MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Features 1/4-Inch SOC VGA CMOS Digital Image Sensor MT9V131 Datasheet, Rev. H For the latest datasheet revision, please visit www.onsemi.com Features Table 1: • System-on-a-Chip (SOC)—Completely integrated camera system • Ultra low-power, cost effective CMOS image sensor • Superior low-light performance • Up to 30 fps progressive scan at 27 MHz for highquality video at VGA resolution • On-chip image flow processor (IFP) performs sophisticated processing: color recovery and correction, sharpening, gamma, lens shading correction, on-the-fly defect correction, 2X fixed zoom • Image decimation to arbitrary size with smooth, continuous zoom and pan • Automatic exposure, white balance and black compensation, flicker avoidance, color saturation, and defect identification and correction, auto frame rate, back light compensation • Xenon and LED-type flash support • Two-wire serial programming interface • Progressive ITU_R BT.656 (YCbCr), YUV, 565RGB, 555RGB, and 444RGB output data formats Key Performance Parameters Parameter Typical Value Optical Format 1/4-inch (4:3) 3.58 mm (H) x 2.69 mm (V) Active Imager Size 4.48 mm (Diagonal) Active Pixels 640H x 480V (VGA) Pixel Size 5.6 m x 5.6m Color Filter Array RGB Bayer Pattern Shutter Type Electronic Rolling Shutter (ERS) Maximum Data Rate Master 1213.5 Mp/s Clock 2427 MHz 15 fps at 12 MHz (default), VGA (640 x 480) programmable up to 30 fps Frame at 27 MHz Rate CIF (352 x 288) Programmable up to 60 fps QVGA (320 x 240) Programmable up to 90 fps ADC Resolution 10-bit, on-chip Responsivity 1.9 V/lux-sec (550nm) Dynamic Range 60 dB SNRMAX 45 dB Supply Voltage 2.8 V +0.25 V Power Consumption <80 mW at 2.8 V, 15 fps at 12 MHz Operating Temperature -20°C to +70°C Packaging 48-Pin CLCC Applications • Security • Biometrics • Toys General Description The ON Semiconductor MT9V131 is a 1/4-inch VGAformat CMOS active-pixel digital image sensor, the result of combining the MT9V011 image sensor core with ON Semiconductor's third-generation digital image flow processor technology. The MT9V131 has an active imaging pixel array of 649 x 489, capturing highquality color images at VGA resolution. The sensor is a complete camera-on-a-chip solution and is designed specifically to meet the demands of products such as surveillance cameras. It incorporates sophisticated camera functions on-chip and is programmable through a simple two-wire serial interface. MT9V131_DS Rev. H 4/15 EN 1 ©Semiconductor Components Industries, LLC,2015 MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Ordering Information Ordering Information Table 2: Available Part Numbers Part Number Product Description Orderable Product Attribute Description MT9V131C12STC-DR VGA 1/4" SOC Dry Pack without Protective Film MT9V131C12STC-TR VGA 1/4" SOC Tape & Reel without Protective Film MT9V131_DS Rev. H 4/15 EN 2 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Table of Contents Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Image Flow Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Output Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Sensor Core Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Propagation Delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Appendix A – Sensor Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Two-Wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Appendix B – Overview of Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 MT9V131_DS Rev. H 4/15 EN 3 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor List of Figures List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Chip Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Internal Register Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Typical Configuration (Connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 48-Pin CLCC Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Image Flow Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Pixel Color Pattern Detail (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Propagation Delays for FRAME_VALID and LINE_VALID Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Data Output Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Typical Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Die Center – Image Center Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Chief Ray Angle (CRA) vs. Image Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Timing Diagram Showing a Write to R0x09 with Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Timing Diagram Showing a Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . .24 Timing Diagram Showing a Bytewise Write to R0x09 with Value 0x0284. . . . . . . . . . . . . . . . . . . . . . . .25 Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . .25 Serial Host Interface Start Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Serial Host Interface Stop Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Serial Host Interface Data Timing for Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Serial Host Interface Data Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Acknowledge Signal Timing After an 8-bit Write to the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Acknowledge Signal Timing After an 8-bit Read from the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 48- Pin CLCC Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 MT9V131_DS Rev. H 4/15 EN 4 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor List of Tables List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Pin Description for the CLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 YUV/YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 RGB Output Data Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Byte Ordering in 8 + 2 Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Frame Time – Larger than One Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Non-Default Register Settings Optimizing 15 fps at 12 MHz Operation . . . . . . . . . . . . . . . . . . . . . . . .28 Non-Default Register Settings Optimizing 30 fps at 27 MHz Operation . . . . . . . . . . . . . . . . . . . . . . . .28 Relation Between IFP R0x37[9:5] Setting and Frame Rate Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Decimation, Zoom, and Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 YCbCr Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 YUV Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 MT9V131_DS Rev. H 4/15 EN 5 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor General Description General Description This SOC VGA CMOS image sensor features ON Semiconductor’s breakthrough, lownoise CMOS imaging technology that achieves CCD image quality (based on signal-tonoise ratio and low-light sensitivity) while maintaining the inherent size, cost, and integration advantages of CMOS. The MT9V131 is a fully-automatic, single-chip camera, requiring only a power supply, lens, and clock source for basic operation. Output video is streamed through a parallel 8bit DOUT port, as shown in Figure 1. The output pixel clock is used to latch the data, while FRAME_VALID (FV) and LINE_VALID (LV) signals indicate the active video. The sensor can be put in an ultra-low power sleep mode by asserting the STANDBY pin. Output signals can also be tri-stated by de-asserting the OE_BAR pin. The MT9V131 internal registers can be configured using a two-wire serial interface. The MT9V131 can be programmed to output progressive scan images up to 30 fps in an 8-bit ITU_R BT.656 (YCbCr) formerly CCIR656, YUV, 565RGB, 555RGB, or 444RGB formats. 10-bit raw Bayer data output can also be selected. The FV and LV signals are output on dedicated pins, along with a pixel clock (PIXCLK) that is synchronous with valid data. Figure 1: Chip Block Diagram SCLK SDATA SADDR CLK STANDBY OE_BAR VDD/DGND VAA/AGND VAA_PIX Communication Bus Image Flow Processor Sensor Core . Based on MT9V011 . 668H x 496V (VGA+ Reference) . 1/4-inch optical format . Auto black compensation . Programmable analog gain . Programmable exposure . Low power, 10-bit ADCs . Color correction, gamma, DOUT[7:0]:DOUT_LSB[1:0] lens shading correction . Auto exposure, white balance . Interpolation and defect correction . Flicker avoidance PIXCLK FRAME_VALID LINE_VALID FLASH SRAM Line Buffers The MT9V131 can accept an input clock of up to 27 MHz, delivering 30 fps. With power-on defaults (see Appendix B on page 28 for recommended defaults), the camera is configured to deliver 15 fps at 12 MHz and automatically slows down the frame rate in low-light conditions to achieve longer exposures and better image quality. Internally, the MT9V131 consists of a sensor core and an image flow processor (IFP). The sensor core functions to capture raw Bayer-encoded images that are input into the IFP as shown in Figure 1. The IFP processes the incoming stream to create interpolated, color-corrected output and controls the sensor core to maintain the desirable exposure and color balance. Sensor core and IFP registers are grouped into two separate address spaces, as shown in Figure 2 on page 7. The internal registers can be accessed through the two-wire serial interface. Selecting the desired address space can be accomplished by programming register R0x01, which remains present in both register sets. MT9V131_DS Rev. H 4/15 EN 6 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor General Description Figure 2: Internal Register Grouping Note: R0x00 R0x01 R0x00 R0x01 Sensor Core Registers (R0x02..R0xFF) IFP Registers (R0x02..R0xFF) R0x01 = 0b0100 R0x01 = 0b0001 Program R0x01 to select the desired space (0b0100 = sensor core registers, 0b0001 = IFP/SOC registers). Figure 3 shows MT9V131 typical connections. For low-noise operation, the MT9V131 requires separate supplies for analog and digital power. Incoming digital and analog ground conductors can be tied together right next to the die. Both power supply rails should be decoupled to ground using capacitors. The use of inductance filters is not recommended. Figure 3: Typical Configuration (Connection) V DD V DD V AA VAA_PIX ADC_TEST V AA 1.5KΩ SADDR 1.5KΩ 1KΩ RESET_BAR { Master Clock DOUT[7:0]:DOUT_LSB[1:0] FRAME_ VALI D LINE_VALI D PIXCLK SDATA SCLK { 10μF Two-wir e serial bus To CMO S camera port EXTCLK FLASH To Xenon flas h trigger or LED enable DNU DGND Note: MT9V131_DS Rev. H 4/15 EN A GND STANDB Y D GND OE_BAR A GND ON Semiconductor recommends a 1.5K resistor value, but it may be greater for slower two-wire speed. 7 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Pin Assignment Pin Assignment MT9V131_DS Rev. H 4/15 EN 47 46 DGND 48 DOUT7 1 VDD 2 DOUT6 3 VDD DOUT5 4 DGND DOUT2 5 DOUT4 DGND 6 DOUT3 NC 48-Pin CLCC Pinout Diagram 45 44 43 NC DOUT_LSB1 10 39 DNU DOUT_LSB0 11 38 DGND DGND 12 37 VDD FLASH 13 36 DGND PIXCLK 14 35 OE_BAR LINE_VALID 15 34 STANDBY FRAME_VALID 16 33 RESET_BAR VDD 17 32 VAA_PIX NC 18 31 ADC_TEST 21 SCLK 20 EXTCLK 19 22 23 24 25 26 27 28 29 30 NC VDD AGND 40 VAA 9 AGND VDD DOUT0 VAA 41 VDD 8 DGND 42 DOUT1 SADDR 7 SDATA VDD DGND Figure 4: 8 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Pin Assignment Table 3: Pin Description for the CLCC Package Pin Number Pin Name Type Description 20 EXTCLK Input Master clock into sensor. Default is 12 MHz (27 MHz maximum). 21 SCLK Input Serial clock. 23 SADDR Input Serial interface address select: R0xB8 when HIGH (default). R0x90 when LOW. 31 ADC_TEST Input Tie to Vaa_PIX (factory use only). 33 RESET_BAR Input Asynchronous reset of sensor when LOW. All registers assume factory defaults. 34 STANDBY Input When HIGH, puts the imager in ultra-low power standby mode. 35 OE_BAR Input Output_Enable pin. When HIGH, tri-state all outputs except SDATA (tie LOW for normal operation). 39 DNU Input 22 SDATA I/O Tie to digital ground. Serial data I/O. 13 FLASH Output Flash strobe. 14 PIXCLK Output Pixel clock out. Pixel data output are valid during rising edge of this clock. IFP R0x08 [9] inverts polarity. Frequency = Master clock. 15 LINE_VALID Output Active HIGH during line of selectable valid pixel data. 16 FRAME_VALID Output Active HIGH during frame of valid pixel data. 45 DOUT7 Output ITU_R BT.656/RGB data bit 7 (MSB). 46 DOUT6 Output ITU_R BT.656/RGB data bit 6. 1 DOUT5 Output ITU_R BT.656/RGB data bit 5. 2 DOUT4 Output ITU_R BT.656/RGB data bit 4. 3 DOUT3 Output ITU_R BT.656/RGB data bit 3. 4 DOUT2 Output ITU_R BT.656/RGB data bit 2. 8 DOUT1 Output ITU_R BT.656/RGB data bit 1. 9 DOUT0 Output ITU_R BT.656/RGB data bit 0 (LSB). 10 DOUT_LSB1 Output Raw Bayer 10-bit output. Raw Bayer 10-bit output (LSB). 11 DOUT_LSB0 Output 7, 17, 25, 37, 40, 41, 44, 47 26, 28 VDD Supply VAA Supply Analog power (2.8V). 32 VAA_PIX Supply Pixel array power (2.8V). 27, 29 AGND Supply Analog ground. 5, 12, 19, 24, 36, 38, 43, 48 6, 18, 30, 42 DGND Supply NC – MT9V131_DS Rev. H 4/15 EN Digital power (2.8V). Digital ground. No connect. 9 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Image Flow Processor Image Flow Processor Overview of Architecture The IFP consists of a color processing pipeline and a measurement and control logic block, as shown in Figure 5 on page 11. The stream of raw data from the sensor enters the pipeline and undergoes a number of transformations. Image stream processing starts from conditioning the black level and applying a digital gain. The lens shading block compensates for signal loss caused by the lens. Next, the data is interpolated to recover missing color components for each pixel and defective pixels are corrected. The resulting interpolated RGB data passes through the current color correction matrix (CCM), gamma, and saturation corrections and is formatted for final output. The measurement and control logic continuously accumulates statistics about image brightness and color. Indoor 50/60 Hz flicker is detected and automatically updated when possible. Based on these measurements, the IFP calculates updated values for exposure time and sensor analog gains, which are sent to the sensor core through the communication bus. Color correction is achieved through a linear transformation of the image with a 3 x 3 color correction matrix. Color saturation can be adjusted in the range from zero (black and white) to 1.25 (125% of full color saturation). Gamma correction compensates for nonlinear dependence of the display device output versus driving signal (monitor brightness versus CRT voltage). Output and Formatting Processed video can be output in the form of a progressive ITU_R BT.656 or RGB stream. The ITU_R BT.656 (default) stream contains 4:2:2 data with optional embedded synchronization codes. This kind of output is typically suitable for subsequent display by standard video equipment. For JPEG/MPEG compression, YUV/ encoding is suitable. RGB functionality is provided to support LCD devices. The MT9V131 can be configured to output 16-bit RGB (565RGB) and 15-bit RGB (555RGB), as well as two types of 12-bit RGB (444RGB). The user can configure internal registers to swap odd and even bytes, chrominance channels, and luminance and chrominance components to facilitate interfacing to application processors. MT9V131_DS Rev. H 4/15 EN 10 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Image Flow Processor Figure 5: Image Flow Processor Block Diagram IMAGE SENSOR LENS CORRECTION DEMOSAICING AE, AWB, FLICKER AVOIDANCE COLOR CORRECTION FLASH CONTROL GAMMA CORRECTION OUTPUT FORMATTING The MT9V131 features smooth, continuous zoom and pan. This functionality is available when the IFP output is downsized in the decimation block. The decimation block can downsize the original VGA image to any integer size, including QVGA, QQVGA, CIF, and QCIF with no loss to the field of view. The user can program the desired size of the output image in terms of horizontal and vertical pixel count. In addition, the user can program the size of a region for downsizing. Continuous zoom is achieved every time the region of interest is less than the entire VGA image. The maximum zoom factor is equal to the ratio of VGA to the size of the region of interest. For example, an image rendered on a 160 x 120 display can be zoomed by 640/160 = 480/120 = 4 times. Continuous pan is achieved by adjusting the starting coordinates of the region of interest. Also, a fixed 2X up-zoom is implemented by means of windowing down the sensor core. In this mode, the IFP receives a QVGA-sized input data and outputs a VGA-size image. The sub-window can be panned both vertically and horizontally by programming sensor core registers. The MT9V131 supports both LED and xenon-type flash light sources using a dedicated output pad. For xenon devices, the signal generates a strobe to fire when the imager's shutter is fully open. For LED, the signal can be asserted or de-asserted asynchronously. Flash modes are configured and engaged over the two-wire serial interface using IFP R0x98. MT9V131_DS Rev. H 4/15 EN 11 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Output Data Ordering Output Data Ordering In YCbCr the first and second bytes can be swapped. Luma/chroma bytes can be swapped as well. R and B channels are bit-wise swapped when chroma swap is enabled. See IFP R0x3A for channel swapping configuration. Table 4: YUV/YCbCr Output Data Ordering Mode 1st Byte 2nd Byte Default (no swap) Cbi Swapped CrCb Cri Swapped YC Swapped CrCb, YC Table 5: 3rd Byte 4th Byte Yi Cri Yi+1 Yi Cbi Yi+1 Yi Cbi Yi+1 Cri Yi Cri Yi+1 Cbi RGB Output Data Ordering in Default Mode Mode (Swap Disabled) Byte D7 D6 D5 D4 D3 D2 D1 D0 565RGB First Second First Second First Second First Second R7 G4 0 G4 R7 B7 0 G7 R6 G3 R7 G3 R6 B6 0 G6 R5 G2 R6 G2 R5 B5 0 G5 R4 B7 R5 B7 R4 B4 0 G4 R3 B6 R4 B6 G7 0 R7 B7 G7 B5 R3 B5 G6 0 R6 B6 G6 B4 G7 B4 G5 0 R5 B5 G5 B3 G6 B3 G4 0 R4 B4 555RGB 444xRGB x444RGB A bypass mode is available whereby raw Bayer 10-bits data is output as two bytes. See IFP R0x08[7]. Table 6: Byte Ordering in 8 + 2 Bypass Mode Byte Ordering 8+2 Bypass MT9V131_DS Rev. H 4/15 EN First Second D9 0 D8 0 D7 0 12 D6 0 D5 0 D4 0 D3 D1 D2 D0 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Sensor Core Overview Sensor Core Overview The sensor consists of a pixel array of 668 x 496 total, analog readout chain, 10-bit ADC with programmable gain and black offset, and timing and control. Figure 6: Sensor Core Block Diagram Control Register Active Pixel Sensor Array Communication Bus to IFP Timing and Control Clock Sync. Signals Analog Processing 10-bit Data to IFP ADC The sensor core’s pixel array is configured as 668 columns by 496 rows (shown in Figure 7). The first 18 columns and the first 6 rows of pixels are optically black and can be used to monitor the black level. The last column and the last row of pixels are also optically black. The black row data is used internally for the automatic black level adjustment. There are 649 columns by 489 rows of optically active pixels, which provides a four-pixel boundary around the VGA (640 x 480) image to avoid boundary affects during color interpolation and correction. The additional active column and additional active row are used to allow horizontally and vertically mirrored readout to also start on the same color pixel, as shown in Figure 7. Figure 7: Pixel Array Description (0, 0) 6 black rows 1 black column VGA (640 x 480) + 4 pixel boundary for color correction + additional active column + additional active row = 649 x 489 active pixels (667,495) 18 black columns 1 black row The sensor core uses the RGB Bayer color pattern (shown in Figure 8 on page 14). Evennumbered rows contain green and red color pixels, and odd-numbered rows contain blue and green color pixels. Even-numbered columns contain green and blue color pixels; odd- numbered columns contain red and green color pixels. MT9V131_DS Rev. H 4/15 EN 13 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Sensor Core Overview Figure 8: Pixel Color Pattern Detail (Top Right Corner) column readout direction .. . row readout direction ... black pixels G R G R G R G B G B G B G B G R G R G R G B G B G B G B G R G R G R G B G B G B G B Pixel (18,6) (First Optical clear pixel) .. . The sensor core image data is read-out in a progressive scan. Valid image data is surrounded by horizontal and vertical blanking, as shown in Figure 9. The amount of horizontal and vertical blanking is programmable through the sensor core registers R0x05 and R0x06, respectively. LINE_VALID is HIGH during the shaded region of the figure. See “Appendix A – Sensor Timing” on page 21 for the description of FRAME_VALID timing. Figure 9: Spatial Illustration of Image Readout P0,0 P0,1 P0,2.....................................P0,n-1 P0,n P1,0 P1,1 P1,2.....................................P1,n-1 P1,n 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 HORIZONTAL BLANKING VALID IMAGE Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n Pm,0 Pm,1.....................................Pm,n-1 Pm,n 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 VERTICAL/HORIZONTAL BLANKING VERTICAL BLANKING 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 Notes: MT9V131_DS Rev. H 4/15 EN 1. Do not change these registers. Contact ON Semiconductor support for settings different from defaults. 2. IFP controls these registers when AE, AWB, or flicker avoidance are enabled. 14 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Electrical Specifications Electrical Specifications The recommended operating temperature ranges from –20°C to +70°C. The sensor image quality may degrade above +40°C. Table 7: DC Electrical Characteristics VDD = VAA = 2.8 ± 0.25V; TA = 25°C Definition Symbol Input high voltage VIH Input low voltage VIL IIN Input leakage current Condition No pull-up resistor; VIN = VDD or DGND Max Unit VDD - 0.25 Min Typ VDD + 0.25 V –0.3 0.8 V –5.0 5.0 A VDD - 0.2 V Output high voltage VOH Output low voltage VOL 0.2 V Output high current IOH 15.0 mA Output low current IOL 20.0 mA Tri-state output leakage current IOZ 5.0 A IAA Analog standby supply current IAA Standby Default settings, CLOAD = 10pF CLKIN = 12 MHz CLKIN = 27 MHz Default settings, CLOAD = 10pF CLKIN = 12 MHz CLKIN = 27 MHz STDBY = VDD Digital standby supply current IDD Standby STDBY = VDD Analog operating supply current IDD Digital operating supply current Notes: MT9V131_DS Rev. H 4/15 EN 10.0 10.0 20.0 20.0 25.0 25.0 mA 5.0 10.0 0.0 8.0 15.0 2.5 20.0 20.0 5.0 mA 0.0 2.5 5.0 A A 1. To place the chip in standby mode, first raise STANDBY to VDD, then wait two master clock cycles before turning off the master clock. Two master clock cycles are required to place the analog circuitry into standby, low-power mode. 2. When STANDBY is de-asserted, standby mode is exited immediately (within several master clocks), but the current frame and the next two frames will be invalid. The fourth frame will contain a valid image. 15 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Electrical Specifications Table 8: AC Electrical Characteristics VDD = VAA = 2.8 ± 0.25V; TA = 25°C Definition Symbol Input clock frequency f Condition CLKIN Clock duty cycle 50:50 t Input clock rise time t Input clock fall time F CLKIN to PIXCLK propagation delay PIXCLK to DOUT[7:0] at 27 MHz PIXCLK to FRAME_VALID and LINE_VALID propagation delay LOW-to-HIGH t HIGH-to-LOW t PLHP t Hold time t DSETUP tPLH HIGH-to-LOW t Output fall time Notes: Unit 10 12 27 MHz 45 50 55 % 1 2 5 ns 1 2 5 ns 12 14 ns 6 10 14 ns CLOAD = 10pF 11 18 – ns CLOAD = 10pF F,L Max 6 DHOLD LOW-to-HIGH Typ CLOAD = 10pF PHLP Setup time PHLF,L tOUT R tOUT F Output rise time MT9V131_DS Rev. H 4/15 EN R Min 11 18 – ns 4 9.0 13 ns 4 7.5 13 ns CLOAD = 10pF 5 7.0 15 ns CLOAD = 10pF 5 9.0 15 ns Notes 1 3 2 1. For 30 fps operation with a 27 MHz clock, the user must have a precise duty cycle equal to 50%. With a slower frame rate and a slower clock, the clock duty cycle can be relaxed. 2. Typical is 1/2 of CLKIN period. 3. PIXCLK can be programmed to be inverted or non-inverted. 16 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Propagation Delays Propagation Delays Propagation Delays for PIXCLK and Data Out Signals The output PIXCLK delay, relative to the master clock (CLKIN), is typically 10–12ns. Note that the data outputs change on the rising edge of the master clock (CLKIN) as shown in in Figure 10. PIXCLK by default is inverted from CLKIN but can be programmed to be non-inverted. Figure 10: Propagation Delays for PIXCLK and Data Out Signals tR tF CLK_IN tPLHP tPLHP PIXCLK tOH DOUT (7:0) Note: DOUT (7:0) DOUT (7:0) DOUT (7:0) DOUT (7:0) Default condition of the IPA register R0x08[9] = 0. Propagation Delays for FRAME_VALID and LINE_VALID Signals The LINE_VALID and FRAME_VALID signals change on the same clock edge as the data output. The LINE_VALID goes HIGH on the same falling master clock edge as the output of the first valid pixel’s data and returns LOW on the same master clock falling edge as the end of the output of the last valid pixel’s data. The default timing of PIXCLK with respect to LINE_VALID and FRAME_VALID is shown in Figure 11. Figure 11: Propagation Delays for FRAME_VALID and LINE_VALID Signals tPLHF,L MT9V131_DS Rev. H 4/15 EN tPHLF,L CLKIN CLKIN FRAME_VALID LINE_VALID FRAME_VALID LINE_VALID 17 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Propagation Delays Output Data Timing As shown in Figure 12, FRAME_VALID goes HIGH 6 pixel clocks prior to the time that the first LINE_VALID goes HIGH. It returns LOW at a time corresponding to 6 pixel clocks after the last LINE_VALID goes LOW. Figure 12: Data Output Timing Diagram PIXCLK FRAME_VALID tLVHOLD tLVSETUP LINE_VALID DOUT(7:0) tFVHOLD tFVSETUP tDSETUP Cb0 Y0 Cr0 Y1 Ylast Cb0 Ylast Cb0 tDHOLD Notes: MT9V131_DS Rev. H 4/15 EN 1. 2. 3. 4. 5. 6. 7. PIXCLK = 27 MHz (MAX) tFVSETUP = / setup time for FRAME_VALID before falling edge of PIXCLK / = 18ns tFVHOLD = / hold time for FRAME_VALID after falling edge of PIXCLK / = 18ns tLVSETUP = / setup time for LINE_VALID before falling edge of PIXCLK / = 18ns tLVHOLD = / hold time for LINE_VALID after falling edge of PIXCLK / = 18ns tDSETUP = / setup time for DOUT before falling edge of PIXCLK / = 18ns tDHOLD = / hold time for DOUT after falling edge of PIXCLK / = 18ns Frame start: FF00 00A0 Line start: FF00 0080 Line end: FF00 0090 Frame end: FF00 00B0 8. Drawing shown has R0x08[9] = 1 18 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Propagation Delays Figure 13: Typical Spectral Characteristics 50 Quantum Efficiency (%) 45 Blue 40 Green 35 Red 30 25 20 15 10 5 0 350 450 550 650 750 850 950 1050 Wavelength (nm) Figure 14: Die Center – Image Center Offset - Direction + Direction 0 11.0um Die Center + Direction ARRAY 0 -91.3um - Direction Pixel Array Center Pixel (0, 0) Note: MT9V131_DS Rev. H 4/15 EN Not to scale. 19 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Propagation Delays Figure 15: Chief Ray Angle (CRA) vs. Image Height Image Height CRA vs. Image Height Plot MT9V131 CRA Design 30 28 26 24 22 20 CRA (deg) 18 16 14 12 10 8 6 4 2 0 MT9V131_DS Rev. H 4/15 EN 20 (%) (mm) CRA (Deg) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 0.112 0.224 0.336 0.448 0.560 0.672 0.784 0.896 1.008 1.120 1.232 1.344 1.456 1.568 1.680 1.792 1.904 2.016 2.128 2.240 0 1.46 2.92 4.38 5.84 7.30 8.75 10.21 11.67 13.13 14.59 16.05 17.51 18.97 20.43 21.89 23.34 24.80 26/26 27.72 29.18 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Appendix A – Sensor Timing Appendix A – Sensor Timing Figure 16: Row Timing and FRAME_VALID/LINE_VALID Signals ... FRAME_VALID ... LINE_VALID ... Number of master clocks Note: Table 9: P1 A Q A Q A P2 The signals in Figure 16 are defined in Table 9. Frame Time Parameter Name Equation (Master Clocks) Default Timing At 12 MHz A Active data time (R0x04 - 7) x 2 = 1,280 pixel clocks = 1,280 master clocks = 106.7s P1 Frame start blanking (R0x05 + 112) x 2 = 300 pixel clocks = 300 master clocks = 25.0s P2 Frame end blanking 14 CLKS = 14 pixel clocks = 14 master clocks = 1.17s Q Horizontal blanking (R0x05 + 121) x 2 (MIN R0x05 value = 9) = 318 pixel clocks = 318 master clocks = 26.5s A+Q Row time (R0x04 + R0x05 +114) x 2 = 1,598 pixel clocks = 1,598 master clocks = 133.2s V Vertical blanking (R0x06 + 9) x (A + Q) + (Q - P1 - P2) = 20,778 pixel clocks = 20,778 master clocks = 1.73ms Nrows x (A + Q) Frame valid time (R0x03 - 7) x (A + Q) - (Q - P1 - P2) = 767,036 pixel clocks = 767,036 master clocks = 63.92ms F Total frame time (R0x03 + R0x06 + 2) x (A + Q) = 787,814 pixel clocks = 787,814 master clocks = 65.65ms Note: In order to avoid flicker, frame time is 65.65ms. Sensor timing is shown above in terms of master clock cycle. The vertical blanking and total frame time equations assume that the number of integration rows (bits 11 through 0 of R0x09) is less than the number of active row plus blanking rows (R0x03 + 1 + R0x06 + 1). If this is not the case, the number of integration rows must be used instead to determine the frame time, as shown in Table 10. Table 10: Frame Time – Larger than One Frame Parameter Name Equation (Master Clocks) Default Timing V’ Vertical blanking (long integration time) (R0x09 - R0x03) x (A + Q) F’ Total Frame Time (long integration time) (R0x09 + 1) x (A + Q) – – MT9V131_DS Rev. H 4/15 EN 21 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Serial Bus Description Serial Bus Description Registers are written to and read from the MT9V131 through the two-wire serial interface bus. The sensor is a serial interface slave and is controlled by the serial clock (SCLK), which is driven by the serial interface master. Data is transferred into and out of the MT9V131 through the serial data (SDATA) line. The SDATA line is pulled up to 2.8V offchip by a 1.5K resistor. Either the slave or master device can pull the SDATA line down— the serial interface protocol determines which device is allowed to pull the SDATA line down at any given time. The registers are 16 bits wide and can be accessed through 16bit or 8-bit two-wire serial bus sequences. Protocol The two-wire serial interface defines several different transmission codes, as follows: • a start bit • the slave device eight-bit address. SADDR is used to select between two different addresses in case of conflict with another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave address is 0xB8. • an acknowledge or a no-acknowledge bit • an 8-bit message • a stop bit Sequence A typical read or write sequence begins by the master sending a start bit. After the start bit, the master sends the slave device's 8-bit address. The last bit of the address determines if the request will be a read or a write, where a “0” indicates a write and a “1” indicates a read. The slave device acknowledges its address by sending an acknowledge bit back to the master. If the request was a write, the master then transfers the 8-bit register address to which a write should take place. The slave sends an acknowledge bit to indicate that the register address has been received. The master then transfers the data 8 bits at a time, with the slave sending an acknowledge bit after each 8 bits. The MT9V131 uses 16-bit data for its internal registers, thus requiring two 8-bit transfers to write to one register. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register address. The master stops writing by sending a start or stop bit. A typical read sequence is executed as follows. First the master sends the write-mode slave address and 8-bit register address, just as in the write request. The master then sends a start bit and the read-mode slave address. The master then clocks out the register data 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit. The MT9V131 allows for 8-bit data transfers through the two-wire serial interface by writing (or reading) the most significant 8 bits to the register and then writing (or reading) the least significant 8 bits to R0x7F (127). Bus Idle State The bus is idle when both the data and clock lines are HIGH. Control of the bus is initiated with a start bit, and the bus is released with a stop bit. Only the master can generate the start and stop bits. MT9V131_DS Rev. H 4/15 EN 22 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Serial Bus Description Start Bit The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line is HIGH. Stop Bit The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line is HIGH. Slave Address The 8-bit address of a two-wire serial interface device consists of 7 bits of address and 1 bit of direction. A “0” in the least significant bit (LSB) of the address indicates write mode, and a “1” indicates read mode. The write address of the sensor is 0xB8, while the read address is 0xB9; this only applies when SADDR is set HIGH. Data Bit Transfer One data bit is transferred during each clock pulse. The serial interface clock pulse is provided by the master. The data must be stable during the HIGH period of the serial clock—it can only change when the two-wire serial interface clock is LOW. Data is transferred 8 bits at a time, followed by an acknowledge bit. Acknowledge Bit The master generates the acknowledge clock pulse. The transmitter (which is the master when writing, or the slave when reading) releases the data line, and the receiver indicates an acknowledge bit by pulling the data line LOW during the acknowledge clock pulse. No-Acknowledge Bit The no-acknowledge bit is generated when the data line is not pulled down by the receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate a read sequence. MT9V131_DS Rev. H 4/15 EN 23 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Two-Wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) Two-Wire Serial Interface Sample Write and Read Sequences (with SADDR = 1) 16-Bit Write Sequence A typical write sequence for writing 16 bits to a register is shown in Figure 17. A start bit given by the master, followed by the write address, starts the sequence. The image sensor will then give an acknowledge bit and expects the register address to come first, followed by the 16-bit data. After each 8-bits, the image sensor will give an acknowledge bit. All 16 bits must be written before the register will be updated. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register. The master stops writing by sending a start or stop bit. Figure 17: Timing Diagram Showing a Write to R0x09 with Value 0x0284 SCLK SDATA 0xB8 ADDR R0x09 START ACK 0xB9 ADDR ACK 0000 0010 ACK 1000 0100 ACK STOP NACK 16-Bit Read Sequence A typical read sequence is shown in Figure 18. First the master has to write the register address, as in a write sequence. Then a start bit and the read address specifies that a read is about to happen from the register. The master then clocks out the register data 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit. Figure 18: Timing Diagram Showing a Read from R0x09; Returned Value 0x0284 SCLK SDATA 0xB8 ADDR START MT9V131_DS Rev. H 4/15 EN R0x09 ACK 0xB9 ADDR ACK ACK 24 1000 0100 0000 0010 ACK STOP NACK ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Two-Wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) 8-Bit Write Sequence All registers in the camera are treated and accessed as 16-bit, even when some registers do not have all 16-bits used. However, certain hosts only support 8-bit serial communication access. The camera provides a special accommodation for these hosts. To be able to write one byte at a time to the register a special register address is added. The 8-bit write is done by first writing the upper 8 bits to the desired register and then writing the lower 8 bits to the special register address (R0x7F). The register is not updated until all 16 bits have been written. It is not possible to just update half of a register. In Figure 19, a typical sequence for 8-bit writing is shown. The second byte is written to the special register (R0x7F). Figure 19: Timing Diagram Showing a Bytewise Write to R0x09 with Value 0x0284 SCLK SDATA 0xB8 ADDR 0000 0010 R0x09 0xB8 ADDR 1000 0100 R0x7F STOP START START ACK ACK ACK ACK ACK ACK 8-Bit Read Sequence To read 1 byte at a time, the same special register address is used for the lower byte. The upper 8 bits are read from the desired register. By following this with a read from the special register (R0x7F) the lower 8 bits are accessed, as shown in Figure 20 The master sets the no-acknowledge bits. Figure 20: Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284 SCLK SDATA 0xB8 ADDR 0xB9 ADDR R0x09 0000 0010 START START ACK ACK NACK ACK SCLK SDATA 0xB8 ADDR 0xB9 ADDR R0x7F 1000 0100 STOP START START MT9V131_DS Rev. H 4/15 EN ACK ACK ACK 25 NACK ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Two-Wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) Two-Wire Serial Bus Timing The two-wire serial interface operation requires a certain minimum of master clock cycles between transitions. These are specified below in master clock cycles. Figure 21: Serial Host Interface Start Condition Timing 4 5 SCLK SDATA Figure 22: Serial Host Interface Stop Condition Timing 4 5 SCLK SDATA Note: Figure 23: All timing are in units of master clock cycle. Serial Host Interface Data Timing for Write 4 4 SCLK SDATA Note: Figure 24: SDATA is driven by an off-chip transmitter. Serial Host Interface Data Timing for Read 5 SCLK SDATA Note: MT9V131_DS Rev. H 4/15 EN SDATA is pulled LOW by the sensor, or allowed to be pulled HIGH by a pull-up resistor off-chip. 26 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Two-Wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) Figure 25: Acknowledge Signal Timing After an 8-bit Write to the Sensor 3 6 SCLK Sensor pulls down SDATA pin SDATA Figure 26: Acknowledge Signal Timing After an 8-bit Read from the Sensor 6 7 SCLK SDATA Note: MT9V131_DS Rev. H 4/15 EN Sensor tri-states SDATA pin (turns off pull down) After a read, the master receiver must pull down SDATA to acknowledge receipt of data bits. When read sequence is complete, the master must generate a no acknowledge by leaving SDATA to float HIGH. On the following cycle, a start or stop bit may be used. 27 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Appendix B – Overview of Programming Appendix B – Overview of Programming Default Sensor Configuration In its default configuration, the sensor outputs up to 15 fps at 12 MHz master clock frequency. Auto exposure, automatic white balance, 60Hz flicker avoidance, defect correction, and automatic noise suppression in low-light conditions are enabled. The frame rate is controlled by AE and can be slowed down to 5 fps in low light. Lens shading correction is disabled. Gamma correction uses gamma = 0.6. Image data are output in progressive YCbCr ITU_R.BT.656 VGA format, with Y, Cb, and Cr values ranging from 16 to 240. The use of the non-default register settings shown in Table 11 are recommended to optimize sensor performance in the above configuration. Table 11: Non-Default Register Settings Optimizing 15 fps at 12 MHz Operation Core: R0x5 = 0x2E, R0x7[4] = 0, R0x21 = 0xE401, R0x2F = 0xF7B6 IFP: R0x33 = 0x1411, R0x38 = 0x878, R0x39 = 0x122, R0x3B = 0x42C, R0x3E = 0xFFF, R0x40 = 0x0E10, R0x41 = 0x1417, R0x42 = 0x1213, R0x43 = 0x1112, R0x44 = 0x7110, R0x45 = 0x7473 Note: Table 12: Non-default register settings required for an optimal 30 fps, 27 MHz operation are shown in Table 12. Non-Default Register Settings Optimizing 30 fps at 27 MHz Operation Note: Core: R0x05 = 0x84, R0x06 = 0xA, R0x07[4] = 0, R0x21 = 0xE401 IFP: R0x33 = 0x1411, R0x39 = 0x122, R0x3B = 0x42C, R0x3E = 0xFFF, R0x59 = 0x1F8, R0x5A = 0x25D, R0x 5C = 0x201E, R0x5D = 0x2725, R0x64 = 0x117D To obtain register settings for other frame rates and clock speeds, contact a ON Semiconductor FAE. Auto Exposure Target image brightness and accuracy of AE are set by IFP R0x2E[7:0] and R0x2E[15:8], respectively. For example, to overexpose images, set IFP R0x2E[7:0] = 0x78. To change image brightness on LCD in RGB preview mode, use IFP R0x34[15:8]. AE logic can be programmed to keep the frame rate constant or vary it within certain range, by writing to IFP R0x37[9:5] one of the values tabulated in Table 13. Current and time-averaged luma values can be read in IFP R0x4C and R0x4D, respectively. Table 13: Relation Between IFP R0x37[9:5] Setting and Frame Rate Range Minimum Frame Rate Maximum Frame Rate = 15 fps Maximum Frame Rate = 30 fps 30 fps 15 fps 7.5 fps 5 fps N/A 8 16 24 4 8 16 24 The speed of AE is set using IFP R0x2F. The speed should be higher for preview modes and lower for video output to avoid sudden changes in brightness between frames. MT9V131_DS Rev. H 4/15 EN 28 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Appendix B – Overview of Programming Auto exposure is disabled by setting IFP R0x06[14] = 0. When AE, AWB, and flicker avoidance are all disabled (IFP R0x06[14] = 0, IFP R0x06[1] = 0, and IFP R8[11] = 0), exposure and analog gains can be adjusted manually (see core registers R0x09, R0x0C, and R0x2B through R0x2E). Automatic White Balance AWB can be disabled by setting IFP R0x06[1] = 0. Use IFP R0x25[2:0] and R0x25[6:3] to speed up AWB response. Note that speeding AWB up may result in color oscillation. If necessary, AWB range can be restricted by changing the upper limit in IFP R0x25[14:8] and lower limit in IFP R0x25[6:0]. Flicker Avoidance Use IFP R0x5B to choose automatic/manual, 50Hz/60Hz flicker avoidance and IFP R0x08[11] = 0 to disable this feature. Flash For flash programming, see IFP R0x98 description. Decimation, Zoom, and Pan For output decimation programming, see IFP R0xA5 description. Table 14 provides some examples. Table 14: Decimation, Zoom, and Pan Note: IFP Registers CIF Output (Correct Aspect Ratio) QVGA Output 2:1 Zoom QVGA Output 1:1 Zoom R0xA5 R0xA6 R0xA7 R0xA8 R0xA9 R0xAA 26 586 352 0 480 288 160 320 320 120 240 240 0 640 320 0 480 240 For fixed 2x upsize zoom, set core R0x1E[0] = 1. Interpolation Use IFP R0x05[2:0] to adjust image sharpness. By default, sharpness is automatically reduced in low-light conditions (see IFP R0x5[3]). For 565RGB 16-bit capture, set IFP R0x06[12] = 0 and IFP R0x05[3] = 0 to avoid contouring. Special Effects To switch from color to gray scale output, set IFP R0x08[5] = 1. Image Mirroring To mirror images horizontally, set core R0x20[14] = 1 and IFP R0x08[0] = 1. To flip images vertically, set core R0x20[15] = 1 and IFP R0x08[1] = 1. MT9V131_DS Rev. H 4/15 EN 29 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Appendix B – Overview of Programming Test Pattern See IFP R0x48 and IFP R0x35[5:3] description. Gamma Correction See Table 15 and Table 16 for register settings required to setup non-default gamma correction. Note that these settings determine output signal range. Use YCbCr settings with ITU_R BTU-compatible devices. Use YUV settings for JPEG capture and RGB preview; switching to YUV mode requires setting IFP R0x34 = 0 and IFP R0x35 = 0xFF01. Table 15: Table 16: YCbCr Settings Gamma 0.45 0.5 0.55 0.6 (Default) 0.7 1.0 IFP R0x53 IFP R0x54 IFP R0x55 IFP R0x56 IFP R0x57 0x3224 0x5D44 0x987F 0xC0AE 0xE0D0 0x2A1D 0x543B 0x9277 0xBDA9 0xE0CF 0x2318 0x4C34 0x8C70 0xBAA4 0xE0CD 0x1E14 0x452D 0x8669 0xB7A0 0xE0CC 0x150D 0x3923 0x785D 0xB097 0xE0C9 0x804 0x2010 0x6040 0xA080 0xE0C0 Gamma 0.45 0.5 0.55 0.6 0.7 1.0 IFP R0x53 IFP R0x54 IFP R0x55 IFP R0x56 IFP R0x57 0x3829 0x3021 0xAD90 0xDAC5 0xFEEC 0x3021 0x6043 0xA687 0xD6C0 0xFEEB 0x281B 0x573B 0x9F7F 0xD3BA 0xFEE9 0x2216 0x4F34 0x9877 0xCFB5 0xFEE7 0x180F 0x4128 0x8C69 0xC8AB 0xFEE4 0x0904 0x2412 0x6C48 0xB591 0xFED9 YUV Settings MT9V131_DS Rev. H 4/15 EN 30 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Appendix B – Overview of Programming Figure 27: 48- Pin CLCC Package Outline 2.3 ±0.2 D 1.7 Seating plane Substrate material: alumina ceramic 0.7 thickness Wall material: alumina ceramic A Lid material: borosilicate glass 0.55 thickness 8.8 47X 1.0 ±0.2 0.8 TYP 4.4 48 48X 0.40 ±0.05 48X R 0.15 H CTR 1.75 Ø0.20 A B C 1 First clear pixel 5.215 4.84 4.4 Ø0.20 A B C 5.715 0.8 TYP 4X 10.9 ±0.1 CTR V CTR 11.43 8.8 Image sensor die: 0.675 thickness 0.2 5.215 5.715 11.43 Lead finish: Au plating, 0.50 microns minimum thickness over Ni plating, 1.27 microns minimum thickness C Optical area A B 0.05 1.400 ±0.125 0.90 for reference only 0.35 for reference only 0.10 A 10.9 ±0.1 CTR Optical center1 Optical area: Maximum rotation of optical area relative to package edges: 1º Maximum tilt of optical area relative to seating plane A : 50 microns Maximum tilt of optical area relative to top of cover glass D : 100 microns Note: 1. Optical center = package center. MT9V131_DS Rev. H 4/15 EN 31 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Revision History Revision History Rev. H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4/16/15 • Updated “Ordering Information” on page 2 Rev. G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3/31/15 • Converted to ON Semiconductor template Rev. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/4/11 • Updated trademarks • Applied updated template Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6/24/10 • Remove iCSP reference from Table 1, “Key Performance Parameters,” on page 1 and Table 2, “Available Part Numbers,” on page 2 • Remove Figure 4, Figure 27, and Figure 28 • Remove Table 3 • Updated to non-confidential Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/6/10 • Updated to Aptina template Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/1/08 • Changed operating temperature on Table 1 on page 1 from –20°C to +60°C to –20°C to +70°C. • Changed register description for registers 48, 49, 50, 76, and 77 in Table 8 (on page 14). • Added registers R0x1F, R0x20, R0x24, R0x2A, R0x30, R0x31, R0x32, R0x36, R0x37, r0x39, R0x3C, R0x3D, R0x3E, R0x46, R0x4C, R0x4D, R0x59, R0x5A, R0x5C, R0x5D, R0x80, R0x81, R0x82, R0x83, R0x84, R0x85, R0x86, R0x87, R0x88, R0x89, R0x8A, R0x8B, R0x8C, R0x8D, R0x8E, R0x8F, R0x90, R0x91, R0x92, R0x93, R0x94, and R0x95 to Table 9, IFP Register Description. • Updated Figure 13: “Typical Spectral Characteristics,” on page 19. • Added Figure 15: “Chief Ray Angle (CRA) vs. Image Height,” on page 20. • Added last sentence of first paragraph in “Auto Exposure” on page 28. • Updated signal names to new standard: – Changed OE# to OE_BAR – Changed RESET# to RESET_BAR – Changed VAAPIX to VAA_PIX Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/5/07 • Fixed typos. • Updated document with hexadecimal format for registers. • Added Table 3 on page 9 for CLCC package. • Added Figure on page 32 for CLCC package. • Updated Figure 10 on page 17, Table 8 on page 16, and Figure 12 on page 18. • Updated Figure 13 on page 19. • Updated Figure 17 on page 24. MT9V131_DS Rev. H 4/15 EN 32 ©Semiconductor Components Industries, LLC,2015. MT9V131: 1/4-Inch SOC VGA CMOS Digital Image Sensor Revision History Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5/06 • Initial release. ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/ Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. MT9V131_DS Rev. H 4/15 EN 33 ©Semiconductor Components Industries, LLC,2015 .