PD - 97323 IRFP4004PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET D VDSS RDS(on) typ. max. ID (Silicon Limited) S ID (Package Limited) G Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability 40V 1.35mΩ 1.70mΩ 350Ac 195A D D S G TO-247AC G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 350c 250c Units ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 195 IDM Pulsed Drain Current d 1390 PD @TC = 25°C Maximum Power Dissipation 380 W Linear Derating Factor 2.5 VGS Gate-to-Source Voltage ± 20 W/°C V dv/dt TJ Peak Diode Recovery f 2.0 Operating Junction and -55 to + 175 TSTG Storage Temperature Range A V/ns °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy e IAR Avalanche Currentd EAR Repetitive Avalanche Energy g 290 mJ See Fig. 14, 15, 22a, 22b A mJ Thermal Resistance Typ. Max. RθJC Symbol Junction-to-Case k ––– 0.40 RθCS RθJA Case-to-Sink, Flat Greased Surface 0.24 ––– ––– 40 www.irf.com Parameter Junction-to-Ambient jk Units °C/W 1 06/05/08 IRFP4004PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 40 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.035 ––– 1.35 1.70 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 195A g V VDS = VGS, ID = 250µA µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Qg Qgs Qgd Qsync Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) 290 ––– ––– ––– ––– ––– 220 59 75 145 ––– 330 ––– ––– ––– S nC RG(int) td(on) Internal Gate Resistance Turn-On Delay Time ––– 6.8 59 ––– ––– Ω tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance 370 160 190 8920 2360 930 2860 3110 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related)i ––– ––– Effective Output Capacitance (Time Related)h Conditions VDS = 10V, ID = 195A ID = 195A VDS = 20V VGS = 10V g ID = 195A, VDS =0V, VGS = 10V ns pF VDD = 20V ID = 195A RG = 2.7Ω VGS = 10V g VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V i VGS = 0V, VDS = 0V to 32V h Diode Characteristics Symbol Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr (Body Diode)di Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Refer to App Notes (AN-1140). Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.015mH RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use above this value. 2 Min. Typ. Max. Units ––– ––– ––– ––– 350c 1390 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 195A, VGS = 0V g TJ = 25°C VR = 20V, TJ = 125°C IF = 195A di/dt = 100A/µs g TJ = 25°C S ––– ––– 1.3 V ––– 83 130 ns ––– 78 120 ––– 190 290 nC TJ = 125°C ––– 210 320 ––– 4.0 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) ISD ≤ 195A, di/dt ≤ 690A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com IRFP4004PbF 1000 1000 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 100 100 4.5V 4.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 10 10 0.1 1 0.1 10 Fig 1. Typical Output Characteristics 2.0 T J = 175°C 100 T J = 25°C 10 VDS = 10V ≤60µs PULSE WIDTH 1.0 ID = 195A VGS = 10V 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 1.0 0.5 3 4 5 6 7 8 -60 -40 -20 0 20 40 60 80 100120140160180 VGS , Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 100000 12.0 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd VGS , Gate-to-Source Voltage (V) ID= 195A Coss = Cds + Cgd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Ciss 10000 Coss Crss 1000 100 10.0 VDS= 32V VDS= 24V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 50 100 150 200 250 Q G , Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFP4004PbF 10000 T J = 175°C 1000 100 10 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 25°C 1 100µsec 100 1msec 10msec 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1 0.1 0.0 0.4 0.8 1.2 1.6 1 2.0 ID, Drain Current (A) Limited By Package 250 200 150 100 50 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 350 25 52 Id = 5.0mA 50 48 46 44 42 40 -60 -40 -20 0 20 40 60 80 100120140160180 T C , Case Temperature (°C) T J , Temperature ( °C ) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 2.5 EAS , Single Pulse Avalanche Energy (mJ) 1200 ID 36A 73A BOTTOM 195A TOP 1000 2.0 1.5 Energy (µJ) 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 300 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 1.0 0.5 0.0 800 600 400 200 0 -5 0 5 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFP4004PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 τJ 0.05 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 1E-005 τi (sec) 0.0123 0.000011 0.0585 0.000055 0.1693 0.000917 0.1601 0.008784 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFP4004PbF 12 IF = 78A V R = 34V 4.5 10 TJ = 25°C TJ = 125°C 4.0 3.5 3.0 IRR (A) VGS(th) , Gate threshold Voltage (V) 5.0 ID = 250µA ID = 1.0mA 2.5 8 6 ID = 1.0A 2.0 4 1.5 1.0 2 -75 -50 -25 0 25 50 75 100 125 150 175 200 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 14 350 12 IF = 117A V R = 34V 10 TJ = 25°C TJ = 125°C Q RR (A) IRR (A) 400 diF /dt (A/µs) 8 300 IF = 78A V R = 34V 250 TJ = 25°C TJ = 125°C 200 6 150 4 100 2 50 0 100 200 300 400 500 600 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt Q RR (A) 400 350 IF = 117A V R = 34V 300 TJ = 25°C TJ = 125°C 250 200 150 100 0 100 200 300 400 500 600 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFP4004PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD Fig 21b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 22a. Switching Time Test Circuit tr td(off) tf Fig 22b. Switching Time Waveforms Id Vds Vgs L VCC DUT 0 Vgs(th) 1K Qgs1 Qgs2 Fig 23a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 23b. Gate Charge Waveform 7 IRFP4004PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/08 8 www.irf.com