IRFB3306 Data Sheet (327 KB, EN)

IRFB3306PbF
IRFS3306PbF
IRFSL3306PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
D
G
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
l RoHS Compliant, Halogen-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
60V
3.3m:
4.2m:
160A
ID (Package Limited)
120A
D
G
S
G
Package Type
D
S
G
D2Pak
IRFS3306PbF
TO-220AB
IRFB3306PbF
Base Part Number
D
D
D
c
G
D
S
Drain
Source
Form
Quantity
S
TO-262
IRFSL3306PbF
Gate
Standard Pack
D
Orderable Part Number
IRFB3306PbF
TO-220
Tube
50
IRFB3306PbF
IRFSL3306PbF
TO-262
IRFS3306PbF
D2Pak
Tube
Tube
Tape and Reel Left
Tape and Reel Right
50
50
800
800
IRFSL3306PbF
IRFS3306PbF
IRFS3306TRLPbF
IRFS3306TRRPbF
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
Parameter
Max.
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Units
c
110c
160
Continuous Drain Current, VGS @ 10V (Silicon Limited)
A
120
d
620
IDM
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
230
W
Linear Derating Factor
1.5
± 20
W/°C
V
14
V/ns
VGS
Gate-to-Source Voltage
dv/dt
TJ
Peak Diode Recovery
TSTG
Storage Temperature Range
f
-55 to + 175
Operating Junction and
(1.6mm from case)
x
Avalanche Characteristics
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
d
x
10lb in (1.1N m)
Mounting torque, 6-32 or M3 screw
EAS (Thermally limited)
°C
300
Soldering Temperature, for 10 seconds
e
mJ
184
See Fig. 14, 15, 22a, 22b,
g
A
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
–––
0.65
Case-to-Sink, Flat Greased Surface , TO-220
0.50
–––
Junction-to-Ambient, TO-220
–––
62
–––
40
k
RθJC
Junction-to-Case
RθCS
RθJA
RθJA
Junction-to-Ambient (PCB Mount) , D2Pak
1
k
jk
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
Units
°C/W
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
V
Conditions
60
–––
–––
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient
–––
0.07
–––
V/°C Reference to 25°C, ID = 5mA
mΩ VGS = 10V, ID = 75A
RDS(on)
Static Drain-to-Source On-Resistance
–––
3.3
4.2
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
IDSS
Drain-to-Source Leakage Current
–––
–––
20
μA
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
0.7
–––
IGSS
RG
VGS = 0V, ID = 250μA
d
g
VDS = VGS, ID = 150μA
VDS = 60V, VGS = 0V
VDS = 48V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Forward Transconductance
230
–––
–––
S
VDS = 50V, ID = 75A
Qg
Total Gate Charge
–––
85
120
nC
ID = 75A
Qgs
Gate-to-Source Charge
–––
20
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
26
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
59
–––
td(on)
Turn-On Delay Time
–––
15
–––
tr
Rise Time
–––
76
–––
td(off)
Turn-Off Delay Time
–––
40
–––
RG = 2.7Ω
tf
Fall Time
–––
77
–––
VGS = 10V
Ciss
Input Capacitance
–––
4520
–––
Coss
Output Capacitance
–––
500
–––
VDS = 50V
Crss
Reverse Transfer Capacitance
–––
250
–––
ƒ = 1.0MHz, See Fig. 5
Coss eff. (ER) Effective Output Capacitance (Energy Related) –––
Coss eff. (TR) Effective Output Capacitance (Time Related)
–––
720
–––
VGS = 0V, VDS = 0V to 48V
880
–––
VGS = 0V, VDS
h
VDS =30V
VGS = 10V
g
ID = 75A, VDS =0V, VGS = 10V
ns
VDD = 30V
ID = 75A
pF
VGS = 0V
g
i, See Fig. 11
= 0V to 48V h
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
trr
Reverse Recovery Time
–––
31
–––
35
–––
34
–––
45
–––
1.9
–––
–––
d
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
ton
Forward Turn-On Time
www.irf.com © 2014 International Rectifier
–––
c
620
1.3
Conditions
A
MOSFET symbol
A
showing the
integral reverse
V
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
ns
TJ = 25°C
VR = 51V,
TJ = 125°C
IF = 75A
di/dt = 100A/μs
nC
TJ = 25°C
D
G
S
g
g
TJ = 125°C
–––
A
TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.04mH
RG = 25Ω, IAS = 96A, VGS =10V. Part not recommended for use
above this value.
2
––– 160
„ ISD ≤ 75A, di/dt ≤ 1400A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
1000
1000
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
4.5V
BOTTOM
100
4.5V
≤ 60μs PULSE WIDTH
Tj = 175°C
≤ 60μs PULSE WIDTH
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
2.5
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(Α)
100
Fig 2. Typical Output Characteristics
1000
TJ = 175°C
10
TJ = 25°C
1
VDS = 25V
≤ 60μs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
6.0
7.0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
8000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
4000
2000
Coss
Crss
ID= 75A
VDS = 48V
VDS= 30V
VDS= 12V
16
12
8
4
0
0
1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
1
www.irf.com © 2014 International Rectifier
0
20
40
60
80
100
120
140
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
10000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
1msec
100
10msec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.1
2.0
V(BR)DSS , Drain-to-Source Breakdown Voltage
180
Limited By Package
140
120
100
80
60
40
20
0
25
50
75
100
125
150
10
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
160
1
VDS, Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
DC
0.1
0.1
80
ID = 5mA
70
60
50
-60 -40 -20 0
175
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
1.5
Energy (μJ)
1.0
0.5
0.0
800
I D
13A
18A
BOTTOM 96A
TOP
600
400
200
0
0
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100μsec
www.irf.com © 2014 International Rectifier
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
R1
R1
0.01
τJ
τJ
τ1
τC
τ1
τ2
τ2
Ri (°C/W)
τι (sec)
0.249761
0.00028
0.400239 0.005548
Ci= τi/Ri
C
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R2
R2
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
0.01
0.05
10
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 96A
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
16
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 150μA
4.0
3.5
12
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.5
3.0
2.5
8
2.0
IF = 30A
VR = 51V
4
TJ = 125°C
1.5
TJ = 25°C
0
1.0
-75 -50 -25
0
25
50
75
100 200 300 400 500 600 700 800 900 1000
100 125 150 175
dif / dt - (A / μs)
TJ , Temperature ( °C )
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
16
350
300
250
QRR - (nC)
IRRM - (A)
12
8
4
IF = 45A
VR = 51V
200
150
TJ = 125°C
0
IF = 30A
VR = 51V
100
50
TJ = 125°C
TJ = 25°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
350
300
QRR - (nC)
250
200
150
IF = 45A
VR = 51V
100
50
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
+
90%
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1μs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
7
www.irf.com © 2014 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
INTERNATIONAL
RECTIFIER LOGO
ASSEM BLY
LOT CODE
PART NUMBER
IRFB3306
PYWW?
LC
LC
OR
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFB3306
YWWP
LC
LC
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
PART NUMBER
FS3306
PYWW?
LC
LC
OR
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
PART NUMBER
FS3306
YWWP
LC
LC
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
TO-262 Part Marking Information
INTERNATIONAL
RECTIFIER LOGO
FSL3306
PYWW?
ASSEMBLY
LOT CODE
LC
LC
PART NUMBER
OR
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
FSL3306
YWWP
ASSEMBLY
LOT CODE
LC
LC
PART NUMBER
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
11
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
†
Qualification information
Industrial
Qualification level
††
(per JEDEC JESD47F guidelines)
Moisture Sensitivity Level
TO-220
N/A
D2Pak
TO-262
MS L1
RoHS compliant
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
4/24/2014
Comment
• Updated data sheet with new IR corporate template.
• Updated package outline & part marking on page 8, 9 & 10.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
April 24, 2014