Complementary Bias Resistor Transistors R1 = 10 k , R2 = k

MUN5315DW1,
NSBC114TPDXV6
Complementary Bias
Resistor Transistors
R1 = 10 kW, R2 = 8 kW
http://onsemi.com
NPN and PNP Transistors with Monolithic
Bias Resistor Network
This series of digital transistors is designed to replace a single
device and its external resistor bias network. The Bias Resistor
Transistor (BRT) contains a single transistor with a monolithic bias
network consisting of two resistors; a series base resistor and a
base−emitter resistor. The BRT eliminates these individual
components by integrating them into a single device. The use of a BRT
can reduce both system cost and board space.
PIN CONNECTIONS
(3)
(2)
R1
•
•
•
•
Requiring Unique Site and Control Change Requirements;
AEC-Q101 Qualified and PPAP Capable
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
R2
Q1
Q2
R2
Features
• S and NSV Prefix for Automotive and Other Applications
(1)
R1
(4)
(5)
(6)
MARKING DIAGRAMS
6
15 M G
G
SOT−363
CASE 419B
1
MAXIMUM RATINGS
(TA = 25°C both polarities Q1 (PNP) and Q2 (NPN), unless otherwise noted)
Symbol
Max
Unit
Collector−Base Voltage
VCBO
50
Vdc
Collector−Emitter Voltage
VCEO
50
Vdc
Rating
Collector Current − Continuous
IC
100
mAdc
Input Forward Voltage
VIN(fwd)
40
Vdc
Input Reverse Voltage
−NPN
−PNP
VIN(rev)
Vdc
6
5
1
15
M
G
15 M G
G
SOT−563
CASE 463A
= Specific Device Code
= Date Code*
= Pb−Free Package
(Note: Microdot may be in either location)
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
*Date Code orientation may vary depending
upon manufacturing location.
ORDERING INFORMATION
Package
Shipping†
MUN5315DW1T1G,
SMUN5315DW1T1G
SOT−363
3,000 / Tape & Reel
NSBC114TPDXV6T1G
SOT−563
4,000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and
tape sizes, please refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2012
September, 2012 − Rev. 0
1
Publication Order Number:
DTC114TP/D
MUN5315DW1, NSBC114TPDXV6
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
187
256
1.5
2.0
mW
MUN5315DW1 (SOT−363) One Junction Heated
Total Device Dissipation
TA = 25°C
(Note 1)
(Note 2)
(Note 1)
(Note 2)
Derate above 25°C
Thermal Resistance,
Junction to Ambient
(Note 1)
(Note 2)
PD
RqJA
mW/°C
670
490
°C/W
250
385
2.0
3.0
mW
MUN5315DW1 (SOT−363) Both Junction Heated (Note 3)
Total Device Dissipation
TA = 25°C
(Note 1)
(Note 2)
(Note 1)
(Note 2)
Derate above 25°C
PD
mW/°C
Thermal Resistance,
Junction to Ambient
(Note 1)
(Note 2)
RqJA
493
325
°C/W
Thermal Resistance,
Junction to Lead
(Note 1)
(Note 2)
RqJL
188
208
°C/W
TJ, Tstg
−55 to +150
°C
357
2.9
mW
mW/°C
Junction and Storage Temperature Range
NSBC114TPDXV6 (SOT−563) One Junction Heated
Total Device Dissipation
TA = 25°C
Derate above 25°C
(Note 1)
(Note 1)
Thermal Resistance,
Junction to Ambient
(Note 1)
PD
RqJA
350
°C/W
NSBC114TPDXV6 (SOT−563) Both Junction Heated (Note 3)
Total Device Dissipation
TA = 25°C
Derate above 25°C
(Note 1)
(Note 1)
Thermal Resistance,
Junction to Ambient
(Note 1)
Junction and Storage Temperature Range
PD
RqJA
TJ, Tstg
1. FR−4 @ Minimum Pad.
2. FR−4 @ 1.0 x 1.0 Inch Pad.
3. Both junction heated values assume total power is sum of two equally powered channels.
http://onsemi.com
2
500
4.0
250
−55 to +150
mW
mW/°C
°C/W
°C
MUN5315DW1, NSBC114TPDXV6
ELECTRICAL CHARACTERISTICS (TA = 25°C both polarities Q1 (PNP) and Q2 (NPN), unless otherwise noted)
Symbol
Characteristic
Min
Typ
Max
−
−
100
−
−
500
−
−
0.9
50
−
−
50
−
−
160
350
−
−
−
0.25
−
−
0.6
0.6
−
−
−
−
1.4
1.4
−
−
−
−
0.2
4.9
−
−
Unit
OFF CHARACTERISTICS
Collector−Base Cutoff Current
(VCB = 50 V, IE = 0)
ICBO
Collector−Emitter Cutoff Current
(VCE = 50 V, IB = 0)
ICEO
Emitter−Base Cutoff Current
(VEB = 6.0 V, IC = 0)
IEBO
Collector−Base Breakdown Voltage
(IC = 10 mA, IE = 0)
V(BR)CBO
Collector−Emitter Breakdown Voltage (Note 4)
(IC = 2.0 mA, IB = 0)
V(BR)CEO
nAdc
nAdc
mAdc
Vdc
Vdc
ON CHARACTERISTICS
hFE
DC Current Gain (Note 4)
(IC = 5.0 mA, VCE = 10 V)
Collector−Emitter Saturation Voltage (Note 4)
(IC = 10 mA, IB = 1.0 mA)
VCE(sat)
Input Voltage (off)
(VCE = 5.0 V, IC = 100 mA) (NPN)
(VCE = 5.0 V, IC = 100 mA) (PNP)
Vi(off)
Input Voltage (on)
(VCE = 0.2 V, IC = 10 mA) (NPN)
(VCE = 0.2 V, IC = 10 mA) (PNP)
Vi(on)
Output Voltage (on)
(VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW)
VOL
Output Voltage (off)
(VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW)
VOH
Input Resistor
R1
7.0
10
13
Resistor Ratio
R1/R2
−
−
−
4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.
PD, POWER DISSIPATION (mW)
400
350
300
(1) SOT−363; 1.0 x 1.0 inch Pad
(2) SOT−563; Minimum Pad
250
200
(1) (2)
150
100
50
0
−50
−25
0
25
50
75
100
125
150
AMBIENT TEMPERATURE (°C)
Figure 1. Derating Curve
http://onsemi.com
3
Vdc
Vdc
Vdc
Vdc
Vdc
kW
MUN5315DW1, NSBC114TPDXV6
TYPICAL CHARACTERISTICS − NPN TRANSISTOR
MUN5315DW1, NSBC114TPDXV6
1000
IC/IB = 10
75°C
0.1
−25°C
25°C
0.01
0.001
0
20
40
30
10
IC, COLLECTOR CURRENT (mA)
25°C
10
1
50
TA = −25°C
100
1
10
IC, COLLECTOR CURRENT (mA)
Figure 2. VCE(sat) vs. IC
100
2.8
IC, COLLECTOR CURRENT (mA)
f = 10 kHz
IE = 0 A
TA = 25°C
3.2
2.4
2.0
1.6
1.2
0.8
0.4
75°C
10
5
10
15 20 25 30 35 40
VR, REVERSE VOLTAGE (V)
45
50
25°C
1
TA = −25°C
0.1
0.01
0.001
0
VO = 5 V
0
Figure 4. Output Capacitance
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
TA = −25°C
1
25°C
75°C
VO = 0.2 V
0.1
0
8
9
Figure 5. Output Current vs. Input Voltage
10
Vin, INPUT VOLTAGE (V)
Cob, OUTPUT CAPACITANCE (pF)
100
Figure 3. DC Current Gain
3.6
0
VCE = 10 V
75°C
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR−EMITTER
VOLTAGE (V)
1
40
10
20
30
IC, COLLECTOR CURRENT (mA)
Figure 6. Input Voltage vs. Output Current
http://onsemi.com
4
50
10
MUN5315DW1, NSBC114TPDXV6
TYPICAL CHARACTERISTICS − PNP TRANSISTOR
MUN5315DW1, NSBC114TPDXV6
1000
IC/IB = 10
75°C
hFE, DC CURRENT GAIN
VCE(sat), COLLECTOR−EMITTER
VOLTAGE (V)
1
75°C
0.1
−25°C
25°C
0.01
0.001
0
20
40
30
10
IC, COLLECTOR CURRENT (mA)
TA = −25°C
100
10
VCE = 10 V
1
50
25°C
1
10
IC, COLLECTOR CURRENT (mA)
Figure 7. VCE(sat) vs. IC
Figure 8. DC Current Gain
100
8
7
IC, COLLECTOR CURRENT (mA)
f = 10 kHz
lE = 0 A
TA = 25°C
9
6
5
4
3
2
1
0
10
20
30
40
VR, REVERSE VOLTAGE (V)
75°C
10
25°C
1
0.01
0.001
50
TA = −25°C
0.1
VO = 5 V
0
Figure 9. Output Capacitance
1
2
3
4
5
6
7
Vin, INPUT VOLTAGE (V)
VO = 0.2 V
TA = −25°C
1
75°C
0.1
0
8
9
Figure 10. Output Current vs. Input Voltage
10
Vin, INPUT VOLTAGE (V)
Cob, OUTPUT CAPACITANCE (pF)
10
0
100
25°C
10
20
30
40
IC, COLLECTOR CURRENT (mA)
Figure 11. Input Voltage vs. Output Current
http://onsemi.com
5
50
10
MUN5315DW1, NSBC114TPDXV6
PACKAGE DIMENSIONS
SC−88/SC70−6/SOT−363
CASE 419B−02
ISSUE W
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419B−01 OBSOLETE, NEW STANDARD 419B−02.
D
e
6
5
4
1
2
3
HE
DIM
A
A1
A3
b
C
D
E
e
L
HE
−E−
b 6 PL
0.2 (0.008)
M
E
MILLIMETERS
MIN
NOM MAX
0.80
0.95
1.10
0.00
0.05
0.10
0.20 REF
0.10
0.21
0.30
0.10
0.14
0.25
1.80
2.00
2.20
1.15
1.25
1.35
0.65 BSC
0.10
0.20
0.30
2.00
2.10
2.20
M
A3
C
A
A1
L
SOLDERING FOOTPRINT*
0.50
0.0197
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
mm Ǔ
ǒinches
SC−88/SC70−6/SOT−363
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
6
INCHES
NOM MAX
0.037 0.043
0.002 0.004
0.008 REF
0.004 0.008 0.012
0.004 0.005 0.010
0.070 0.078 0.086
0.045 0.049 0.053
0.026 BSC
0.004 0.008 0.012
0.078 0.082 0.086
MIN
0.031
0.000
MUN5315DW1, NSBC114TPDXV6
PACKAGE DIMENSIONS
SOT−563, 6 LEAD
CASE 463A
ISSUE F
D
−X−
5
6
1
e
2
A
4
L
E
−Y−
3
b
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE MATERIAL.
DIM
A
b
C
D
E
e
L
HE
HE
C
5 PL
6
0.08 (0.003)
M
X Y
MILLIMETERS
MIN
NOM MAX
0.50
0.55
0.60
0.17
0.22
0.27
0.08
0.12
0.18
1.50
1.60
1.70
1.10
1.20
1.30
0.5 BSC
0.10
0.20
0.30
1.50
1.60
1.70
INCHES
NOM MAX
0.021 0.023
0.009 0.011
0.005 0.007
0.062 0.066
0.047 0.051
0.02 BSC
0.004 0.008 0.012
0.059 0.062 0.066
MIN
0.020
0.007
0.003
0.059
0.043
SOLDERING FOOTPRINT*
0.3
0.0118
0.45
0.0177
1.35
0.0531
1.0
0.0394
0.5
0.5
0.0197 0.0197
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
DTC114TP/D