PD - 95903A IRFBA1404PPbF HEXFET® Power MOSFET Typical Applications l Industrial Motor Drive D VDSS = 40V Benefits l l l l l l l l Advanced Process Technology Ultra Low On-Resistance Increase Current Handling Capability 175°C Operating Temperature Fast Switching Dynamic dv/dt Rating Repetitive Avalanche Allowed up to Tjmax Lead-Free RDS(on) = 3.7mΩ G ID = 206A S Description This Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this MOSFET are a 175oC junction operating temperature, fast switching speed and improved ruggedness in single and repetitive avalanche. The Super-220 TM is a package that has been designed to have the same mechanical outline and pinout as the industry standard TO-220 but can house a considerably larger silicon die. The result is significantly increased current handling capability over both the TO-220 and the much larger TO-247 package. The combination of extremely low on-resistance silicon and the Super-220 TM package makes it ideal to reduce the component count in multiparalled TO-220 applications, reduce system power dissipation, upgrade existing designs or have TO-247 performance in a TO-220 outline. These benefits make this design an extremely efficient and reliable device for use in a wide variety of applications. Super-220 Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG www.irf.com Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Recommended clip force Max. 206 145 650 300 2.0 ± 20 480 See Fig.12a, 12b, 14, 15 5.0 -40 to + 175 -55 to + 175 300 (1.6mm from case ) 20 Units A W W/°C V mJ A mJ V/ns °C N 1 09/22/10 IRFBA1404PPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 40 ––– ––– 2.0 106 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.036 ––– ––– ––– ––– ––– ––– ––– 160 35 42 17 140 72 26 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 2.0 LS Internal Source Inductance ––– 5.0 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 7360 1680 240 6630 1490 1540 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 3.7 mΩ VGS = 10V, ID = 95A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 60A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 200 ID = 95A ––– nC VDS = 32V 60 VGS = 10V ––– VDD = 20V ––– ID = 95A ns ––– RG = 2.5Ω ––– RD = 0.21Ω D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 32V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 206 showing the A G integral reverse ––– ––– 650 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 95A, VGS = 0V ––– 71 110 ns TJ = 25°C, IF = 95A ––– 180 270 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Thermal Resistance Parameter RθJC RθCS RθJA 2 Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.5 ––– 0.50 ––– 58 °C/W www.irf.com IRFBA1404PPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 4.5V 100 100 4.5V 20µs PULSE WIDTH TJ = 25 °C 10 0.1 1 10 10 0.1 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 I D , Drain-to-Source Current (A) TJ = 25 ° C TJ = 175 ° C 100 V DS = 25V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 1000 VGS , Gate-to-Source Voltage (V) 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10 4.0 20µs PULSE WIDTH TJ = 175 ° C 9.0 ID = 159A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFBA1404PPbF VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 8000 6000 4000 Coss 2000 1 10 VDS = 32V VDS = 20V 12 8 4 0 100 VDS , Drain-to-Source Voltage (V) FOR TEST CIRCUIT SEE FIGURE 13 0 40 80 120 160 200 240 QG , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) TJ = 175 ° C I D , Drain Current (A) 1000 100 10us 100us 100 TJ = 25 ° C 10 1 0.4 V GS = 0 V 0.8 1.2 1.6 2.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 ID = 95A 16 Crss 0 ISD , Reverse Drain Current (A) C, Capacitance (pF) 10000 20 VGS , Gate-to-Source Voltage (V) 12000 2.4 1ms 10ms 10 1 TC = 25 ° C TJ = 175 ° C Single Pulse 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFBA1404PPbF 240 VDS LIMITED BY PACKAGE V GS D.U.T. 180 RG 120 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % I D , Drain Current (A) RD + -V DD 10V Fig 10a. Switching Time Test Circuit 60 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM 0.01 t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFBA1404PPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) 1000 15V I AS TOP 800 BOTTOM ID 39A 67A 95A 600 400 200 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) 175 Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 50 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS 48 46 44 42 40 0 VGS 20 40 60 80 100 IAV , Avalanche Current ( A) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 V DSav , Avalanche Voltage ( V ) 10 V Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com IRFBA1404PPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 500 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 95A 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f 175 ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFBA1404PPbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • • • • Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs 8 www.irf.com IRFBA1404PPbF Super-220 ( TO-273AA ) Package Outline 11.00 [.433] 10.00 [.394] A 5.00 [.196] 4.00 [.158] 9.00 [. 8.00 [. B 0.25 1.50 [.059] 0.50 [.020] 4 13.50 [ 12.50 [ MOSFET IGBT 15.00 [.590] 14.00 [.552] 1 2 3 4.00 [.157] 3.50 [.138] 14.50 [.570] 13.00 [.512] 3X 2.55 [.100] 2X 4X 1.30 [.051] 0.90 [.036] 0.25 [.010] 1.00 [.039] 0.70 [.028] 3.00 [.118] 2.50 [.099] B A Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.11mH RG = 25Ω, IAS = 95A. ISD ≤ 95A, di/dt ≤ 150A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C www.irf.com Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Refer to AN-1001 Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 95A. 9 IRFBA1404PPbF Super-220 (TO-273AA) Part Marking Information EXAMPLE: THIS IS AN IRFBA22N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFBA22N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP Super-220 not recommended for surface mount application Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2010 10 www.irf.com