IRF IRLL024ZPBF

PD - 95990
AUTOMOTIVE MOSFET
IRLL024ZPbF
HEXFET® Power MOSFET
Features
l
l
l
l
l
l
D
Advanced Process Technology
Ultra Low On-Resistance
150°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
VDSS = 55V
RDS(on) = 60mΩ
G
ID = 5.0A
S
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
SOT-223
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited) i
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
c
IDM
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
PD @TA = 25°C
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
VGS
i
j
Max.
Units
5.0
i
4.0
A
40
2.8
i
EAS (Thermally limited) Single Pulse Avalanche Energy
d
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
h
g
1.0
0.02
± 16
W
W/°C
V
21
mJ
38
See Fig.12a, 12b, 15, 16
A
mJ
-55 to + 150
°C
Thermal Resistance
Parameter
RθJA
RθJA
www.irf.com
i
Junction-to-Ambient (PCB mount, steady state) j
Junction-to-Ambient (PCB mount, steady state)
Typ.
Max.
Units
–––
45
°C/W
–––
120
1
12/22/04
IRLL024ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
gfs
IDSS
IGSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
55
–––
–––
–––
–––
1.0
7.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.049 –––
48
60
–––
80
–––
100
–––
3.0
–––
–––
–––
20
–––
250
–––
200
––– -200
7.0
11
1.5
–––
4.0
–––
8.6
–––
33
–––
20
–––
15
–––
380
–––
66
–––
36
–––
220
–––
53
–––
93
–––
Conditions
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 3.0A
mΩ VGS = 5.0V, ID = 3.0A
VGS = 4.5V, ID = 3.0A
V
VDS = VGS, ID = 250µA
VDS = 25V, ID = 3.0A
S
µA VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA VGS = 16V
VGS = -16V
ID = 3.0A
nC VDS = 44V
VGS = 5.0V
VDD = 28V
ns ID = 3.0A
RG = 56 Ω
VGS = 5.0V
VGS = 0V
VDS = 25V
pF ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
e
e
e
e
e
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
D
IS
Continuous Source Current
–––
–––
5.0
ISM
(Body Diode)
Pulsed Source Current
–––
–––
40
showing the
integral reverse
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
1.3
23
14
p-n junction diode.
TJ = 25°C, IS = 3.0A, VGS = 0V
TJ = 25°C, IF = 3.0A, VDD = 28V
di/dt = 100A/µs
c
A
–––
–––
–––
–––
15
9.1
V
ns
nC
G
S
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 4.8mH
RG = 25Ω, IAS = 3.0A, VGS =10V.
Part not recommended for use above this value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80% VDSS.
2
MOSFET symbol
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
† This value determined from sample failure population.
100% tested to this value in production.
‡ When mounted on 1 inch square copper board.
ˆ When mounted on FR-4 board using minimum
recommended footprint.
www.irf.com
IRLL024ZPbF
100
100
10
BOTTOM
3.0V
1
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
3.0V
10
BOTTOM
3.0V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
0.1
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
10
T J = 150°C
10
T J = 25°C
1
VDS = 10V
≤60µs PULSE WIDTH
0.1
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
3.0V
TJ = 25°C
8
T J = 150°C
6
4
2
V DS = 10V
300µs PULSE WIDTH
0
0
2
4
6
8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
0
2
4
6
8
10
12
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRLL024ZPbF
10000
6.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 3.0A
C, Capacitance(pF)
C oss = C ds + C gd
1000
Ciss
Coss
100
Crss
5.0
VDS= 44V
VDS= 28V
4.0
VDS= 11V
3.0
2.0
1.0
0.0
10
1
10
0
100
100
3
4
5
6
7
8
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
2
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
T J = 150°C
10
TJ = 25°C
1
10
100µsec
1
0.1
0.01
DC
Tj = 150°C
Single Pulse
VGS = 0V
0
1msec
10msec
T A = 25°C
0.001
0.0001
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
3.0
0.1
1.0
10
100
1000.0
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRLL024ZPbF
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
5
ID, Drain Current (A)
4
3
2
1
ID = 3.0A
VGS = 10V
1.5
1.0
0.5
0
25
50
75
100
125
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T A , Ambient Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Ambient Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
0.1
τJ
R1
R1
τJ
τ1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= i/Ri
Ri (°C/W) τi (sec)
5.3396 0.000805
19.881
0.706300
19.771
20.80000
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRLL024ZPbF
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
VGS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
100
15V
ID
3.0A
0.80A
BOTTOM 0.69A
TOP
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
2.5
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VGS(th) Gate threshold Voltage (V)
QGS
2.0
ID = 250µA
1.5
VCC
1.0
-75
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRLL024ZPbF
Avalanche Current (A)
100
10
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
1
0.05
0.10
0.1
0.01
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
25
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 3.0A
20
15
10
5
0
25
50
75
100
125
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
150
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRLL024ZPbF
D.U.T
Driver Gate Drive
ƒ
+
-
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLL024ZPbF
SOT-223 (TO-261AA) Package Outline
Dimensions are shown in milimeters (inches)
SOT-223 (TO-261AA) Part Marking Information
HEXFET PRODUCT MARKING
T HIS IS AN IRFL014
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
FL014
314P
T OP
www.irf.com
LOT CODE
AXXXX
A = AS S EMBLY S IT E
DATE CODE
CODE
(YYWW)
YY = YEAR
WW = WEEK
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
BOT T OM
9
IRLL024ZPbF
SOT-223 (TO-261AA) Tape & Reel Information
Dimensions are shown in milimeters (inches)
4.10 (.161)
3.90 (.154)
2.05 (.080)
1.95 (.077)
TR
0.35 (.013)
0.25 (.010)
1.85 (.072)
1.65 (.065)
7.55 (.297)
7.45 (.294)
16.30 (.641)
15.70 (.619)
7.60 (.299)
7.40 (.292)
1.60 (.062)
1.50 (.059)
TYP.
FEED DIRECTION
12.10 (.475)
11.90 (.469)
2.30 (.090)
2.10 (.083)
7.10 (.279)
6.90 (.272)
NOTES :
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES.
15.40 (.607)
11.90 (.469)
13.20 (.519)
12.80 (.504)
4
330.00
(13.000)
MAX.
50.00 (1.969)
MIN.
NOTES :
1. OUTLINE COMFORMS TO EIA-418-1.
2. CONTROLLING DIMENSION: MILLIMETER..
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
18.40 (.724)
MAX.
14.40 (.566)
12.40 (.488)
4
3
Data and specifications subject to change without notice.
This product has been designed for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/04
10
www.irf.com