Voltage, VID (or Differential Input Swing) The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two complimentary input voltages: VSD_RX[0:3] – VSD_RX_B[0:3]. The VID value can be either positive or negative. Differential Peak Voltage, VDIFFp The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = |X– Y| volts. Differential Peak-to-Peak, VDIFFp-p Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = 2 × VDIFFp = 2 × |(A – B)| volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as VTX-DIFFp-p = 2 × |VOD|. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 102 Freescale Semiconductor Electrical Characteristics Table 66. Differential Signal Definitions (continued) Term Definition Differential Waveform The differential waveform is constructed by subtracting the inverting signal (SD_TX_B[0:3], for example) from the non-inverting signal (SD_TX_B[0:3], for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 36 as an example for differential waveform. Common Mode Voltage, Vcm The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = (VSD_TX[0:3] + VSD_TX_B[0:3]) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component’s output to the other’s input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions. To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output differential swing (VOD) has the same amplitude as each signal single-ended swing. The differential output signal ranges between 500 mV and –500 mV. In other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p. 2.20.1.2 SerDes Reference Clock Receiver Characteristics The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SD_REF_CLK1/SD_REF_CLK1_B or SD_REF_CLK2/SD_REF_CLK2_B. Figure 37 shows a receiver reference diagram of the SerDes reference clocks. SD_REF_CLK[1–2] 50 Ω REF_CLK Amp To PLL 50 Ω SXCVSS SD_REF_CLK[1–2]_B Figure 37. Receiver of SerDes Reference Clocks The characteristics of the clock signals are: • • The supply voltage requirements for XCOREVDD are as specified in Table 3. The SerDes reference clock receiver reference circuit structure is as follows: — The SD_REF_CLK[1–2] and SD_REF_CLK[1–2]_B are internally AC-coupled differential inputs as shown in Figure 37. Each differential clock input (SD_REF_CLK[1–2] or SD_REF_CLK[1–2]_B has on-chip 50-Ω termination to XCOREVSS followed by on-chip AC-coupling. — The external reference clock driver must be able to drive this termination. — The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 103 Electrical Characteristics • • The maximum average current requirement also determines the common mode voltage range. — When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip. — This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GNDSXC. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV. — If the device driving the SD_REF_CLK[1–2] and SD_REF_CLK[1–2]_B inputs cannot drive 50 Ω to GNDSXC DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally. The input amplitude requirement is described in detail in Section 2.20.2.1, “DC-Level Requirements for SerDes Reference Clocks.” 2.20.1.3 SerDes Transmitter and Receiver Reference Circuits This figure shows the reference circuits for SerDes data lane transmitter and receiver. 50 Ω SD_TX[0:3] SD_RX[0:3] 50 Ω Transmitter Receiver 50 Ω SD_TX_B[0:3] SD_RX_B[0:3] 50 Ω Note: The [0:3] indicates the specific SerDes lane. Actual signals are assigned by the RCW assignments at reset. Figure 38. SerDes Transmitter and Receiver Reference Circuits 2.20.1.4 SerDes Equalization With the use of high-speed serial links, the interconnect media causes degradation of the signal at the receiver and produces effects such as inter-symbol interference (ISI) or data-dependent jitter. This loss can be large enough to degrade the eye opening at the receiver beyond that allowed by the specification. To offset a portion of these effects, equalization can be used. The following is a list of the most commonly used equalization techniques: • • • Pre-emphasis on the transmitter. A passive high-pass filter network placed at the receiver, often referred to as passive equalization. The use of active circuits in the receiver, often referred to as adaptive equalization. 2.20.2 HSSI DC Timing Specifications The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the CPRI data lines, and the SGMII data lines. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 104 Freescale Semiconductor Electrical Characteristics 2.20.2.1 DC-Level Requirements for SerDes Reference Clocks The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below: • Differential Mode — The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection. — For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 39 shows the SerDes reference clock input requirement for DC-coupled connection scheme. SD_REF_CLK[1–2] 200 mV < Input Amplitude or Differential Peak < 800 mV Vmax < 800 mV 100 mV < Vcm < 400 mV Vmin > 0 V SD_REF_CLK[1–2]_B Figure 39. Differential Reference Clock Input DC Requirements (External DC-Coupled) — For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC-level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to GNDSXC. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage GNDSXC. Figure 40 shows the SerDes reference clock input requirement for AC-coupled connection scheme. 200 mV < Input Amplitude or Differential Peak < 800 mV SD_REF_CLK[1–2] Vmax < Vcm + 400 mV Vcm SD_REF_CLK[1–2]_B Vmin > Vcm – 400 mV Figure 40. Differential Reference Clock Input DC Requirements (External AC-Coupled) • Single-Ended Mode — The reference clock can also be single-ended. The SD_REF_CLK[1–2] input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from VMIN to VMAX) with SD_REF_CLK[1–2]_B either left unconnected or tied to ground. — The SD_REF_CLK[1–2] input average voltage must be between 200 and 400 mV. Figure 41 shows the SerDes reference clock input requirement for single-ended signaling mode. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 105 Electrical Characteristics — To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLK[1–2]_B) through the same source impedance as the clock input (SD_REF_CLK[1–2]) in use. 400 mV < SD_REF_CLK[1–2] Input Amplitude < 800 mV SD_REF_CLK[1–2] 0V SD_REF_CLK[1–2]_B Figure 41. Single-Ended Reference Clock Input DC Requirements 2.20.2.2 DC-Level Requirements for PCI Express Configurations The DC-level requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The BSC9132 supports a 2.5 Gbps and a 5 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The transmitter specifications for 2.5 Gbps are defined in Table 67 and the receiver specifications are defined in Table 68. For 5 Gbps, the transmitter specifications are defined in Table 69 and the receiver specifications are defined in Table 1. Note that specifications are valid at the recommended operating conditions listed in Table 3. Table 67. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC Specifications Parameter Symbol Min Nom Max Unit Condition Differential peak-to-peak output voltage swing VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATI 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. DC differential Tx impedance ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low Impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC Impedance during all states O DC single-ended TX impedance Table 68. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications Parameter Symbol Min Nom Max Unit Note Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2 ZRX-DC 40 50 60 Ω 3 ZRX-HIGH-IMP-DC 50 — — KΩ 4 VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 106 Freescale Semiconductor Electrical Characteristics Table 68. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued) Parameter Symbol Min Nom Max Unit Note Note: 1. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin. 2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. 3. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. 4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. 5. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver. Table 69. PCI Express (5 Gbps) Differential Transmitter (Tx) Output DC Specifications Parameter Symbol Min Nom Max Unit VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. Low power differential peak-to-peak output voltage swing VTX-DIFFp-p_low 400 500 1200 mV VTX-DIFFp-p = 2 × |VTX-D+ – VTX-D–|, Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-3.5d 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-6.0d 5.5 6.0 6.5 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin. ZTX-DIFF-DC 80 100 120 Ω Tx DC differential mode low impedance ZTX-DC 40 50 60 Ω Required Tx D+ as well as D– DC impedance during all states Differential peak-to-peak output voltage swing B B DC differential Tx impedance Transmitter DC impedance Condition Table 1. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications Parameter Symbol Min Nom Max Unit Note Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 Ω 2 ZRX-DC 40 50 60 Ω 3 ZRX-HIGH-IMP-DC 50 — — ΚΩ 4 VRX-IDLE-DET-DIFFp-p 65 — 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 107 Electrical Characteristics Table 1. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued) Parameter Symbol Min Nom Max Unit Note Note: 1. VRX-DIFFp-p = 2 × |VRX-D+ – VRX-D-| Measured at the package pins with a test load of 50 Ω to GND on each pin. 2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. 3. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. 4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. 5. VRX-IDLE-DET-DIFFp-p = 2 × |VRX-D+ – VRX-D–|. Measured at the package pins of the receiver. 2.20.2.3 DC-Level Requirements for CPRI Configurations This section provide various DC-level requirements for CPRI Configurations. Specifications are valid at the recommended operating conditions listed in Table 3. Table 70. CPRI Transmitter DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) Parameter Symbol Min Nom Max Unit Condition VO –0.40 — 2.30 V Voltage relative to COMMON of either signal comprising a differential pair. VDIFFPP 800 — 1600 mVp-p T_Rd 80 100 120 Ω Output voltage Differential output voltage Differential resistance L[0:3]TECR0[AMP_RED] = 0b000000. — Note: LV is XAUI-based. Table 71. CPRI Transmitter DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Output differential voltage (into floating load Rload = 100 Ω) Differential resistance Symbo l Min Nom Max Unit T_Vdiff 800 — 1200 mV T_Rd 80 100 120 Ω Condition L[0:3]TECR0[AMP_RED] = 0x000000 — Note: LV-II is CEI-6G-LR-based. Table 72. CPRI Receiver DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) Parameter Differential input voltage Difference resistance Symbol Min Nom Max Unit VIN 200 — 1600 mVp-p R_Rdin 80 — 120 Ω Condition Measured at receiver. — Note: LV is XAUI-based. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 108 Freescale Semiconductor Electrical Characteristics Table 73. CPRI Receiver DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Symbol Min Nom Max Unit Condition Input differential voltage R_Vdiff N/A — 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/CPRI Level II LR compliant channel. Differential resistance R_Rdin 80 — 120 Ω — Note: LV-II is CEI-6G-LR-based. 2.20.2.4 DC-Level Requirements for SGMII Configurations Table 74 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Specifications are valid at the recommended operating conditions listed in Table 3. Table 74. SGMII DC Transmitter Electrical Characteristics Symbo l Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 × Nom 500 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0 V, no common mode offset variation (VOS = 500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b000000 Output differential voltage |VOD| 0.64 × Nom 459 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0V, no common mode offset variation (VOS = 500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b000010 Output differential voltage |VOD| 0.64 × Nom 417 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0V, no common mode offset variation (VOS = 500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b000101 Output differential voltage |VOD| 0.64 × Nom 376 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0V, no common mode offset variation (VOS = 500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b001000 Parameter BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 109 Electrical Characteristics Table 74. SGMII DC Transmitter Electrical Characteristics (continued) Symbo l Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 × Nom 333 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ = 1.0V, no common mode offset variation (VOS = 500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b001100 Output differential voltage |VOD| 0.64 × Nom 292 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b001111 Output differential voltage |VOD| 0.64 × Nom 250 1.45 × Nom mV • The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100-Ω differential load between SD_TXn and SD_TX_Bn. • Amplitude setting: L[0:3]TECR0[AMD_RED] = 0b010011 Output impedance (single-ended) RO 40 50 60 Ω — Output high voltage VOH — — 1.5 × |VOD, max| mV — Output low voltage VOL |VOD|, min/2 — — mV — Parameter Table 75 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics. Table 75. SGMII DC Receiver Electrical Characteristics1,2 Parameter Input differential Loss of signal voltage3 threshold4 Receiver differential input impedance Symbol Min Nom Max Unit VRX_DIFFp-p 100 — 1200 mV L[0:3]GCR1[RECTL_SIGD] = 0b001 175 — 1200 mV L[0:3]GCR1[RECTL_SIGD] = 0b100 30 — 100 mV L[0:3]GCR1[RECTL_SIGD] = 0b001 65 — 175 mV L[0:3]GCR1[RECTL_SIGD] = 0b100 80 — 120 Ω VLOS ZRX_DIFF Condition — Note: 1. The supply voltage is 1.0 V. 2. Input must be externally AC-coupled. 3. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage. 4. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface. Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 110 Freescale Semiconductor Electrical Characteristics 2.20.3 HSSI AC Timing Specifications The following subsections define the AC timing requirements for the SerDes reference clocks, the PCI Express data lines, and the SGMII data lines. 2.20.3.1 AC-Level Requirements for SerDes Reference Clock Table 76 lists AC requirements for the SerDes reference clocks. Table 76. SD_REF_CLK[1–2] and SD_REF_CLK[1–2]_B Input Clock Requirements For recommended operating conditions, see Table 3. Parameter Symbol Min Nom Max Unit Note SD_REF_CLK[1–2]/SD_REF_CLK[1–2]_B frequency range tCLK_REF — 100/125 CPRI: 122.88 — MHz 1 SD_REF_CLK[1–2]/SD_REF_CLK[1–2]_B clock frequency tolerance CPRI, SGMII PCI Express interface tCLK_TOL SD_REF_CLK[1–2]/SD_REF_CLK[1–2]_B reference clock duty cycle — –100 –300 — — 100 300 ppm ppm tCLK_DUTY 40 50 60 % 4 SD_REF_CLK[1–2]/SD_REF_CLK[1–2]_B max deterministic peak-peak jitter at 10-6 BER tCLK_DJ — — 42 ps — SD_REF_CLK[1–2]/SD_REF_CLK[1–2]_B total reference clock jitter at 10-6 BER (peak-to-peak jitter at ref_clk input) tCLK_TJ — — 86 ps 2 tCLKRR/tCLKFR 1 — 4 V/ns 3 Differential input high voltage VIH 200 — — mV 4 Differential input low voltage VIL — — –200 mV 4 Rise-Fall — — 20 % 5, 6 SD_REF_CLK/SD_REF_CLK_B rising/falling edge rate Rising edge rate (SD_REF_CLKn to falling edge rate) Note: 1 Only 100, 122.88, and 125 MHz have been tested. CPRI uses 122.88 MHz. The other interfaces use 100 or 125 MHz. Other values will not work correctly with the rest of the system. 2 Limits are from PCI Express CEM Rev 2.0. 3 Measured from –200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn_B). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 42. 4 Measurement taken from differential waveform. 5 Measurement taken from single-ended waveform. 6 Matching applies to rising edge for SD_REF_CLKn and falling edge rate for SD_REF_CLKn_B. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLKn rising meets SD_REF_CLKn_B falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rising edge rate of SD_RF_CLKn should be compared to the falling edge rate of SD_REF_CLKn_B; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 43. 7 REF_CLK jitter must be less than 0.05 UI when measured against a Golden PLL reference. The Golden PLL must have a maximum baud rate bandwidth greater than 1667, with a maximum 20 dB/dec rolloff down to a baud rate of 16.67 with no peaking around the corner frequency. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 111 Electrical Characteristics Rise Edge Rate Fall Edge Rate VIH = +200 mV 0.0 V VIL = –200 mV SD_REF_CLKn – SD_REF_CLKn_B Figure 42. Differential Measurement Points for Rise and Fall Time Figure 43. Single-Ended Measurement Points for Rise and Fall Time Matching 2.20.3.2 Spread Spectrum Clock SD_REF_CLK[1–2] and SD_REF_CLK[1–2]_B were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33 KHz rate is allowed), assuming both ends have the same reference clock and the industry protocol supports it. For better results, use a source without significant unintended modulation. 2.20.3.3 PCI Express AC Physical Layer Specifications The AC requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The BSC9132 supports a 2.5 Gbps or a 5.0 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The 2.5 Gbps transmitter specifications are defined in Table 77 and the receiver specifications are defined in Table 78. The 5.0 Gbps transmitter specifications are defined in Table 79 and the receiver specifications are defined in Table 80. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter. Table 77. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications For recommended operating conditions, see Table 3. Parameter Unit interval Symbol UI Min Nom Max 399.88 400.00 400.12 Unit Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 112 Freescale Semiconductor Electrical Characteristics Table 77. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications (continued) For recommended operating conditions, see Table 3. Parameter Symbol Min Nom Max Unit TTX-EYE 0.75 — — UI The maximum transmitter jitter can be derived as TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI. This does not include spread spectrum or REF_CLK jitter. It includes device random jitter at 10–12. See notes 2 and 3. Time between the jitter median and maximum deviation from the median. TTX-EYE-MEDIAN- — — 0.125 UI Jitter is defined as the measurement variation of the crossing points (VTX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2 and 3. AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. Tx eye width to-MAX-JITTER Comments Note: 1 No test load is necessarily associated with this value. 2 Specified at the measurement point into a timing and voltage test load as shown in Figure 47 and measured over any 250 consecutive Tx UIs. 3 AT TX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-NAX-JITTER = 0.25 UI for the transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. 4 The DSP device SerDes transmitter does not have a built-in C . An external AC coupling capacitor is required. TX Table 78. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications Parameter Symbol Unit Interval UI Minimum receiver eye width Maximum time between the jitter median and maximum deviation from the median. Min Nom Max 399.88 400.00 400.12 Unit Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. TRX-EYE 0.4 — — UI The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as TRX-MAX-JITTER = 1 – TRX-EYE= 0.6 UI. See notes 2 and 3. TRX-EYE-MEDIAN- — — 0.3 UI Jitter is defined as the measurement variation of the crossing points (VRX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2, 3, and 4. to-MAX-JITTER BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 113 Electrical Characteristics Table 78. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications (continued) Parameter Symbol Min Nom Max Unit Comments Note: 1 No test load is necessarily associated with this value. 2 Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 47 should be used as the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram. 3 A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram. 4 It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data. Table 79. PCI Express 2.0 (5.0 Gbps) Differential Transmitter (Tx) Output AC Specifications Parameter Unit Interval Symbol UI Min Nom Max 199.94 200.00 200.06 Unit Comments ps Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. Minimum Tx eye width TTX-EYE 0.75 — — UI The maximum Transmitter jitter can be derived as: TTX-MAX-JITTER = 1 – TTX-EYE = 0.25 UI. See notes 2 and 3. Tx RMS deterministic jitter > 1.5 MHz TTX-HF-DJ-DD — — 0.15 ps — Tx RMS deterministic jitter < 1.5 MHz TTX-LF-RMS — 3.0 — ps Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps AC coupling capacitor CTX 75 — 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. Note: 1 No test load is necessarily associated with this value. 2 Specified at the measurement point into a timing and voltage test load as shown in Figure 47 and measured over any 250 consecutive Tx UIs. 3 AT TX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-MAX-JITTER = 0.25 UI for the Transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. 4 The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 114 Freescale Semiconductor Electrical Characteristics Table 80. PCI Express 2.0 (5.0 Gbps) Differential Receiver (Rx) Input AC Specifications Parameter Symbol Unit Interval Min UI Nom Max 199.40 200.00 200.06 Unit Conditions ps Each UI is 400 ps ±300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1. Max Rx inherent timing error TRX-TJ-CC — — 0.4 UI The maximum inherent total timing error for common REF_CLK Rx architecture Maximum time between the jitter median and maximum deviation from the median TRX-TJ-DC — — 0.34 UI Max Rx inherent total timing error Max Rx inherent deterministic timing error TRX-DJ-DD-CC — — 0.30 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Max Rx inherent deterministic timing error TRX-DJ-DD-DC — — 0.24 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Note: No test load is necessarily accosted with this value. 2.20.3.4 CPRI AC Timing Specifications Table 81 defines the transmitter AC specifications for the CPRI LV lanes. The AC timing specifications do not include REF_CLK jitter. Table 81. CPRI Transmitter AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) For recommended operating conditions, see Table 3. Characteristic Symbol Min Nom Max Unit Deterministic Jitter JD — — 0.17 UI p-p Total Jitter JT — — 0.35 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Table 82 defines the transmitter AC specifications for the CPRI LV-II lanes. The AC timing specifications do not include REF_CLK jitter. Table 82. CPRI Transmitter AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) For recommended operating conditions, see Table 3. Characteristic Symbol Min Nom Max Unit Uncorrelated High Probability Jitter T_UHPJ — — 0.15 UI p-p T_TJ — — 0.30 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Total Jitter BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 115 Electrical Characteristics Table 82. CPRI Transmitter AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) For recommended operating conditions, see Table 3. Characteristic Symbol Min Nom Max Unit Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm 1/4915.2.8 1/4915.2 + 100ppm µs Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm 1/6144.0 1/6144.0 + 100ppm µs Table 83 defines the Receiver AC specifications for CPRI LV. The AC timing specifications do not include REF_CLK jitter. Table 83. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) For recommended operating conditions, see Table 3. Characteristic Symbol Min Nom Max Unit Deterministic jitter tolerance JD — — 0.37 UI p-p Combined deterministic and random jitter tolerance JDR — — 0.55 UI p-p Total Jitter tolerance JT — — 0.65 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm ps Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm ps Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm ps — 10–12 — Bit error ratio BER — Table 84 defines the Receiver AC specifications for CPRI LV-II. The AC timing specifications do not include REF_CLK jitter. Table 84. CPRI Receiver AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) For recommended operating conditions, see Table 3. Characteristic Symbol Min Nom Max Unit R_GJ — — 0.275 UI p-p Uncorrelated bounded high probability jitter R_UBHPJ — — 0.150 UI p-p Correlated bounded high probability jitter R_CBHPJ — — 0.525 UI p-p R_BHPJ — — 0.675 UI p-p R_SJ-max — — 5.000 UI p-p R_SJ-hf — — 0.050 UI p-p Total Jitter (does not include sinusoidal jitter). R_TJ — — 0.950 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm µs Unit Interval: 2.4576 GBaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm µs Unit Interval: 3.072 GBaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm µs Unit Interval: 4.9152 GBaud UI 1/4915.2 – 100ppm 1/4915.2.8 1/4915.2 + 100ppm µs Unit Interval: 6.144 GBaud UI 1/6144.0 – 100ppm 1/6144.0 1/6144.0 + 100ppm µs Gaussian Bounded high probability jitter Sinusoidal jitter, maximum Sinusoidal jitter, high frequency Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 46. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 116 Freescale Semiconductor Electrical Characteristics NOTE The intended application is a point-to-point interface up to two connectors. The maximum allowed total loss (channel + interconnects + other loss) is 20.4 dB @ 6.144 Gbps. 2.20.3.5 SGMII AC Timing Specifications Table 85 provides the SGMII transmit AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 85. SGMII Transmit AC Timing Specifications For recommended operating conditions, see Table 3. Parameter Symbol Min Nom Max Unit Unit interval UI 800 – 100ppm 800 800 + 100ppm pS Deterministic jitter JD — — 0.17 UI p-p — Total jitter JT — — 0.35 UI p-p — CTX 75 — 200 AC coupling capacitor Note: Condition ± 100ppm nF All transmitters must be AC-coupled The AC specifications do not include REF_CLK jitter. Table 86 provides the SGMII receiver AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 86. SGMII Receive AC Timing Specifications For recommended operating conditions, see Table 3. Parameter Symbol Min Nom Max Unit Unit interval UI 800 – 100ppm 800 800 + 100ppm pS Deterministic jitter tolerance JD — — 0.37 UI p-p Measured at receiver. Combined deterministic and random jitter tolerance JDR — — 0.55 UI p-p Measured at receiver JT — — 0.65 UI p-p Measured at receiver — 10–12 Total jitter tolerance Bit error ratio BER — — Condition ± 100ppm — Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region shown in Figure 44 or Figure 45. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 117 Electrical Characteristics 8.5 UIp-p Sinusoidal Jitter Amplitude 20 dB/dec 0.10 UIp-p baud/14200 Frequency baud/1667 20 MHz Figure 44. Single Frequency Sinusoidal Jitter Limits for Baud Rate <3.125 Gbps 8.5 UIp-p Sinusoidal Jitter Amplitude 0.10 UIp-p 22.1 kHz Frequency 1.875 MHz 20 MHz Figure 45. Single Frequency Sinusoidal Jitter Limits for Baud Rate 3.125 Gbps BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 118 Freescale Semiconductor Electrical Characteristics 5 UI p-p Sinusoidal Jitter Amplitude 0.05 UI p-p 22.1 kHz Frequency 2.999 MHz 20 MHz Figure 46. Single Frequency Sinusoidal Jitter Limits for Baud Rate 5.0 Gbps 2.20.3.6 Compliance Test and Measurement Load Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_TXn and SD_TX_Bn) or at the receiver inputs (SD_RXn and SD_RXn_B). The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package pins, into a test/measurement load shown in Figure 47. NOTE The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D– not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D– package pins. D+ Package Pin C = CTX TX Silicon + Package D– Package Pin C = CTX R = 50Ω R = 50Ω Figure 47. Compliance Test/Measurement Load BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 119 Electrical Characteristics 2.21 Radio Frequency (RF) Interface 2.21.1 RF Parallel Interface The BSC9132 has an RF parallel interface. 2.21.1.1 RF Parallel Interface DC Electrical Characteristics (eSPI2) 2.21.1.1.1 RF Parallel Interface DC Data Path Table 87 provides the DC electrical characteristics for the RF parallel interface when operating at 3.3 V. Table 87. RF Parallel Interface DC Electrical Characteristics (X1VDD, X2VDD = 3.3 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 2 — V 1 Input low voltage VIL — 0.8 V 1 Input current (X1VIN/X2VIN = 0 V or X1VIN/X2VIN = X1VDD/X2VDD) IIN — ±40 μA 2 Output high voltage (X1VDD/X2VDD = min, IOH = –2 mA) VOH 2.8 — V — Output low voltage (X1VDD/X2VDD = min, IOL = 2 mA) VOL — 0.3 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max X1VIN/X2VIN values found in Table 3. 2. Note that the symbol X1VIN/X2VIN represent the input voltage of the power supplies. It is referenced in Table 3. Table 88 provides the DC electrical characteristics for the RF interface when operating at 1.8 V. Table 88. RF Parallel Interface DC Electrical Characteristics (X1VDD, X2VDD = 1.8 V) For recommended operating conditions, see Table 3. Parameter Symbol Min Max Unit Note Input high voltage VIH 1.25 — V 1 Input low voltage VIL — 0.6 V 1 Input current (X1VIN/X2VIN = 0 V or X1VIN/X2VIN = X1VDD/X2VDD) IIN — ±40 μA 2 Output high voltage (X1VDD/X2VDD = min, IOH = –2 mA) VOH 1.35 — V — Output low voltage (X1VDD/X2VDD = min, IOL = 2 mA) VOL — 0.4 V — Note: 1. Note that the min VILand max VIH values are based on the respective min and max X1VIN/X2VIN values found in Table 3. 2. Note that the symbol X1VIN/X2VIN represents the input voltage of the supply. It is referenced in Table 3. 2.21.1.1.2 RF Parallel Interface DC Control Plane See Table 29 in Section 2.9.1, “eSPI1 DC Electrical Characteristics,” for the DC specs for eSPI2, powered by X2VDD = 1.8 V. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 120 Freescale Semiconductor Electrical Characteristics 2.21.1.2 2.21.1.2.1 RF Parallel Interface AC Electrical Characteristics (eSPI2) RF Parallel AC Data Interface Table 89 provides the timing specifications for the RF parallel interface. Table 89. RF Parallel Interface Timing Specification (3.3 V, 1.8 V)1,2 Parameter Symbol Min Max Unit Note Data_clk (MCLK) clock period tPDCP 16.276 (61.44) — ns (MHz) — Data_clk (MCLK) and fb_clk (FCLK) pulse width tPDMP 45% of tPDCP — — — Delay between MCLK and FCLK at the external RFIC including trace delay tPDCD — 7.32 ns — tPDMFD — 6.32 ns — Control/Data output valid time wrt FCLK during Tx from the BSC9132 BBIC tPDOV — 6.0 ns — Control/Data hold from FCLK during Tx from the BSC9132 BBIC tPDOX 1.37 — ns 3 Control/Data setup wrt MCLK tPDIV 2.5 — ns — Control/Data hold wrt MCLK tPDIX 0.4 — ns — MCLK input to FCLK output delay at the BSC9132 BBIC Note: 1 The max trace delay of MCLK from the external RFIC to the BSC9132 BBIC and FCK/TXNRX/ENABLE from BBIC to RFIC = 1 ns each. 2 The max allowable trace skew between MCLK/FCLK and the respective data/control is 70 ps. 3 1.37 ns includes 70 ps trace skew. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 121 Electrical Characteristics Launch edge at BBIC during Tx (both pos and neg edge of clock) Capture edge wrt the shown launch edge (opp. of the launch edge) Launch edge at RFIC during Rx (both pos and neg edge of clock) MCLK (data_clk) at BBIC FB_CLK at BBIC tPDCP BBIC Tx Data/Control RX_DATA/ RX_FRAME tPDOX tPDOV MCLK input to FCLK output delay at BBIC end tPDIV tPDIX Figure 48. RF Parallel Interface AC Timing Diagram 2.21.1.2.2 RF Parallel Interface AC Control Plane Table 90. RF Parallel Control Plane Interface AC Timing Specification Parameter Symbol Min Max Unit Control plane clock period tPCCP 33.3 (30) — ns (MHz) Clock min pulse width tPCMP 16.6 — ns PCB trace delay between the BSC9132 BBIC master and the external RFIC slave tPCBD — 1 ns Setup time from CPCSB assertion to first rising edge of SPICLK tPCSC 6.1 — ns Hold time from last SPICLK falling edge to CPCSB deassertion tPCHC 9.9 — ns MOSI data output setup time against SPICLK tPCOV — 15.4 ns MOSI data ouptut hold time against SPICLK tPCOX –16.4 — ns MISO data input setup time against SPICLK tPCIV 7.9 — ns MISO data input hold time against SPICLK tPCIX 21.9 — ns Note: RF parallel control plane is SPI2. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 122 Freescale Semiconductor Electrical Characteristics ci=0; cp=1 CPCSB Launch edge at BBIC (always rise-edge) Capture edge at BBIC (always fall-edge) SPICLK (BBIC) MOSI tPCSC tPCOX tPCOV Capture edge at RFIC SPICLK (RFIC) MISO tBD tBD + tCQ tBD: Board delay from the BSC9132 BBIC to the external RFIC or back tCQ: Delay in RFIC from input of SPICLK to output valid data Max permissible board skew: 100 ps Proposed frequency of SPICLK: 30 MHz tPCIV tPCIX Data timing at RF parallel interface: Input data setup requirement: 1 ns Input data hold requirement: 0 ns tCQ: 4.5 ns–6.5 ns (6.5 ns is critical, which defines the max frequency) Figure 49. RF Parallel Control Plane Interface AC Timing Diagram 2.22 Universal Subscriber Identity Module (USIM) The USIM module interface consist of a total of five pins. Only “Internal One Wire” interface mode is supported. In this mode, the Rx input of the USIM IP is connected to the TX output of the USIM, which is internal to the device. Only one bidirectional signal (Rx/Tx) is routed to the device pin, which is connected to the external SIM card. The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the Rx/Tx pins; however, the SIM module can work with CLK equal to 16 times the data rate on Rx/Tx pins. There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card will be used by the SIM card to recover the clock from the data much like a standard UART. All five pins of SIM module are asynchronous to each other. There are no required timing relationships between the pads in normal mode, The SIM card is initiated by the interface device, whereupon the SIM card will send a response with an Answer to Reset. Although the SIM interface has no specific requirement, the ISO-7816 specifies reset and power down sequences. For detailed information, see ISO-7816. The USIM interface pins are available at two locations. At one location, it is multiplexed with eSDHC and TDM functionality and is powered by the BVDD power supply (3.3V/2.5V/1.8V). At the other location, it is multiplexed with eSPI and UART functionality and is powered by CVDD power supply (3.3V/1.8V). BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 123 Electrical Characteristics 2.22.1 USIM DC Electrical Characteristics This table provides the DC electrical characteristics for the USIM interface. Table 91. USIM Interface DC Electrical Characteristics At recommended operating conditions with BVDD = 3.3 V/2.5 V/1.8 V. Characteristic Symbol Condition Min Max Unit Note Input high voltage VIH — 0.625 × BVDD — V 1 Input low voltage VIL — — 0.25 × BVDD V 1 Output high voltage VOH IOH = –100 uA at BVDDmin 0.75 × BVDD — V — Output low voltage VOL IOL = 100uA at CVDDmin — 0.125 × BVDD V — Output high voltage VOH IOH = –100 uA BVDD - 0.2 — V 2 Output low voltage VOL IOL = 2 mA — 0.3 V 2 IIN/IOZ — –10 10 uA — Input/output leakage current Note: 1. Note that the min VILand max VIH values are based on the respective min and max BVIN values found in Figure 3. 2. Open drain mode for SIM cards only. 2.22.2 USIM General Timing Requirements The timing requirements for the USIM are found in Table 92. Table 92. USIM Timing Specification, High Drive Strength Parameter Symbol Min Max Unit Note USIM clock frequency (SIM_CLK) Sfreq 0.01 25 MHz 1 USIM clock rise time (SIM_CLK) Srise — 0.09 × (1/Sfreq) ns 2 USIM clock fall time (SIM_CLK) Sfall — 0.09* × 1/Sfreq) ns 2 USIM input transition time (SIM_TRXD, SIM_PD) Strans 10 25 ns — USIM I/O rise time / fall time (SIM_TRXD) Tr/Tf — 1 μs 3 USIM RST rise time / fall time (SIM_RST) Tr/Tf — 1 μs 4 Note: 1 50% duty cycle clock 2 With C = 50 pF 3 With CIN = 30 pF, COUT = 30 pF 4 With C = 30 pF IN 1/SI1 SIM_CLK SI3 SI2 Figure 50. USIM Clock Timing Diagram BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 124 Freescale Semiconductor Electrical Characteristics 2.22.3 USIM External Pull Up/Pull Down Resistor Requirements External off-chip pull up resistor of 20 KΩ is required on the SIM_TRXD pin. External off-chip pull down resistors are required on the SIM_PD, SIM_SVEN, SIM_RST pins. 2.22.4 2.22.4.1 USIM Reset Sequence SIM Cards With Internal Reset The sequence of reset for this kind of SIM cards is as follows (see Figure 51): • • • After power up, the clock signal is enabled on SIM_CLK (time T0). After 200 clock cycles, Rx must be high. The card must send a response on Rx acknowledging the reset between 400 and 40000 clock cycles after T0. SIM_SVEN SIM_CLK RESPONSE SIM_TRXD SI7 SI8 T0 Figure 51. Internal-Reset Card Reset Sequence Table 93. Parameters of Reset Sequence For Card With Internal Reset ID Parameter Symbol Min Max Unit SI7 SIM clock to SIM TX data H Sclk2dat — 200 SIM_CLK clock cycle SI8 SIM clock to SIM get ATR data Sclk2atr 400 40000 SIM_CLK clock cycle 2.22.4.2 SIM Cards With Active-Low Reset The sequence of reset for this kind of card is as follows (see Figure 52): • • • • • After powering up, the clock signal is enabled on SIM_CLK (time T0). After 200 clock cycles, SIM_TRXD must be high. SIM_RST must remain Low for at least 40000 clock cycles after T0 (no response is to be received on Rx during those 40000 clock cycles). SIM_RST is set High (time T1). SIM_RST must remain High for at least 40000 clock cycles after T1 and a response must be received on SIM_TRXD between 400 and 40000 clock cycles after T1. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 125 Electrical Characteristics SIM_SVEN SIM_RST SIM_CLK RESPONSE SIM_TRXD SI9 SI10 SI11 SI11 T0 T1 Figure 52. Active-Low Reset Card Reset Sequence Table 94. Parameters of Reset Sequence For Active-Low Reset Card ID Parameter Symbol Min Max Unit SI9 SIM clock to SIM TX data H Sclk2dat — 200 SIM_CLK clock cycle SI10 SIM reset rising to SIM TX data low Sclk2atr 400 40000 SIM_CLK clock cycle SI11 SIM clock to SIM reset signals Sclk2rst 40000 — SIM_CLK clock cycle 2.22.4.3 USIM Power Down Sequence Power down sequence for SIM interface is as follows: • • • • • SIM_PD port detects the removal of the SIM card SIM_RST goes low SIM_CLK goes low SIM_TRXD goes low SIM_SVEN goes low BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 126 Freescale Semiconductor Electrical Characteristics Each of these steps is done in one CKIL period (typically 32 KHz). Power down is initiated by detection of a SIM card removal or is launched by the processor. See Figure 53 and Table 95 for the timing requirements for this sequence, with FCKIL = CKIL frequency value. SIM_PD SIM_RST SI12 SIM_CLK SI13 SIM_TRXD SI14 SIM_SVEN Figure 53. SmartCard Interface Power Down AC Timing Table 95. Timing Requirements for Power Down Sequence ID Parameter Symbol Min Max Unit SI12 USIM reset to USIM clock stop Srst2clk 0.9 × 1/Fckil 1.1 × 1/FCKIL ns SI13 USIM reset to USIM Tx data low Srst2dat 1.8 × 1/Fckil 2.2 × 1/FCKIL ns SI14 USIM reset to USIM voltage enable low Srst2ven 2.7 × 1/Fckil 3.3 × 1/FCKIL ns SI15 USIM presence detect to USIM reset low Spd2rst 0.9 × 1/Fckil 1.1 × 1/FCKIL ns 2.23 Timers and Timers_32b AC Timing Specifications This table lists the timer input AC timing specifications. Table 96. Timers Input AC Timing Specifications For recommended operating conditions, see Table 3. Parameter Timers inputs—minimum pulse width Symbol Minimum Unit Note TTIWID 8 ns 1, 2 Note: 1. The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately. 2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any external synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 127 Hardware Design Considerations This figure shows the AC test load for the timers. Output Z0 = 50 Ω VDDIO/2 RL = 50 Ω Figure 54. Timer AC Test Load 3 Hardware Design Considerations This section discusses the hardware design considerations. 3.1 Power Architecture System Clocking This section describes the PLL configuration for the Power Architecture side of the device. Note that the platform clock is identical to the internal core complex bus (CCB) clock. This device includes 6 PLLs, as follows: • • • • 3.1.1 The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 3.1.2, “Power Architecture Platform to SYSCLK PLL Ratio.” The e500 core PLL generates the core clock from the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 3.1.3, “e500 Core to Platform Clock PLL Ratios.” This device has two e500 core PLLs. The DDR PLL generates the clocking for the DDR SDRAM controller. The frequency ratio between DDR clock and platform clock is selected using the DDR PLL ratio configuration bits as described in section Section 3.1.4, “Power Architecture DDR/DDRCLK PLL Ratio.” The SerDes block has two PLLs. Power Architecture Clock Ranges Table 97 provides the clocking specifications for the processor core and platform. Table 97. Power Architecture Processor Clocking Specifications Characteristic Maximum Processor Core Frequency Unit Note Min Max e500 core processor frequency 400 1200 MHz 1, 2, 3 Platform CCB bus clock frequency 267 600 MHz 1, 4, 5 BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 128 Freescale Semiconductor Hardware Design Considerations Table 97. Power Architecture Processor Clocking Specifications (continued) Maximum Processor Core Frequency Characteristic Min Unit Note Max Note: 1. Caution: The Power Architecture platform clock to SYSCLK ratio and e500 core to platform clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and platform clock frequency do not exceed their respective maximum or minimum operating frequencies. See Section 3.1.2, “Power Architecture Platform to SYSCLK PLL Ratio,” and Section 3.1.3, “e500 Core to Platform Clock PLL Ratios” and Section 3.1.4, “Power Architecture DDR/DDRCLK PLL Ratio,” for ratio settings. 2. The minimum e500 core frequency is based on the minimum platform clock frequency of 267 MHz. 3. The reset config signal cfg_core_speed must be pulled low if the core frequency is 1001 MHz or below. 4. These values are preliminary and subject to change. 5. The reset config signal cfg_plat_speed must be pulled low if the CCB bus frequency is lower than 320 MHz. The DDR memory controller can run in asynchronous mode. Table 98 provides the clocking specifications for the memory bus. Table 98. Power Architecture Memory Bus Clocking Specifications Characteristic Memory bus clock frequency Min Max Unit Note 266 400 MHz 1, 2, 3 Note: 1. Caution: The platform clock to SYSCLK ratio and e500 core to platform clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and platform frequency do not exceed their respective maximum or minimum operating frequencies. See Section 3.1.2, “Power Architecture Platform to SYSCLK PLL Ratio,” and Section 3.1.3, “e500 Core to Platform Clock PLL Ratios,” and Section 3.1.4, “Power Architecture DDR/DDRCLK PLL Ratio,” for ratio settings. 2. The memory bus clock refers to the memory controllers’ Dn_MCK[0:5] and Dn_MCK[0:5]_B output clocks, running at half of the DDR data rate. 3. In asynchronous mode, the memory bus clock speed is dictated by its own PLL. See Section 3.1.4, “Power Architecture DDR/DDRCLK PLL Ratio.” The memory bus clock speed must be less than or equal to the platform clock rate, which in turn must be less than the DDR data rate. As a general guideline, the following procedures can be used for selecting the DDR data rate or platform frequency: 1. 2. 3. 4. 5. 3.1.2 Start with the processor core frequency selection. Once the processor core frequency is determined, select the platform frequency from the options listed in Table 100 and Table 105. Check the platform to SYSCLK ratio to verify a valid ratio can be chosen from Table 103. Please note that the DDR data rate must be greater than the platform frequency. In other words, running DDR data rate lower than the platform frequency is not supported. Verify all clock ratios to ensure that there is no violation to any clock and/or ratio specification. Power Architecture Platform to SYSCLK PLL Ratio The clock that drives the internal CCB bus is called the platform clock. The frequency of the platform clock is set using the following reset signals, as shown in Table 99: • SYSCLK input signal BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 129 Hardware Design Considerations • Binary value on IFC_AD[0:2] at power up These signals must be pulled to the desired values. In asynchronous mode, the memory bus clock frequency is decoupled from the platform bus frequency. Table 99. Power Architecture Platform/SYSCLK Clock Ratios 3.1.3 Binary Value of IFC_AD[0:2] Signals Platform: SYSCLK Ratio 000 4:1 001 5:1 010 6:1 All Others Reserved e500 Core to Platform Clock PLL Ratios The clock ratio between the e500 core0 and the platform clock is determined by the binary value of IFC_AD[3:5] signals at power up. Table 100 describes the supported ratios. There are no default values for these PLL ratios; these signals must be pulled to the desired values. Note that IFC_AD[6] must be pulled low if the core frequency is 1001 MHz or below. Table 100. e500 Core0 to Platform Clock Ratios Binary Value of IFC_AD[3:5]Signals e500 Core0: Platform Ratio 010 1:1 011 1.5:1 100 2:1 101 2.5:1 110 3:1 All Others Reserved The clock ratio between the e500 core1 and the platform clock is determined by the binary value of the IFC_CLE, IFC_OE_B, IFC_WP_B signals at power up. Table 101 describes the supported ratios. There are no default values for these PLL ratios; these signals must be pulled to the desired values. Note that IFC_AD[12] must be pulled low if the core frequency is 1001 MHz or below. Table 101. e500 Core1 to Platform Clock Ratios Binary Value of IFC_CLE, IFC_OE_B, IFC_WP_B Signals e500 Core1: Platform Ratio 010 1:1 011 1.5:1 100 2:1 101 2.5:1 110 3:1 All Others Reserved BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 130 Freescale Semiconductor Hardware Design Considerations 3.1.4 Power Architecture DDR/DDRCLK PLL Ratio Table 102 describes the clock ratio between the dual DDR memory controller complexes and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock. The DDR memory controller complexes clock frequency is equal to the DDR data rate. The DDR PLL rate to DDRCLK ratios listed in Table 102 reflects the DDR data rate to DDRCLK ratio, since the DDR PLL rate in asynchronous mode means the DDR data rate resulting from DDR PLL output. This ratio is determined by the binary value of the IFC_AD[7]. Table 102. Power Architecture DDR Clock Ratio 3.1.5 Binary Value of {IFC_AD[7], IFC_ADDR[22]} Signal DDR:DDRCLK Ratio 00 8:1 01 10:1 10 12:1 11 Reserved Power Architecture SYSCLK and Platform Frequency Options Table 103 shows the expected frequency options for SYSCLK and platform frequencies. Table 103. Power Architecture SYSCLK and Platform Frequency Options SYSCLK (MHz) Platform: SYSCLK Ratio 66.66 80 100 133 Platform Frequency (MHz)1 1) 4:1 267 320 400 533 5:1 333 400 500 — 6:1 400 480 600 — 8:1 533 — — — Platform frequency values are shown rounded down to the nearest whole number (decimal place accuracy removed). 3.2 DSP System Clocking This section describes the PLL configuration for the DSP side of the device. Note that the platform clock is identical to the internal core complex bus (CCB) clock. This device has the following PLLs: • • • One SC3850 core PLL One MAPLE-eTVPE PLL One DSP DDR PLL BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 131 Hardware Design Considerations 3.2.1 DSP Clock Ranges Table 104 provides the clocking specifications for the SC3850 processor core, MAPLE, and DSP memory. Table 104. DSP Processor Clocking Specifications DSP Core Minimum Frequency Maximum Frequency Unit SC3850 cores 800 1200 MHz MAPLE eVTPE 800 800 MHz DSP DDR Controller 800 1333 MHz 3.2.2 DSPCLKIN and SC3850 Core Frequency Options Table 105 shows the expected frequency options for DSPCLKIN and SC3850 core frequencies. Table 105. Options for SC3850 Core0 and Core1 Clocking DSPCLKIN Frequency (MHz) PLL_T2 MF 66.66 80 100 133 SC3850 Core Frequency (MHz) 3.3 1 66.66 80 100 133 6 400 480 600 800 7.5 500 600 750 1000 8 533 640 800 1066 9 600 720 900 1200 10 667 800 1000 — 12 800 960 1200 — 15 1000 1200 — — Supply Power Default Setting This device is capable of supporting multiple power supply levels on its I/O supply. Table 106 through Table 110 shows the encoding used to select the voltage level for each I/O supply. When setting the VSEL signals, "1" is selected through a pull-up resistor to OVDD (as seen in Table 1). Table 106. Default Voltage Level for BVDD BVDD_VSEL[0:1] I/O Voltage Level 00 3.3 V 01 2.5 V 10 1.8 V 11 Reserved BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 132 Freescale Semiconductor Hardware Design Considerations Table 107. Default Voltage Level for CVDD CVDD_VSEL I/O Voltage Level 0 3.3 V 1 1.8 V Table 108. Default Voltage Level for X1VDD X1VDD_VSEL I/O Voltage Level 0 3.3 V 1 1.8 V Table 109. Default Voltage Level for X2VDD XVDD2_VSEL I/O Voltage Level 0 3.3 V 1 1.8 V Table 110. Default Voltage Level for LVDD 3.4 LVDD_VSEL I/O Voltage Level 0 3.3 V 1 2.5 V PLL Power Supply Design Each of the PLLs listed above is provided with power through independent power supply pins (AVDD_PLAT, AVDD_CORE0, AVDD_CORE1, AVDD_D1_DDR, AVDD_D2_DDR, AVDD_DSP, and AVDD_MAPLE respectively). The AVDD level should always be equivalent to VDDC, and these voltages must be derived directly from VDDC through a low frequency filter scheme. The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in Figure 55, one for each of the AVDD pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced. This circuit is intended to filter noise in the PLL’s resonant frequency range from a 500-kHz to 10-MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor. Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD pin, which is on the periphery of 780 ball FCPBGA the footprint, without the inductance of vias. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 133 Hardware Design Considerations Figure 55 shows the core PLL (AVDD_CORE) power supply filter circuit. VDDC R C1 C2 GND AVDD_PLAT/AVDD_CORE0/AVDD_CORE1/ AVDD_D[1-2]_DDR/AVDD_DSP/AVDD_MAPL E Low ESL Surface Mount Capacitors Notes: R = 5Ω ± 5% C1 = 10µF ± 10%, 603, X5R with ESL ≤ 0.5 nH C2 = 1.0µF ± 10%, 402 X5R with ESL ≤ 0.5 nH This circuit applies for system PLL, core PLL, DDR PPLL, and DSP PLL. Figure 55. PLL Power Supply Filter Circuit The AVDD_SRDSn signals provides power for the analog portions of the SerDes PLL. Use separate islands (that is, very wide traces) for each PLL bank’s SDnAGND and SDnAVDD connections. The ground islands/wide traces of different PLL banks are to be joined to a single ground plane either with an inductor or through a 0 Ω resistance. While it is possible to connect these islands together to a single supply (possibly via a resistor or ferrite bead), it would be best for this connection to be formed by multiple single-point connections which are as close to the source (and as far away from the chip) as possible. The multiple single-point connections can be optimized as thick multiple wide connections to provide a good return path. The user should simulate the return path impedance and then take appropriate PCB layout tradeoff decisions. Additionally, one should maintain low noise and good stability of the SDnAVDD. The user should not place any digital or other bank traces near the PLL power and ground planes. For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAVDD ball to ensure it filters out as much noise as possible. The ground connection should be near the SDAVDD ball. To provide effective bypass capacitance at high frequencies, these two islands/wide traces should be directly over each other and on the nearest layer (that is, layers 3 and 4 of a 6-layer PC board). The capacitors are connected from SDAVDD to the ground plane. Only the surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance. The 2.2 nF capacitor is the closest to the package pin, followed by the two 2.2 µF capacitors, and finally the 1 Ω resistor to the board supply plane. The goal is to have a 2.2 nF decoupling capacitor within approximately 0.5 cm of each power pin. 3.5 Decoupling Recommendations Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the system, and the device itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each VDD, BVDD, CVDD, OVDD, G1VDD, G2VDD, LVDD, RVDD, X1VDD, and X2VDD pin of the device. These decoupling capacitors should receive their power from separate VDD, BVDD, OVDD, G1VDD, G2VDD, LVDD, RVDD, X1VDD, X2VDD, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part. These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0201 sizes. In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the VDD, BVDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON). BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 134 Freescale Semiconductor Hardware Design Considerations 3.6 SerDes Block Power Supply Decoupling Recommendations The SerDes block requires a clean, tightly regulated source of power (XCOREVDD and XPADVDD) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below. • • • The board should have at least 10 × 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible. There should be a 1-µF ceramic chip capacitor on each side of the device. This should be done for all SerDes supplies. Between the device and any SerDes voltage regulator there should be a 10-µF, low ESR SMT tantalum chip capacitor and a 100-µF, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies. Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance. Figure 56 shows the SerDes PLL power supply filter circuit. (0603-sized) default resistance with 1Ω provision to change to an inductor SDnAVDD XCOREVDD 2.2µF 2.2µF 0.022µF SDnAGND GND 0Ω (0603-sized) default resistance with provision to change to an inductor Figure 56. SerDes PLL Power Supply Filter Circuit The power supplied to the XCOREVDD and XPADVDD are filtered using a circuit similar to Figure 57. Figure 57. XCOREVDD and XPADVDD Power Supply Filter Circuit The XCOREVSS and XPADVSS of different banks can be joined to a low noise, solid reference ground plane. Perform the noise coupling simulation on actual PCB design implementation. The user should quantify the noise and then and then take appropriate PCB layout tradeoff decisions, followed by validating the simulated noise against the measured noise for the designed PCB. In case of a board noise coupling issue, the user may use separate islands/thick wide traces for XCOREVSS, XPADVSS, XCOREVDD and XPADVDD. Connect these “islands" together to a single supply plane; it would be best for this connection to be a single point or multiple single-point connections as close to the source (and as far away from the chip) as possible. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 135 Hardware Design Considerations Component values will need to be optimized/finalized based on board level filter measurements to provide best possible attenuation up to 10 GHz, while preserving lowest loss at DC (IR drop). 3.7 Guidelines for High-Speed Interface Termination This section provides guidelines for when the SerDes interface is entirely unused and when it is partially unused. 3.7.1 SerDes Interface Entirely Unused If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section. The following pins must be left unconnected: • • • SD_TX[3:0], SD_TX_B[3:0] SD_RX[3:0], SD_RX_B[3:0] SD_IMP_CAL_TX, SD_IMP_CAL_RX The following pins must be connected to XCOREVSS: • • SD_REF_CLK1, SD_REF_CLK1_B (if entire SerDes bank 1 is unused) SD_REF_CLK2, SD_REF_CLK2_B (if entire SerDes bank 2 is unused) Unused SD_REF_CLK1 and SD_REF_CLK2 must be connected to SGND. Power should still be applied to the SerDes external pins: • • • 3.7.2 XCOREVDD/VSS(SGND) AVDD/VSS XPADVDD/VSS SerDes Interface Partly Unused If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins should be terminated as described in this section. The following unused pins must be left unconnected: • • SD_TX[n] SD_TX_B[n] The following unused pins must be connected to SGND: • • • SD_RX[n], SD_RX_B[n] SD_REF_CLK1, SD_REF_CLK1_B (If entire SerDes bank 1 is unused) SD_REF_CLK2, SD_REF_CLK2_B (If entire SerDes bank 2 is unused) In the RCW configuration field for each bank SRDS_LPD_Bn with unused lanes, the respective bit for each unused lane must be set to power down the lane. 3.8 Pull-Up and Pull-Down Resistor Requirements The device requires weak pull-up resistors on open drain type pins including I2C pins (1 kΩ is recommended) and MPIC interrupt pins (2–10 kΩ is recommended). Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 59. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions, because most have asynchronous behavior, and spurious assertion gives unpredictable results. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 136 Freescale Semiconductor Hardware Design Considerations 3.9 Output Buffer DC Impedance The drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I2C). To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 58). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each other in value. Then, Z0 = (RP + RN) ÷ 2. OVDD RN SW2 Pad Data SW1 RP OGND Figure 58. Driver Impedance Measurement Table 111 summarizes the signal impedance targets. The driver impedances are targeted at minimum VDDC, nominal OVDD, 90°C. Table 111. Impedance Characteristics Impedance IFC, Ethernet, DUART, Control, Configuration, Power Management DDR DRAM Symbol Unit RN 43 Target 20 Target Z0 W RP 43 Target 20 Target Z0 W Note: Nominal supply voltages. See Table 2. 3.10 Configuration Pin Muxing The device provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation. While HRESET_B is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET_B is asserted, is latched when HRESET_B deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 kΩ. This value should permit the 4.7-kΩ resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET_B (and for platform/system clocks after HRESET_B deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 137 Hardware Design Considerations minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user. Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured. The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices. 3.11 JTAG Configuration Signals There are two JTAG ports: • • Power Architecture JTAG (TDI, TDO, TMS, TCK, and TRST_B) DSP JTAG (DSP_TDI, DSP_ TDO, DSP_TMS, DSP_TCK, and DSP_TRST_B) Note that the DSP JTAG is available as dedicated I/O pins. The Power Architecture JTAG is the primary JTAG interface of the chip. DSP JTAG is defined as optional debug interface. As seen in Table 112, the JTAG topology is selectable by static value driven on two pins—CFG_0_JTAG_MODE and CFG_1_JTAG_MODE. Table 112. JTAG Topology {CFG_0_JTAG_MODE, CFG_1_JTAG_MODE} Uses Power Architecture Debug Header Uses DSP Debug Header 00 Yes No Access Power Architecture domain and DSP domain using Power Architecture JTAG port 01 Yes No Access DSP domain using Power Architecture JTAG port 10 Yes No Access Power Architecture domain using Power Architecture JTAG port 11 Yes Yes Access Power Architecture domain using Power Architecture JTAG and DSP domain using DSP JTAG JTAG Topology Note: For boundary SCAN, set {CFG_0_JTAG_MODE, CFG_1_JTAG_MODE} = 10. The TRST/DSP_TRST signal is optional in the IEEE 1149.1 specification, but is provided on the device. The device requires TRST/DSP_TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems assert TRST/DSP_TRST during the power-on reset flow. Simply tying TRST/DSP_TRST to HRESET_B is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP) function. The COP function of the processor allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The arrangement shown in Figure 59 and Figure 60 allows the COP/ONCE port to independently assert HRESET_B or TRST, while ensuring that the target can drive HRESET_B as well. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 138 Freescale Semiconductor Hardware Design Considerations The COP interface has a standard header for connection to the target system. The 16-pin PA COP connector is shown in Figure 59. COP_TDO 1 2 NC COP_TDI 3 4 COP_TRST_B NC 5 6 COP_VDD_SENSE COP_TCK 7 8 COP_CHKSTP_IN_B COP_TMS 9 10 NC COP_SRESET_B 11 12 NC COP_HRESET_B 13 COP_CHKSTP_OUT_B 15 KEY No pin 16 GND Figure 59. COP Connector Physical Pinout The ONCE interface also has a standard header for connection to the target system. The 14-pin DSP ONCE connector is shown in Figure 60. ONCE_TDI 1 2 GND ONCE_TDO 3 4 GND ONCE_TCK 5 6 GND NC 7 8 ONCE_KEY ONCE_HRST_B 9 10 ONCE_TMS ONCE_VDD_SNS 11 12 NC NC 13 14 ONCE_TRST_B Figure 60. ONCE Connector Physical Pinout 3.11.1 Termination of Unused Signals If the Power Architecture JTAG or DSP JTAG interface and COP/ONCE header is not used, Freescale recommends the following connections: • TRST_B should be tied to HRESET_B through a 0 kΩ isolation resistor so that it is asserted when the system reset signal (HRESET_B) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 59. If this is not possible, BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 139 Hardware Design Considerations • • the isolation resistor allows future access to TRST_B in case a JTAG interface may need to be wired onto the system in future debug situations. TCK should be pulled down to GND through a 1 kΩ resistor. This prevents TCK from changing state and reading incorrect data into the device. No connection is required for TDI, TDO, or TMS. NOTE In the case where the DSP JTAG is also used (as described in Table 112), DSP_TRST and DSP_TCK need to be handled in the same way as TRST and TCK are, as mentioned above. 3.12 Guidelines for High-Speed Interface Termination If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section. However, the SerDes must always have power applied to its supply pins. The following pins must be left unconnected (float): • • SD_TX[3:0] SD_TX_B[3:0] The following pins must be connected to GND: • • SD_RX[3:0], SD_RX_B[3:0] SD_REF_CLK, SD_REF_CLK_B 3.13 Thermal This section describes the thermal specifications. 3.13.1 Thermal Characteristics Table 113 provides the package thermal characteristics. Table 113. Package Thermal Resistance Characteristics Characteristic JEDEC Board Symbol Lid Unit Junction-to-Ambient Natural Convection Single layer board (1s) RθJA 21 °C/W Junction-to-Ambient Natural Convection Four layer board (2s2p) RθJA 14 °C/W Junction-to-Ambient (at 200 ft/min) Single layer board (1s) RθJMA 15 °C/W Junction-to-Ambient (at 200 ft/min) Four layer board (2s2p) RθJMA 11 °C/W Junction-to-Board — RθJB 4.0 °C/W Junction-to-Case Top — RθJCtop 0.7 °C/W Note: 1. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 2. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 140 Freescale Semiconductor Package Information 3.13.2 Temperature Diode The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461A™). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment. The following are the specifications of the chip’s on-board temperature diode: Operating range: 10 – 230μA Ideality factor over 13.5 – 220 μA: n = 1.007 ± 0.008 3.14 Security Fuse Processor This device implements the QorIQ platform’s Trust Architecture, supporting capabilities such as secure boot. Use of the Trust Architecture features is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the Trust Architecture and SFP can be found in the BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual. In order to program SFP fuses, the user is required to supply 1.5 V to the POVDD1 pin per Section 2.2, “Power Sequencing.” POVDD1 should only be powered for the duration of the fuse programming cycle, with a per device limit of one fuse programming cycle. All other times POVDD1 should be connected to GND. The sequencing requirements for raising and lowering POVDD1 are shown in Figure 8. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 3. Users not implementing the QorIQ platform’s Trust Architecture features are not required to program fuses and should connect POVDD1 to GND. 4 Package Information The following section describes the detailed content and mechanical description of the package. 4.1 Package Parameters The package parameters are provided in the following list. The package type is plastic ball grid array (FC-PBGA). Package outline Interconnects Pitch Ball diameter (typical) 23 mm × 23 mm 780 0.8 mm 0.4 mm BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 141 Package Information 4.2 Mechanical Dimensions of the FC-PBGA Figure 61 shows the package and bottom surface nomenclature. Notes: 1. All dimentions are in milimeters. 2. Dimensions and tolerancing per ASME Y14.5-1994. 3. Maximum ball diameter measured parallel to Datum A. 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls. 5. Parallelism measurement shall exclude any effect of mark on top surface of package. 6. All dimensions are symmetric across the package center lines, unless dimensioned otherwise. 7. Pin 1 through hole should be centered within foot area. Figure 61. BSC9132 Mechanical Dimensions and Package Diagram BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 142 Freescale Semiconductor Ordering Information 5 Ordering Information The table below provides the Freescale part numbering nomenclature for the BSC9132. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Each part number also contains a revision code which refers to the die mask revision number. Table 114. Part numbering nomenclature Product Code BSC n x t Part Identifier Qual Status Temp Range Encryp- Package tion Type N= Industrial Tier S, L = Std temp (0–105°C) E = SEC 7 = Present FC-PBGA Pb-free N = No Bumps SEC and Present Package 9132 X, J = Ext temp (-40–105°C) 5.1 e n c d f r CPU Freq DDR Speed DSP Freq Die Revision K= N= K= B= 1000 MHz 1333 MHz 1000 MHz Rev 1.1 M= M= 1200 MHz 1200 MHz P= 1400 MHz Part Marking Parts are marked as the example shown in this figure. BSC9132C SE1HHHB ATWLYYWW MMMMM CCCCC YWWLAZ FCPBGA Notes: ATWLYYWW is the traceability code. CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code. BSC9132CSE1HHHB is the orderable part number. See Table 114 for details. Figure 62. Part Marking for FCPBGA Device 6 Product Documentation The following documents are required for a complete description of the device and are needed to design properly with the part. Some documents may require a non-disclosure agreement. Contact your local FAE for assistance. • BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual (BSC9132RM) BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 Freescale Semiconductor 143 Revision History • 7 e500 PowerPC Core Reference Manual (E500CORERM) Revision History Table 115. Document Revision History Rev Date Substantive Change(s) 1 08/2014 Updated Table 1, “BSC9132 Pinout Listing.” 0 03/2014 Initial public release. BSC9132 QorIQ Qonverge Baseband Processor Data Sheet, Rev. 1 144 Freescale Semiconductor How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, QorIQ, and StarCore are trademarks of Freescale Semiconductor, Inc. Reg., U.S. Pat. & Tm. Off. QorIQ Qonverge is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2014 Freescale Semiconductor, Inc. Document Number: BSC9132 Rev. 1 08/2014