IRFB3206G Data Sheet (295 KB, EN)

PD - 96210
IRFB3206GPbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
G
D
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
l Halogen-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
60V
2.4m:
3.0m:
210A
ID (Package Limited)
120A
c
D
G
D
S
TO-220AB
IRFB3206GPbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
Parameter
Max.
210
150
120
840
300
2.0
± 20
5.0
-55 to + 175
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
f
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
e
d
Units
c
c
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
A
W
W/°C
V
V/ns
°C
300
x
x
10lbf in (1.1N m)
170
See Fig. 14, 15, 22a, 22b,
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
www.irf.com
Parameter
j
Junction-to-Case
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
Typ.
Max.
Units
–––
0.50
–––
0.50
–––
62
°C/W
1
1/06/09
IRFB3206GPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
60
–––
–––
–––
0.07
–––
V/°C Reference to 25°C, ID = 5mA
mΩ VGS = 10V, ID = 75A
V
VGS = 0V, ID = 250µA
g
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.4
3.0
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 150µA
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS =60V, VGS = 0V
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
0.7
–––
IGSS
RG
d
VDS = 48V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Forward Transconductance
210
–––
–––
S
VDS = 50V, ID = 75A
Qg
Total Gate Charge
–––
120
170
nC
ID = 75A
Qgs
Gate-to-Source Charge
–––
29
–––
VDS =30V
Qgd
Gate-to-Drain ("Miller") Charge
–––
35
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
85
–––
ID = 75A, VDS =0V, VGS = 10V
td(on)
Turn-On Delay Time
–––
19
–––
tr
Rise Time
–––
82
–––
td(off)
Turn-Off Delay Time
–––
55
–––
RG =2.7Ω
tf
Fall Time
–––
83
–––
VGS = 10V
Ciss
Input Capacitance
–––
6540
–––
Coss
Output Capacitance
–––
720
–––
VDS = 50V
Crss
Reverse Transfer Capacitance
–––
360
–––
ƒ = 1.0MHz, See Fig.5
Coss eff. (ER) Effective Output Capacitance (Energy Related) –––
Coss eff. (TR) Effective Output Capacitance (Time Related)
–––
1040
–––
VGS = 0V, VDS = 0V to 48V
1230
–––
VGS = 0V, VDS
h
VGS = 10V
ns
g
VDD = 30V
ID = 75A
pF
VGS = 0V
g
i, See Fig.11
= 0V to 48V h
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
––– 210
ISM
(Body Diode)
Pulsed Source Current
–––
–––
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
trr
Reverse Recovery Time
–––
–––
Qrr
d
Reverse Recovery Charge
IRRM
Reverse Recovery Current
ton
Forward Turn-On Time
MOSFET symbol
A
showing the
integral reverse
1.3
V
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
33
50
ns
TJ = 25°C
VR = 51V,
37
56
TJ = 125°C
–––
41
62
IF = 75A
di/dt = 100A/µs
–––
53
80
–––
2.1
–––
840
nC
TJ = 25°C
D
G
S
g
g
TJ = 125°C
A
TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.023mH
RG = 25Ω, IAS = 120A, VGS =10V. Part not recommended for use
above this value.
2
c
Conditions
A
„ ISD ≤ 75A, di/dt ≤ 360A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ Rθ is measured at TJ approximately 90°C
www.irf.com
IRFB3206GPbF
1000
1000
BOTTOM
100
4.5V
BOTTOM
100
4.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS, Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
TJ = 175°C
10
TJ = 25°C
1
VDS = 25V
≤ 60µs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
6.0
7.0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
12000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
8000
Ciss
6000
4000
Coss
2000
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 75A
VDS = 48V
VDS= 30V
VDS= 12V
16
12
8
4
0
0
1
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
0
40
80
120
160
200
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB3206GPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
1000
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
0.1
V(BR)DSS , Drain-to-Source Breakdown Voltage
ID, Drain Current (A)
160
120
80
40
0
100
125
150
ID = 5mA
75
70
65
60
55
-60 -40 -20
175
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
2.0
1.5
Energy (µJ)
100
80
Fig 9. Maximum Drain Current vs.
Case Temperature
1.0
0.5
0.0
800
I D
21A
33A
BOTTOM 120A
TOP
600
400
200
0
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
10
Fig 8. Maximum Safe Operating Area
Limited By Package
75
1
VDS, Drain-toSource Voltage (V)
240
50
DC
0.1
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
Tc = 25°C
Tj = 175°C
Single Pulse
2.0
VSD , Source-to-Drain Voltage (V)
200
100µsec
10msec
10
0.1
0.4
1msec
100
VGS = 0V
0.2
OPERATION IN THIS AREA
LIMITED BY R DS (on)
60
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFB3206GPbF
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
τJ
0.01
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ2
τ3
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τ3
τ
τι (sec)
0.106416 0.0001
0.201878 0.001262
0.190923 0.011922
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3206GPbF
18
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 150µA
4.0
3.5
16
14
12
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.5
3.0
2.5
10
8
6
2.0
1.5
1.0
4
IF = 30A
VR = 51V
2
TJ = 125°C
TJ = 25°C
0
-75 -50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
18
350
16
300
14
250
QRR - (nC)
IRRM - (A)
12
10
8
6
4
IF = 45A
VR = 51V
2
TJ = 125°C
0
200
150
IF = 30A
VR = 51V
100
50
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
350
300
QRR - (nC)
250
200
150
100
50
0
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3206GPbF
Driver Gate Drive
D.U.T
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
+
90%
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB3206GPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)%*3%)
1RWH*VXIIL[LQSDUWQXPEHU
LQGLFDWHV+DORJHQ)UHH
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
< /$67',*,72)
&$/(1'$5<($5
:: :25.:((.
; )$&725<&2'(
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2009
www.irf.com