PD - 95312A IRFL024ZPbF HEXFET® Power MOSFET Features l l l l l l D Advanced Process Technology Ultra Low On-Resistance 150°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free VDSS = 55V RDS(on) = 57.5mΩ G ID = 5.1A S Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. SOT-223 Absolute Maximum Ratings Parameter ID @ TA = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) i ID @ TA = 70°C Continuous Drain Current, VGS @ 10V IDM Pulsed Drain Current i j PD @TA = 25°C Power Dissipation c Max. Units 5.1 i 4.1 A 41 2.8 PD @TA = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage VGS i EAS (Thermally limited) Single Pulse Avalanche Energy d EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current c EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range h g 1.0 W 0.02 ± 20 W/°C V 13 mJ 32 See Fig.12a, 12b, 15, 16 A mJ -55 to + 150 °C Thermal Resistance Parameter RθJA RθJA www.irf.com i Junction-to-Ambient (PCB mount, steady state) j Junction-to-Ambient (PCB mount, steady state) Typ. Max. Units ––– 45 °C/W ––– 120 1 09/16/10 IRFL024ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) VGS(th) Min. Typ. Max. Units 55 ––– ––– V Breakdown Voltage Temp. Coefficient ––– Static Drain-to-Source On-Resistance ––– 0.053 ––– 46.2 57.5 V/°C mΩ Gate Threshold Voltage 2.0 ––– 4.0 V Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 3.1A e VDS = VGS, ID = 250µA gfs Forward Transconductance 6.2 ––– ––– S VDS = 25V, ID = 3.1A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V VDS = 55V, VGS = 0V, TJ = 125°C VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 9.1 14 Qgs Gate-to-Source Charge ––– 1.9 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 3.9 ––– VGS = 10V td(on) Turn-On Delay Time ––– 7.8 ––– VDD = 28V tr Rise Time ––– 21 ––– td(off) Turn-Off Delay Time ––– 30 ––– RG = 53 Ω tf Fall Time ––– 23 ––– VGS = 10V Ciss Input Capacitance ––– 340 ––– VGS = 0V Coss Output Capacitance ––– 68 ––– Crss Reverse Transfer Capacitance ––– 39 ––– Coss Output Capacitance ––– 210 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 55 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 93 ––– VGS = 0V, VDS = 0V to 44V ID = 3.1A nC ns VDS = 44V e ID = 3.1A e VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 5.1 ISM (Body Diode) Pulsed Source Current ––– ––– 41 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 3.1A, VGS = 0V trr Reverse Recovery Time ––– 15 23 ns TJ = 25°C, IF = 3.1A, VDD = 28V Qrr Reverse Recovery Charge ––– 9.8 15 nC di/dt = 100A/µs ton Forward Turn-On Time c A D G S e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 2.8mH RG = 25Ω, IAS = 3.1A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 2 MOSFET symbol Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1 inch square copper board. When mounted on FR-4 board using minimum recommended footprint. www.irf.com IRFL024ZPbF 100 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 30µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 10 BOTTOM 4.5V 1 30µs PULSE WIDTH Tj = 150°C 0.1 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 12 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V T J = 150°C 10 TJ = 25°C VDS = 25V 30µs PULSE WIDTH 1.0 4 5 6 7 8 9 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com T J = 25°C 10 8 T J = 150°C 6 4 2 V DS = 10V 0 10 0 2 4 6 8 10 12 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFL024ZPbF 10000 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED Crss = C gd VGS, Gate-to-Source Voltage (V) ID= 3.1A C, Capacitance(pF) Coss = C ds + C gd 1000 Ciss Coss 100 Crss VDS= 44V VDS= 28V 10.0 VDS= 11V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 4 6 8 10 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 100 ISD, Reverse Drain Current (A) 2 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 TJ = 150°C 10 T J = 25°C VGS = 0V 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.6 10 100µsec 1 T A = 25°C Tj = 150°C Single Pulse 1msec 10msec 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFL024ZPbF 6 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID, Drain Current (A) 5 4 3 2 1 0 ID = 3.1A VGS = 10V 1.5 1.0 0.5 25 50 75 100 125 -60 -40 -20 150 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T A ,Ambient Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Ambient Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 R1 R1 0.02 1 τJ 0.01 0.1 SINGLE PULSE ( THERMAL RESPONSE ) τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 5.0477 0.000463 19.9479 0.636160 20.0169 Ci= τi/Ri Ci i/Ri 21.10000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRFL024ZPbF DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 60 15V ID 0.77A 0.89A BOTTOM 3.1A TOP 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VGS(th) Gate threshold Voltage (V) 10 V 3.5 3.0 ID = 250µA 2.5 VCC 2.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFL024ZPbF 10 Avalanche Current (A) Duty Cycle = Single Pulse 1 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 0.10 0.1 0.01 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 14 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 3.1A EAR , Avalanche Energy (mJ) 12 10 8 6 4 2 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 150 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFL024ZPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFL024ZPbF SOT-223 (TO-261AA) Package Outline Dimensions are shown in milimeters (inches) SOT-223 (TO-261AA) Part Marking Information HEXFET PRODUCT MARKING THIS IS AN IRFL014 INT ERNAT IONAL RECTIF IER LOGO PART NUMBE R LOT CODE FL014 314P T OP AXXXX A = ASSEMBLY SIT E DAT E CODE CODE (YYWW) YY = YEAR WW = WEEK P = DE SIGNATES LEAD-F REE PRODUCT (OPTIONAL) BOT TOM Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFL024ZPbF SOT-223 (TO-261AA) Tape & Reel Information Dimensions are shown in milimeters (inches) 2.05 (.080) 1.95 (.077) TR 4.10 (.161) 3.90 (.154) 0.35 (.013) 0.25 (.010) 1.85 (.072) 1.65 (.065) 7.55 (.297) 7.45 (.294) 16.30 (.641) 15.70 (.619) 7.60 (.299) 7.40 (.292) 1.60 (.062) 1.50 (.059) TYP. FEED DIRECTION 2.30 (.090) 2.10 (.083) 7.10 (.279) 6.90 (.272) 12.10 (.475) 11.90 (.469) NOTES : 1. CONTROLLING DIMENSION: MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. 3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES. 13.20 (.519) 12.80 (.504) 15.40 (.607) 11.90 (.469) 4 330.00 (13.000) MAX. NOTES : 1. OUTLINE COMFORMS TO EIA-418-1. 2. CONTROLLING DIMENSION: MILLIMETER.. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 50.00 (1.969) MIN. 18.40 (.724) MAX. 14.40 (.566) 12.40 (.488) 4 3 Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2010 10 www.irf.com