IRF IRFR7440TRPBF

IRFR7440PbF
IRFU7440PbF
HEXFET® Power MOSFET
Applications
l Brushed Motor drive applications
l BLDC Motor drive applications
l PWM Inverterized topologies
l Battery powered circuits
l Half-bridge and full-bridge topologies
l Electronic ballast applications
l Synchronous rectifier applications
l Resonant mode power supplies
l OR-ing and redundant power switches
l DC/DC and AC/DC converters
D
G
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.9mΩ
2.4mΩ
180A
ID (Package Limited)
90A
c
D
D
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dv/dt and dI/dt Capability
l Lead-Free
l RoHS Compliant containing no Lead, no Bromide,
and no Halogen
G
G
D
S
I-Pak
IRFU7440TRPbF
D-Pak
IRFR7440TRPbF
G
D
S
Gate
Drain
Source
Ordering Information
Orderable part number
Package Type
D-PAK
D-PAK
I-PAK
ID = 90A
IRFR7440PbF
IRFR7440TRPbF
IRFU7440PbF
LIMITED BY PACKAGE
160
140
6
4
TJ = 125°C
2
120
100
80
60
40
TJ = 25°C
20
0
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
Complete Part Number
180
8
ID, Drain Current (A)
( Ω)
RDS (on), Drain-to -Source On Resistance m
IRFR7440PbF
IRFR7440TRPbF
IRFU7440PbF
Standard Pack
Form
Quantity
Tube/Bulk
75
Tape and Reel
2000
Tube/Bulk
75
www.irf.com
© 2012 International Rectifier
25
50
75
100
125
150
175
TC, Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
October 17, 2012
IRFR/U7440PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
VGS
d
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Avalanche Characteristics
e
EAS (Thermally limited)
Single Pulse Avalanche Energy
EAS (tested)
IAR
EAR
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
d
A
W
0.95
± 20
4.4
-55 to + 175
f
dv/dt
TJ
TSTG
Units
c
c
180
125
90
760
140
W/°C
V
V/ns
°C
300
160
l
mJ
220
d
A
mJ
See Fig 15,16, 23a, 23b
Thermal Resistance
Symbol
R 8JC
R 8JA
R 8JA
Parameter
Typ.
Max.
Units
Junction-to-Ambient (PCB Mount)
–––
–––
–––
1.05
50
110
°C/W
Junction-to-Case
k
Junction-to-Ambient
k
j
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
R DS(on)
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 90A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.04mH
RG = 50Ω, IAS = 90A, VGS =10V.
„ ISD ≤ 100A, di/dt ≤ 1306A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Min. Typ. Max. Units
40
–––
–––
2.2
–––
–––
–––
–––
–––
–––
28
1.9
2.8
3.0
–––
–––
–––
–––
2.6
Conditions
d
g
g
–––
V VGS = 0V, ID = 250μA
––– mV/°C Reference to 25°C, ID = 1mA
2.4
mΩ VGS = 10V, ID = 90A
–––
mΩ VGS = 6.0V, ID = 50A
3.9
V VDS = VGS, ID = 100μA
1
μA VDS = 40V, VGS = 0V
150
VDS = 40V, VGS = 0V, TJ = 125°C
100
nA VGS = 20V
-100
VGS = -20V
Ω
–––
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š This value determined from sample failure population,
starting TJ = 25°C, L= 0.04mH, R G = 50Ω, IAS = 90A, VGS =10V.
2
www.irf.com
© 2012 International Rectifier
October 17, 2012
IRFR/U7440PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Qg
Q gs
Q gd
Q sync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Q g - Qgd )
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
Min. Typ. Max. Units
280
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
89
26
26
63
11
39
51
34
4610
690
460
855
1210
–––
134
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 10V, ID = 90A
ID =90A
VDS =20V
VGS = 10V
ID = 90A, VDS =0V, VGS = 10V
VDD = 20V
ID = 30A
RG = 2.7Ω
VGS = 10V
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz, See Fig. 5
See Fig. 12
VGS = 0V, VDS = 0V to 32V
VGS = 0V, VDS = 0V to 32V
g
ns
pF
g
i
h
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
ISM
(Body Diode)
Pulsed Source Current
–––
–––
VSD
trr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Q rr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
d
3
www.irf.com
© 2012 International Rectifier
–––
–––
–––
–––
–––
–––
0.9
34
35
33
34
1.8
c
180
760
1.3
–––
–––
–––
–––
–––
Conditions
A
MOSFET symbol
A
showing the
integral reverse
D
G
p-n junction diode.
V TJ = 25°C, IS = 90A, VGS = 0V
ns TJ = 25°C
VR = 34V,
IF = 90A
TJ = 125°C
di/dt = 100A/μs
nC TJ = 25°C
TJ = 125°C
A TJ = 25°C
S
g
October 17, 2012
IRFR/U7440PbF
1000
TOP
100
BOTTOM
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.3V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
10
1
4.3V
≤ 60μs PULSE WIDTH
Tj = 25°C
TOP
100
BOTTOM
4.3V
10
≤ 60μs PULSE WIDTH
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
100
TJ = 175°C
10
TJ = 25°C
1
VDS = 10V
≤ 60μs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
6.0
7.0
ID = 90A
VGS = 10V
1.5
1.0
0.5
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
100000
Fig 6. Normalized On-Resistance vs. Temperature
16
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
10000
Ciss
1000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 5. Typical Transfer Characteristics
C, Capacitance (pF)
1
VDS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Coss
Crss
ID= 90A
VDS = 32V
VDS = 20V
12
8
4
0
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.3V
www.irf.com
© 2012 International Rectifier
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
October 17, 2012
IRFR/U7440PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
100μsec
100
1msec
Limited by Package
10
OPERATION IN THIS AREA
LIMITED BY R (on)
DS
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
1.6
1
10
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
49
0.7
Id = 1.0mA
0.6
47
0.5
46
Energy (μJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
DC
0.1
0.1
48
10msec
45
44
43
0.4
0.3
0.2
42
0.1
41
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
20
30
40
VDS, Drain-to-Source Voltage (V)
TJ , Temperature ( °C )
Fig 11. Drain-to-Source Breakdown Voltage
( Ω)
RDS(on), Drain-to -Source On Resistance m
10
Fig 12. Typical COSS Stored Energy
10.0
VGS = 5.5V
8.0
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS =10V
6.0
4.0
2.0
0.0
0
20 40 60 80 100 120 140 160 180 200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2012 International Rectifier
October 17, 2012
IRFR/U7440PbF
Thermal Response ( ZthJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)
180
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 90A
EAR , Avalanche Energy (mJ)
160
140
120
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2012 International Rectifier
October 17, 2012
IRFR/U7440PbF
8
VGS(th) Gate threshold Voltage (V)
4.5
IF = 54A
VR = 34V
4.0
TJ = 25°C
TJ = 125°C
6
3.0
IRRM (A)
3.5
ID = 100μA
ID = 250μA
4
ID = 1.0mA
2.5
ID = 1.0A
2
2.0
1.5
0
-75 -50 -25
0
25
50
75
100 125 150 175
0
200
TJ , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
120
8
IF = 90A
VR = 34V
TJ = 25°C
TJ = 125°C
QRR (nC)
6
IRRM (A)
400
diF /dt (A/μs)
4
100
IF = 54A
VR = 34V
80
TJ = 25°C
TJ = 125°C
60
40
2
20
0
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/μs)
diF /dt (A/μs)
Fig. 19 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
100
IF = 90A
VR = 34V
TJ = 25°C
80
QRR (nC)
TJ = 125°C
60
40
20
0
0
200
400
600
800
1000
diF /dt (A/μs)
7
www.irf.com
Fig. 21 - Typical Stored Charge vs. dif/dt
© 2012 International Rectifier
October 17, 2012
IRFR/U7440PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 23a. Unclamped Inductive Test Circuit
RD
VDS
Fig 23b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 24a. Switching Time Test Circuit
tr
t d(off)
Fig 24b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2012 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
October 17, 2012
IRFR/U7440PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120
WIT H AS S EMBLY
LOT CODE 1234
ASS EMBLED ON WW 16, 2001
IN T HE AS SEMBLY LINE "A"
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in as s embly line pos ition
indicates "Lead-Free"
IRF R120
12
116A
34
ASS EMBLY
LOT CODE
DAT E CODE
YEAR 1 = 2001
WEEK 16
LINE A
"P" in as s embly line pos ition indicates
"Lead-Free" qualification to the cons umer-level
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFR120
12
34
AS S EMBLY
LOT CODE
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
P = DES IGNAT ES LEAD-FREE
PRODUCT QUALIFIED T O T HE
CONS UMER LEVEL (OPT IONAL)
YEAR 1 = 2001
WEEK 16
A = AS SEMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2012 International Rectifier
October 17, 2012
IRFR/U7440PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: THIS IS AN IRFU120
WITH AS SEMBLY
LOT CODE 5678
AS SEMBLED ON WW 19, 2001
IN THE ASS EMBLY LINE "A"
INTERNAT IONAL
RECTIFIER
LOGO
PART NUMBER
IRFU120
119A
56
78
ASS EMBLY
LOT CODE
Note: "P" in ass embly line position
indicates Lead-Free"
DAT E CODE
YEAR 1 = 2001
WEEK 19
LINE A
OR
INTERNAT IONAL
RECTIFIER
LOGO
PART NUMBER
IRFU120
56
ASS EMBLY
LOT CODE
10
www.irf.com
© 2012 International Rectifier
78
DATE CODE
P = DESIGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 1 = 2001
WEEK 19
A = ASS EMBLY S IT E CODE
October 17, 2012
IRFR/U7440PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
†
Qualification information
††
Industrial
Qualification level
†††
(per JEDEC JESD47F
MSL1
D-PAK
Moisture Sensitivity Level
guidelines)
†††
(per JEDEC J-STD-020D
Not applicable
I-PAK
RoHS compliant
†
)
Yes
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
Comments
10/17/2012
Added I-Pak -All pages
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
11
www.irf.com
© 2012 International Rectifier
October 17, 2012