IRFI3306GPbF Applications High Efficiency Synchronous Rectification in SMPS Uninterruptible Power Supply High Speed Power Switching Hard Switched and High Frequency Circuits VDSS Package Type IRFI3306GPbF TO-220 Full-Pak © 2013 International Rectifier D D G G S D S TO-220 Full-Pak G D S Gate Drain Source Standard Pack Form Quantity Tube 50 Thermal Resistance Symbol Parameter Junction-to-Case RJC Junction-to-Ambient (PCB Mount) RJA www.irf.com 4.2m 71A ID Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V IDM Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor VGS Gate-to-Source Voltage EAS Single Pulse Avalanche Energy (Thermally Limited) TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 1 3.3m max. Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free Halogen-Free Base Part Number 60V RDS(on) typ. Orderable Part Number IRFI3306GPbF Max. 71 50 300 46 0.31 ± 20 311 -55 to + 175 Units A W W/°C V mJ °C 300 10lbin (1.1Nm) Typ. ––– ––– Submit Datasheet Feedback Max. 3.23 65 Units °C/W October 7, 2013 IRFI3306GPbF Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– ––– 0.068 ––– V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 3.3 4.2 RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 ––– ––– 20 IDSS Drain-to-Source Leakage Current ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 RG(int) Internal Gate Resistance ––– 0.72 ––– Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. gfs Forward Transconductance 89 ––– ––– Qg Total Gate Charge ––– 90 135 Qgs Gate-to-Source Charge ––– 22 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 26 ––– Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 116 ––– td(on) Turn-On Delay Time ––– 15 ––– tr Rise Time ––– 30 ––– td(off) Turn-Off Delay Time ––– 45 ––– Fall Time ––– 33 ––– tf Ciss Input Capacitance ––– 4685 ––– Coss Output Capacitance ––– 506 ––– Crss Reverse Transfer Capacitance ––– 310 ––– Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 733 ––– Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 822 ––– Diode Characteristics Symbol Parameter Min. Typ. Max. Continuous Source Current ––– ––– 71 IS (Body Diode) Pulsed Source Current ––– ––– 300 ISM (Body Diode) VSD Diode Forward Voltage ––– ––– 1.3 dv/dt Peak Diode Recovery ––– 2.3 ––– ––– 43 ––– trr Reverse Recovery Time ––– 47 ––– ––– 63 ––– Qrr Reverse Recovery Charge ––– 78 ––– IRRM Reverse Recovery Current ––– 2.5 ––– Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.34mH RG = 50, IAS = 43A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ approximately 90°C. 2 www.irf.com © 2013 International Rectifier Units V V/°C m V µA nA Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 5.0mA VGS = 10V, ID = 43A VDS = VGS, ID = 150µA VDS = 60V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Units Conditions S VDS = 25V, ID = 43A ID = 43A nC VDS = 30V VGS = 10V ID = 43A, VDS =0V, VGS = 10V VDD = 39V ns ID = 43A RG = 2.7 VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0 MHz VGS = 0V, VDS = 0V to 48V VGS = 0V, VDS = 0V to 48V Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. V TJ = 25°C, IS = 43A, VGS = 0V V/ns TJ = 25°C VR = 51V ns TJ = 125°C IF = 43A TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF 1000 1000 BOTTOM VGS 15V 12V 10V 8.0V 6.0V 5.5V 5.0V 4.8V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 6.0V 5.5V 5.0V 4.8V BOTTOM 100 100 4.8V 4.8V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 10 10 0.1 1 10 0.1 100 Fig. 1 Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 Fig. 2 Typical Output Characteristics 1000 100 T J = 175°C T J = 25°C 10 VDS = 25V 60µs PULSE WIDTH 1.0 ID = 43A VGS = 10V 2.0 1.5 1.0 0.5 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig. 4 Normalized On-Resistance vs. Temperature Fig. 3 Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 43A C oss = C ds + C gd C, Capacitance (pF) 10 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 10000 Ciss Coss Crss 1000 100 12.0 VDS= 48V VDS= 30V 10.0 VDS= 12V 8.0 6.0 4.0 2.0 0.0 1 3 1 10 100 0 20 40 60 80 100 120 VDS, Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY RDS(on) 1msec 100 10msec 10 1 DC 0.1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 VSD, Source-to-Drain Voltage (V) ID, Drain Current (A) 60 40 20 0 50 75 100 125 100 150 175 80 Id = 5mA 75 70 65 60 55 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 1.6 Fig 10. Drain-to-Source Breakdown Voltage EAS , Single Pulse Avalanche Energy (mJ) 1400 1.4 ID 14A 23A BOTTOM 43A TOP 1200 1.2 Energy (µJ) 10 Fig 8. Maximum Safe Operating Area V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 80 25 1 VDS, Drain-to-Source Voltage (V) Fig. 7 Typical Source-to-Drain Diode Forward Voltage 1000 1.0 0.8 0.6 0.4 0.2 0.0 -10 0 10 20 30 40 50 60 70 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100µsec www.irf.com © 2013 International Rectifier 800 600 400 200 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. Drain Current Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 13, 14: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 350 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 43A EAR , Avalanche Energy (mJ) 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature 5 www.irf.com © 2013 International Rectifier PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF 20 IF = 28A V R = 51V 3.5 TJ = 25°C TJ = 125°C 15 3.0 2.5 ID ID ID ID 2.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 = 150µA = 250µA = 1.0mA = 1.0A 10 5 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 diF /dt (A/µs) Fig 17. Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 20 400 IF = 43A V R = 51V IF = 28A V R = 51V TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 300 QRR (nC) 15 IRRM (A) 400 10 5 200 100 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 400 IF = 43A V R = 51V TJ = 25°C TJ = 125°C QRR (nC) 300 200 100 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Stored Charge vs. dif/dt 6 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 22a. Unclamped Inductive Test Circuit Fig 23a. Switching Time Test Circuit Fig 22b. Unclamped Inductive Waveforms Fig 23b. Switching Time Waveforms VDD Fig 24a. Gate Charge Test Circuit 7 www.irf.com © 2013 International Rectifier Fig 24b. Gate Charge Waveform Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information TO-220AB Full-Pak packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 7, 2013 IRFI3306GPbF Qualification information† Industrial†† Qualification level (per JEDEC JESD47F ††† guidelines ) Moisture Sensitivity Level N/A †††† TO-220 Full-Pak RoHS compliant (per JEDEC J-STD-020D††† ) Yes † †† Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ††† Applicable version of JEDEC standard at the time of product release. †††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Revision History Date 10/07/2013 Comments Removed the “Silicon Limited” from the ID rating, on page 1. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 7, 2013