IRFP3206 Data Sheet (297 KB, EN)

PD - 97127
IRFP3206PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
G
D
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
60V
2.4m:
3.0m:
200A c
ID (Package Limited)
120A
D
G
D
S
TO-247AC
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
200c
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
140c
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
120
IDM
Pulsed Drain Current d
840
PD @TC = 25°C
Maximum Power Dissipation
280
W
A
Linear Derating Factor
1.9
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery f
5.0
V/ns
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
10lbxin (1.1Nxm)
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
Avalanche Currentd
EAR
Repetitive Avalanche Energy g
170
mJ
See Fig. 14, 15, 22a, 22b,
A
mJ
Thermal Resistance
Typ.
Max.
RθJC
Symbol
Junction-to-Case j
–––
0.54
RθCS
Case-to-Sink, Flat Greased Surface
0.24
–––
RθJA
Junction-to-Ambient j
–––
40
www.irf.com
Parameter
Units
°C/W
1
3/3/08
IRFP3206PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Min. Typ. Max. Units
60
–––
–––
2.0
–––
–––
–––
–––
–––
–––
0.07
2.4
–––
–––
–––
–––
–––
0.7
–––
–––
3.0
4.0
20
250
100
-100
–––
Conditions
V VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 75A g
V VDS = VGS, ID = 150μA
μA VDS =60V, VGS = 0V
VDS = 48V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
210
–––
–––
–––
–––
Turn-On Delay Time
–––
Rise Time
–––
Turn-Off Delay Time
–––
Fall Time
–––
Input Capacitance
–––
Output Capacitance
–––
Reverse Transfer Capacitance
–––
Effective Output Capacitance (Energy Related) –––
Effective Output Capacitance (Time Related)h –––
–––
120
29
35
85
19
82
55
83
6540
720
360
1040
1230
–––
170
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS =30V
VGS = 10V g
ID = 75A, VDS =0V, VGS = 10V
VDD = 30V
ID = 75A
RG =2.7Ω
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz, See Fig.5
VGS = 0V, VDS = 0V to 48V i, See Fig.11
VGS = 0V, VDS = 0V to 48V h
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
840
Conditions
A
MOSFET symbol
A
showing the
integral reverse
D
G
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 75A, VGS = 0V g
VR = 51V,
–––
33
50
ns TJ = 25°C
=
125°C
I
T
–––
37
56
J
F = 75A
di/dt
= 100A/μs g
–––
41
62
nC TJ = 25°C
TJ = 125°C
–––
53
80
–––
2.1
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.023mH
RG = 25Ω, IAS = 120A, VGS =10V. Part not recommended for use
above this value .
2
––– 200c
S
„ ISD ≤ 75A, di/dt ≤ 360A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS..
ˆ Rθ is measured at TJ approximately 90°C
www.irf.com
IRFP3206PbF
1000
1000
BOTTOM
100
4.5V
BOTTOM
100
4.5V
≤ 60μs PULSE WIDTH
Tj = 175°C
≤ 60μs PULSE WIDTH
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
TJ = 175°C
10
TJ = 25°C
1
VDS = 25V
≤ 60μs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
6.0
7.0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
12000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
8000
Ciss
6000
4000
Coss
2000
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 75A
VDS = 48V
16
VDS= 30V
VDS= 12V
12
8
4
0
0
1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
0
40
80
120
160
200
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFP3206PbF
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
1msec
100
10msec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.1
2.0
LIMITED BY PACKAGE
ID , Drain Current (A)
200
160
120
80
40
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
240
50
10
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1
VDS, Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
80
ID = 5mA
75
70
65
60
55
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
2.0
EAS, Single Pulse Avalanche Energy (mJ)
800
1.5
Energy (μJ)
DC
0.1
0.1
1.0
0.5
0.0
ID
21A
33A
BOTTOM 120A
TOP
600
400
200
0
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100μsec
60
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFP3206PbF
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ3
τ2
Ci= τi/Ri
Ci= τi/Ri
τ3
τ
τι (sec)
0.11493
0.0001
0.218028 0.001262
0.206197 0.011922
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFP3206PbF
18
ID = 1.0A
4.0
16
ID = 1.0mA
ID = 250μA
3.5
14
ID = 150μA
12
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.5
3.0
2.5
10
8
6
2.0
IF = 30A
VR = 51V
4
1.5
TJ = 125°C
TJ = 25°C
2
1.0
0
-75
-50
-25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / μs)
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
18
350
16
300
14
250
QRR - (nC)
IRRM - (A)
12
10
8
6
4
2
0
IF = 45A
VR = 51V
200
150
IF = 30A
VR = 51V
100
50
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
350
300
QRR - (nC)
250
200
150
100
50
0
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFP3206PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
+
90%
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1μs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFP3206PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WIT H AS S EMBLY
LOT CODE 5657
AS S EMBLED ON WW 35, 2001
IN T HE AS S EMBLY LINE "H"
Note: "P" in as s embly line position
indicates "Lead-Free"
INTERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFPE30
56
135H
57
AS S EMBLY
LOT CODE
DAT E CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/08
8
www.irf.com