IRFB3004 Data Sheet (458 KB, EN)

PD - 97377
IRFB3004PbF
IRFS3004PbF
IRFSL3004PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
D
G
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.4mΩ
1.75mΩ
340Ac
ID (Package Limited)
195A
D
D
D
G
D
S
TO-220AB
IRFB3004PbF
S
G
G
D2Pak
D
S
TO-262
IRFSL3004PbF
IRFS3004PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
340c
240c
195
IDM
PD @TC = 25°C
Pulsed Drain Current d
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery f
1310
380
2.5
± 20
VGS
dv/dt
TJ
TSTG
Units
A
W
W/°C
V
4.4
-55 to + 175
Operating Junction and
Storage Temperature Range
V/ns
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
300
10lbfxin (1.1Nxm)
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
EAR
Avalanche Currentd
Repetitive Avalanche Energy d
300
mJ
See Fig. 14, 15, 22a, 22b
A
mJ
Thermal Resistance
Symbol
Parameter
RθJC
RθCS
RθJA
Junction-to-Case kl
Case-to-Sink, Flat Greased Surface, TO-220
Junction-to-Ambient, TO-220
RθJA
Junction-to-Ambient (PCB Mount) , D Pak j
www.irf.com
2
Typ.
Max.
–––
0.50
–––
0.40
–––
62
–––
40
Units
°C/W
1
02/26/09
IRFB/S/SL3004PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Min. Typ. Max. Units
40
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.037 –––
1.4 1.75
–––
4.0
–––
20
––– 250
––– 100
––– -100
2.2
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 195A g
V VDS = VGS, ID = 250µA
µA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
1170
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) i –––
–––
Effective Output Capacitance (Time Related)h
–––
160
40
68
92
23
220
90
130
9200
2020
1340
2440
2690
–––
240
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 10V, ID = 195A
ID = 187A
VDS =20V
VGS = 10V g
ID = 187A, VDS =0V, VGS = 10V
VDD = 26V
ID = 195A
RG = 2.7Ω
VGS = 10V g
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz, See Fig. 5
VGS = 0V, VDS = 0V to 32V i, See Fig. 11
VGS = 0V, VDS = 0V to 32V h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.016mH
RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use
above this value .
2
Min. Typ. Max. Units
Conditions
–––
––– 340c
A
MOSFET symbol
–––
–––
A
showing the
integral reverse
1310
D
G
p-n junction diode.
TJ = 25°C, IS = 195A, VGS = 0V g
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 195A
di/dt = 100A/µs g
TJ = 25°C
S
––– –––
1.3
V
–––
27
–––
ns
–––
31
–––
–––
18
–––
nC
TJ = 125°C
–––
41
–––
–––
1.2
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
„ ISD ≤ 195A, di/dt ≤ 930A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š RθJC value shown is at time zero.
www.irf.com
IRFB/S/SL3004PbF
10000
10000
1000
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
1000
4.5V
100
BOTTOM
4.5V
100
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
10
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
100
T J = 175°C
T J = 25°C
10
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 195A
VGS = 10V
1.5
1.0
0.5
1
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 187A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Ciss
10000
Coss
Crss
1000
100
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
50
100
150
200
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB/S/SL3004PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
100
T J = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
1msec
100
10msec
DC
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1
0.1
0.0
0.5
1.0
1.5
1
2.0
350
ID, Drain Current (A)
Limited By Package
250
200
150
100
50
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
50
Id = 5mA
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
2.0
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP
30A
54A
BOTTOM 195A
1200
1.6
1000
1.4
1.2
Energy (µJ)
Fig 10. Drain-to-Source Breakdown Voltage
1400
1.8
1.0
0.8
0.6
0.4
0.2
0.0
800
600
400
200
0
-5
0
5
10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
300
10
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB/S/SL3004PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
τJ
0.05
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
τi (sec)
0.00646
0.000005
0.10020
0.000124
0.18747
0.001374
0.10667
0.008465
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
100
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
320
280
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 195A
240
200
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
4.5
10
4.0
9
3.5
8
3.0
2.5
ID = 250µA
TJ = 25°C
TJ = 125°C
6
5
ID = 1.0mA
2.0
IF = 78A
V R = 34V
7
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
IRFB/S/SL3004PbF
ID = 1.0A
4
1.5
3
1.0
-75 -50 -25 0
2
25 50 75 100 125 150 175 200
100
200
T J , Temperature ( °C )
IF = 117A
V R = 34V
300
IF = 78A
V R = 34V
TJ = 25°C
TJ = 125°C
250
TJ = 25°C
TJ = 125°C
7
QRR (nC)
IRRM (A)
8
500
350
11
9
400
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
10
300
diF /dt (A/µs)
6
5
200
150
4
3
100
2
50
1
100
200
300
400
100
500
200
300
400
500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
400
350
QRR (nC)
300
250
IF = 117A
V R = 34V
TJ = 25°C
TJ = 125°C
200
150
100
50
0
100
200
300
400
500
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB/S/SL3004PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB/S/SL3004PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFB/S/SL3004PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
'$7(&2'(
<($5 :((.
/,1(&
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFB/S/SL3004PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRFB/S/SL3004PbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2009
www.irf.com
11