Analog Multiplexers/Demultiplexers with Address Latch

MC74HC4351
Analog Multiplexers/
Demultiplexers with
Address Latch
High−Performance Silicon−Gate CMOS
The MC54/74HC4351, and MC54/74HC4353 utilize silicon−gate
CMOS technology to achieve fast propagation delays, low ON
resistances, and low OFF leakage currents. These analog
multiplexers/demultiplexers control analog voltages that may vary
across the complete power supply range (from VCC to VEE).
The Channel−Select inputs determine which one of the Analog
Inputs/Outputs is to be connected, by means of an analog switch, to the
Common Output/Input. The data at the Channel−Select inputs may be
latched by using the active−low Latch Enable pin. When Latch Enable
is high, the latch is transparent. When either Enable 1 (active low) or
Enable 2 (active high) is inactive, all analog switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors, they are compatible with
LSTTL outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal−gate CMOS analog
switches.
For multiplexers/demultiplexers without latches, see the HC4051,
HC4052, and HC4053.
•
•
•
•
•
•
•
•
•
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC − VEE) = 2.0 to 12.0 V
Digital (Control) Power Supply Range (VCC − GND) = 2.0 to 6.0 V
Improved Linearity and Lower ON Resistance than Metal−Gate
Types
Low Noise
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
Chip Complexity: HC4351 — 222 FETs or 55.5 Equivalent Gates
HC4353 — 186 FETs or 46.5 Equivalent Gates
http://onsemi.com
J SUFFIX
CERAMIC PACKAGE
CASE 732−03
20
1
N SUFFIX
PLASTIC PACKAGE
CASE 738−03
20
1
20
DW SUFFIX
SOIC PACKAGE
CASE 751D−04
1
ORDERING INFORMATION
MC54HCXXXXJ
MC74HCXXXXN
MC74HCXXXXDW
Ceramic
Plastic
SOIC
PIN ASSIGNMENT
MC54/74HC4351
X4
1
20
VCC
X6
2
19
X2
NC
3
18
X1
X
4
17
X0
X7
5
16
X3
X5
6
15
A
ENABLE 1
7
14
NC
ENABLE 2
8
13
B
VEE
9
12
GND
10
11
C
LATCH
ENABLE
NC = NO CONNECTION
© Semiconductor Components Industries, LLC, 2006
June, 2006 − Rev. 7
1
Publication Order Number:
MC74HC4351/D
MC74HC4351
LOGIC DIAGRAM
MC54/74HC4351
Single−Pole, 8−Position Plus Common Off and Address Latch
ANALOG
INPUTS/OUTPUTS
CHANNEL−SELECT
INPUTS
A
B
C
LATCH ENABLE
SWITCH
ENABLE 1
ENABLES ENABLE 2
15
13
12
17
X0
18
X1
19
X2
16
X3
1
X4
6
X5
2
X6
5
X7
FUNCTION TABLE
MC54/74HC4351
MULTIPLEXER/
DEMULTIPLEXER
4
X
COMMON
OUTPUT/INPUT
Control Inputs
Enable
1
CHANNEL
ADDRESS
LATCH
PIN 20 = VCC
PIN 9 = VEE
PIN 10 = GND
PINS 3, 14 = NC
11
7
8
Select
2
C
B
A
ON
Channel
(LE = H)*
X0
X1
X2
X3
X4
X5
X6
X7
None
None
L
H
L
L
L
L
H
L
L
H
L
H
L
H
L
L
H
L
H
H
L
H
H
L
L
L
H
H
L
H
L
H
H
H
L
L
H
H
H
H
H
X
X
X
X
X
L
X
X
X
X = don’t care
*When Latch Enable is low, the Channel
Selection is latched and the Channel
Address Latch does not change states.
BLOCK DIAGRAM
MC54/74HC4353
Triple Single−Pole, Double−Position Plus Common Off and Address Latch
FUNCTION TABLE
X SWITCH
2
1
Y SWITCH
6
4
Z SWITCH
Y0
Y1
Z0
Z1
CHANNEL−SELECT
INPUTS
A
B
C
LATCH ENABLE
SWITCH
ENABLE 1
ENABLES ENABLE 2
15
13
12
PIN ASSIGNMENT
16
X0
17
X1
18
19
5
CHANNEL
ADDRESS
LATCH
X
Y
COMMON
OUTPUT/INPUT
Z
PIN 20 = VCC
PIN 9 = VEE
PIN 10 = GND
PINS 3, 14 = NC
11
7
8
NOTE:
This device allows independent control of each switch. Channel−Select
Input A controls the X Switch, Input B controls the Y Switch, and Input C
controls the Z Switch.
http://onsemi.com
2
Y1
1
20
VCC
Y0
2
19
Y
NC 3
Control Inputs
18
X
On
Enable
Select
Z1 4
X1
17 Channel
1
2
C
B
A
(LE = H)*
Z 5
X0
16
L
H
L
L
L
Z0
Y0
X0
15
A
L
H
L Z0 L 6 H
Z0
Y0
X1
L
H ENABLE
L
Z0
Y1
X0
1H 7 L
14
NC
L
H
L
H
H
Z0
Y1
X1
L
H ENABLE
H 2L 8 L
Z1
Y0
X0
13
B
L
H
H
L
H
Z1
Y0
X1
C
12
L
H
H VEEH 9 L
Z1
Y1
X0
L
H
H
H
H
Z1
Y1
X1
LATCH
11 None
H
X
X GND X 10 X
ENABLE
None
X
L
X
X
X
NC = NO CONNECTION
X = Don’t Care
*When Latch Enable is low, the Channel
Selection is latched and the Channel Address
Latch does not change states.
MC74HC4351
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
MAXIMUM RATINGS*
Symbol
Parameter
Unit
– 0.5 to + 7.0
– 0.5 to 14.0
V
VCC
Positive DC Supply Voltage
VEE
Negative DC Supply Voltage (Ref. to GND)
– 7.0 to + 0.5
V
VIS
Analog Input Voltage
VEE − 0.5
to VCC + 0.5
V
Vin
DC Input Voltage (Ref. to GND)
– 1.5 to VCC + 1.5
V
I
(Ref. to GND)
(Ref. to VEE)
Value
DC Current Into or Out of Any Pin
± 25
mA
PD
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
750
500
mW
Tstg
Storage Temperature
– 65 to + 150
_C
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
ranges indicated in the Recommended Operating Conditions.
Unused digital input pins must be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused Analog I/O pins may be left
open or terminated. See Applications Information.
TL
Lead Temperature, 1 mm from Case for
_C
260
10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
300
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High−Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Min
Max
Unit
VCC
Positive DC Supply Voltage
(Ref. to GND)
(Ref. to VEE)
2.0
2.0
6.0
12.0
V
VEE
Negative DC Supply Voltage
(Ref. to GND)
– 6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Ref. to GND)
GND
VCC
V
—
1.2
V
– 55
+ 125
_C
VIO*
TA
Parameter
Static or Dynamic Voltage Across Switch
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time,
VCC = 2.0 V
0
1000
ns
Channel Select or Enable
VCC = 4.5 V
0
500
Inputs (Figure 9a)
VCC = 6.0 V
0
400
*For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input
components. The reliability of the device will be unaffected unless the Maximum Ratings are
exceeded.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted
Guaranteed Limit
VCC
V
– 55 to
25_C
v 85_C
v 125_C
Unit
VIH
Minimum High−Level Input
Voltage, Channel−Select or
Enable Inputs
Ron = Per Spec
2.0
4.5
6.0
1.5
3.15
4.2
1.5
3.15
4.2
1.5
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage, Channel−Select or
Enable Inputs
Ron = Per Spec
2.0
4.5
6.0
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V
Iin
Maximum Input Leakage
Current, Channel−Select or
Enable Inputs
Vin = VCC or GND,
VEE = – 6.0 V
6.0
± 0.1
± 1.0
± 1.0
μA
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select = VCC or GND
Enables = VCC or GND
VIS = VCC or GND
VEE = GND
VIO = 0 V
VEE = – 6.0
Symbol
Parameter
Test Conditions
μA
6.0
6.0
2
8
20
80
40
160
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
3
MC74HC4351
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
DC ELECTRICAL CHARACTERISTICS Analog Section
Guaranteed Limit
Symbol
Ron
VCC
V
VEE
V
– 55 to
25_C
v 85_C
v 125_C
Unit
Vin = VIL or VIH
VIS = VCC to VEE
IS v 2.0 mA (Figures 1, 2)
4.5
4.5
6.0
0.0
– 4.5
– 6.0
190
120
100
240
150
125
280
170
140
Ω
Vin = VIL or VIH
VIS = VCC or VEE (Endpoints)
IS v 2.0 mA (Figures 1, 2)
4.5
4.5
6.0
0.0
– 4.5
– 6.0
150
100
80
190
125
100
230
140
115
Parameter
Test Conditions
Maximum “ON” Resistance
ΔRon
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH
VIS = 1/2 (VCC − VEE)
IS v 2.0 mA
4.5
4.5
6.0
0.0
– 4.5
– 6.0
30
12
10
35
15
12
40
18
14
Ω
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH
VIO = VCC − VEE
Switch Off (Figure 3)
6.0
− 6.0
0.1
0.5
1.0
μA
Maximum Off−Channel Leakage
Current, Common Channel
HC4351
Vin = VIL or VIH
VIO = VCC − VEE
Switch Off (Figure 4)
6.0
– 6.0
0.2
2.0
4.0
6.0
– 6.0
0.1
1.0
2.0
HC4353
Ion
Maximum On−Channel Leakage
Current, Channel to Channel
HC4351
Vin = VIL or VIH
Switch to Switch = VCC − VEE
(Figure 5)
HC4353
μA
6.0
– 6.0
0.2
2.0
4.0
6.0
– 6.0
0.1
1.0
2.0
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Guaranteed Limit
VCC
V
– 55 to
25_C
v 85_C
v 125_C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Channel−Select to Analog Output
(Figure 9)
2.0
4.5
6.0
370
74
63
465
93
79
550
110
94
ns
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figure 10)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
tPLH,
tPHL
Maximum Propagation Delay, Latch Enable to Analog Output
(Figure 12)
2.0
4.5
6.0
325
65
55
410
82
70
485
97
82
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable 1 or 2 to Analog Output
(Figure 11)
2.0
4.5
6.0
290
58
49
365
73
62
435
87
74
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable 1 or 2 to Analog Output
(Figure 11)
2.0
4.5
6.0
345
69
59
435
87
74
515
103
87
ns
Cin
Maximum Input Capacitance
—
10
10
10
pF
Cl/O
Maximum Capacitance Analog I/O
pF
Symbol
Parameter
Enable 1 = VIH, Enable 2 = VIL
—
35
35
35
Common O/I: HC4351
HC4353
—
130
50
130
50
130
50
Feedthrough
—
1.0
1.0
1.0
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High−Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High−Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
Power Dissipation Capacitance (Per Package) (Figure 14)*
45 (HC4351)
45 (HC4353)
pF
* Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the
Motorola High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
4
MC74HC4351
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
TIMING REQUIREMENTS (Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
– 55 to
25_C
v 85_C
v 125_C
Unit
tsu
Minimum Setup Time, Channel−Select to Latch Enable
(Figure 12)
2.0
4.5
6.0
100
20
17
125
25
21
150
30
26
ns
th
Minimum Hold Time, Latch Enable to Channel Select
(Figure 12)
2.0
4.5
6.0
0
0
0
0
0
0
0
0
0
ns
tw
Minimum Pulse Width, Latch Enable
(Figure 12)
2.0
4.5
6.0
80
16
14
100
20
17
120
24
20
ns
Maximum Input Rise and Fall Times, Channel−Select, Latch Enable,
and Enables 1 and 2
2.0
4.5
6.0
1000
500
400
1000
500
400
1000
500
400
ns
tr, tf
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High−Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0.0 V)
Limit*
Symbol
Parameter
Test Condition
BW
Maximum On–Channel Bandwidth or
Minimum Frequency Response
(Figure 6)
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter
Reads – 3 dB
RL = 50 Ω, CL = 10 pF
Off–Channel Feedthrough Isolation
(Figure 7)
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
—
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
—
Feedthrough Noise, Channel Select
Input to Common O/I
(Figure 8)
Vin v 1 MHz Square Wave
(tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
Enable = GND
RL = 600 Ω, CL = 50 pF
RL = 10 kΩ, CL = 10 pF
—
Crosstalk Between Any Two Switches
(Figure 13)
(Test does not apply to HC4351)
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
fin = 1 MHz, RL = 50 Ω, CL = 10 pF
THD
fin = 1 kHz, RL = 10 kΩ, CL = 50 pF
THD = THDMeasured – THDSource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
*Limits not tested. Determined by design and verified by qualification.
VCC
V
2.25
4.50
6.00
25_C
54/74HC
Unit
51
52
53
MHz
80
80
80
95
95
95
120
120
120
VEE
V
– 2.25
– 4.50
– 6.00
dB
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 50
– 50
– 50
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 40
– 40
– 40
mVPP
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
25
105
135
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
35
145
190
dB
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 50
– 50
– 50
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 60
– 60
– 60
Total Harmonic Distortion
(Figure 15)
http://onsemi.com
5
%
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
0.10
0.08
0.05
250
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
MC74HC4351
200
125°C
150
25°C
100
−55 °C
50
0
0.25
0.50
0.75
1.0
1.25
1.5
1.75
2.0
100
125°C
80
25°C
60
−55 °C
40
20
2.25
0
0.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
25°C
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
75
60
45
−55 °C
30
15
0
0.5
1.0
1.5 2.0
2.5
3.0
3.5
4.0 4.5
5.0
5.5
2.0
2.5
3.0
3.5
4.0
75
125°C
60
25°C
45
−55 °C
30
15
0
6.0
1.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
2.0
3.0
4.0
5.0
6.0
7.0
8.0
Figure 1d. Typical On Resistance, VCC − VEE = 9.0 V
Ron , ON RESISTANCE (OHMS)
PLOTTER
70
125°C
50
25°C
PROGRAMMABLE
POWER
SUPPLY
40
−
MINI COMPUTER
VCC
DEVICE
UNDER TEST
20
10
ANALOG IN
0
1.0 2.0
3.0
4.0
5.0 6.0
7.0
DC ANALYZER
+
−55 °C
30
9
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1c. Typical On Resistance, VCC − VEE = 6.0 V
60
4
Figure 1b. Typical On Resistance, VCC − VEE = 4.5 V
105
125°C
1.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1a. Typical On Resistance, VCC − VEE = 2.0 V
90
1.0
8.0 9.0 10.0 11.0 12.0
GND
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1e. Typical On Resistance, VCC − VEE = 12.0 V
http://onsemi.com
6
COMMON OUT
VEE
Figure 2. On Resistance Test Set−Up
MC74HC4351
VCC
VCC
VEE
ANALOG I/O
VEE
COMMON O/I
7
8
9
10
VIH
VEE
VEE
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
Figure 4. Maximum Off Channel Leakage Current,
Common Channel, Test Set−Up
VOS
VCC
VCC
20
A
VCC
COMMON O/I
OFF
VEE
dB
METER
ON
N/C
RL
C L*
VCC
ANALOG I/O
7
8
9
10
7
8
9
10
VIL
VIH
20
0.1μF
fin
ON
VCC
A
OFF
7
8
9
10
VIH
OFF
VCC
COMMON O/I
OFF
NC
20
ANALOG I/O
OFF
A
VCC
VCC
VCC
20
VEE
VEE
*Includes all probe and jig capacitance.
Figure 5. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
VCC
VIS
VOS
VCC
20
0.1 μF
fin
OFF
C L*
RL
Figure 6. Maximum On Channel Bandwidth,
Test Set−Up
dB
METER
RL
20
RL
ON/OFF
ANALOG I/O
COMMON O/I
OFF/ON
7
8
9
10
VCC
VEE
VCC
GND
*Includes all probe and jig capacitance.
Vin ≤ 1 MHz
tr = tf = 6 ns
7
8
9
10
C L*
RL
RL
TEST
POIN
VCC
11
VEE
CHANNEL SELECT
*Includes all probe and jig capacitance.
Figure 7. Off Channel Feedthrough Isolation,
Test Set−Up
Figure 8. Feedthrough Noise, Channel Select to
Common Out, Test Set−Up
http://onsemi.com
7
MC74HC4351
VCC
VCC
20
ON/OFF
tr
ANALOG I/O
tf
VCC
90%
50%
10%
CHANNEL SELECT
OFF/ON
C L*
VCC
TES
POI
7
8
9
10
GND
tPLH
COMMON O/I
tPHL
50%
ANALOG OUT
CHANNEL SELECT
*Includes all probe and jig capacitance.
Figure 9a. Propagation Delays, Channel Select
to Analog Out
Figure 9b. Propagation Delay, Test Set−Up Channe
Select to Analog Out
VCC
20
COMMON O/I
ANALOG I/O
ANALOG
IN
ON
VCC
C L*
VCC
50%
7
8
9
10
GND
tPHL
tPLH
ANALOG
OUT
TEST
POIN
50%
*Includes all probe and jig capacitance.
Figure 10b. Propagation Delay, Test Set−Up
Analog In to Analog Out
Figure 10a. Propagation Delays, Analog In to
Analog Out
1
POSITIONWHEN
TESTING tPHZ AND tPZH
1
2
POSITIONWHEN
TESTING tPLZ AND tPZL
2
ENABLE
VCC
50%
ANALOG
OUT
HIGH
IMPEDANCE
50%
tPZH
ANALOG
OUT
tPLZ
50%
tPHZ
10%
VOL
90%
VOH
20
1
GND
tPZL
VCC
VCC
ANALOG I/O
ON/OFF
2
C L*
ENABLE
HIGH
IMPEDANCE
Figure 11a. Propagation Delay, Enable 1 or 2
to Analog Out
1 kΩ
TEST
POIN
7
8
9
10
Figure 11b. Propagation Delay, Test Set−Up
Enable to Analog Out
http://onsemi.com
8
MC74HC4351
VCC
VCC
CHANNEL
SELECT
20
VCC
50%
ON/OFF
ANALOG I/O
GND
tsu
tr
tf
th
10%
OFF/ON
C L*
VCC
VCC
90%
50%
LATCH
ENABLE 2
COMMON O/I
7
8
9
10
GND
tw
TES
POI
11
LATCH ENABLE
COMMON O/I
50%
CHANNEL SELECT
tPLH,
tPHL
*Includes all probe and jig capacitance.
Figure 12a. Propagation Delay, Latch Enable to
Analog Out
VIS
Figure 12b. Propagation Delay, Test Set−Up
Latch Enable to Analog Out
VCC
VCC
A
20
RL
fin
VCC
VOS
ON
0.1 μF
dB
METER
ANALOG I/O
OFF
VCC
VEE
20
ON/OFF
NC
COMMON O/I
OFF/ON
VCC
RL
RL
C L*
RL
C L*
7
8
9
10
7
8
9
10
VCC
11
VEE
CHANNEL SELECT
*Includes all probe and jig capacitance.
Figure 13. Crosstalk Between Any Two
Switches, Test Set−Up
Figure 14. Power Dissipation Capacitance,
Test Set-Up
0
−10
VCC
VOS
20
0.1 μF
fin
ON
RL
FUNDAMENTAL FREQUENCY
−20
C L*
TO
DISTORTION
METER
−30
−40
dB
VIS
VCC
−50
DEVICE
−60
7
8
9
10
SOURCE
−70
−80
−90
VEE
1.0
*Includes all probe and jig capacitance.
2.0
FREQUENCY (kHz)
Figure 15a. Total Harmonic Distortion, Test Set-Up
Figure 15b. Plot, Harmonic Distortion
http://onsemi.com
9
3.1
MC74HC4351
APPLICATIONS INFORMATION
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feedthrough noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies
are that:
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = + 5 V = logic high
VCC − GND = 2 to 6 volts
GND = 0 V = logic low
VEE − GND = 0 to − 6 volts
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is ten volts. Therefore,
using the configuration in Figure 16, a maximum analog
signal of ten volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
VCC − VEE = 2 to 12 volts
and VEE v GND
When voltage transients above VCC and/or below VEE
are anticipated on the analog channels, external
Germanium or Schottky diodes (Dx) are recommended as
shown in Figure 17. These diodes should be able to absorb
the maximum anticipated current surges during clipping.
VCC
+5 V
+5V
−5V
20
ANALOG
SIGNAL
ON
Dx
+5V
ANALOG
SIGNAL
VCC
20
Dx
Dx
VEE
15
13
12
11
Dx
ON/OFF
−5V
+5 V
7
8
9
10
VCC
TO EXTERNAL CMOS
CIRCUITRY
0 TO 5 V DIGITAL
SIGNALS
VEE
9
10
−5 V
VEE
Figure 16. Application Example
Figure 17. External Germanium or
Schottky Clipping Diodes
+5V
+5V
+5V
VEE
20
ANALOG
SIGNAL
ON/OFF
+5V
ANALOG
SIGNAL
+5V
+5V
VEE
VEE
20
ANALOG
SIGNAL
ON/OFF
ANALOG
SIGNAL
*
7
8
9
10
VEE
VEE
+5
R
VCC
+5V
R
R
15
13
12
11
VCC
R
LSTTL/NMOS
CIRCUITRY
* 2 k ≤ R ≤ 10 k
7
15
8
13
9
12
10
11
HCT
BUFFER
VEE
a. Using Pull−Up Resistors
LSTTL/NMOS
CIRCUITRY
b. Using HCT Interface
Figure 18. Interfacing LSTTL/NMOS to CMOS Inputs
http://onsemi.com
10
MC74HC4351
FUNCTION DIAGRAM HC4351
A
15
LATCH &
LEVEL SHIFTER
17
X
X
B
13
LATCH &
LEVEL SHIFTER
X
X
C
12
LATCH &
LEVEL SHIFTER
X
6
LATCH 11
ENABLE
ENABLE 1
ENABLE 2
7
2
LEVEL SHIFTER
X
X
8
5
4
X
X
FUNCTION DIAGRAM HC4353
A
15
LATCH &
LEVEL SHIFTER
17
16
18
B
13
LATCH &
LEVEL SHIFTER
1
2
19
C
12
LATCH &
LEVEL SHIFTER
4
6
LATCH 11
ENABLE
ENABLE 1
ENABLE 2
5
7
LEVEL SHIFTER
8
http://onsemi.com
11
X
X
X
Y
Y
Y
Z
Z
Z
MC74HC4351
OUTLINE DIMENSIONS
20
11
1
10
J SUFFIX
CERAMIC PACKAGE
CASE 732−03
ISSUE E
NOTES:
1. LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE
POSITION AT SEATING PLANE, AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSIONS A AND B INCLUDE MENISCUS.
B
A
L
C
F
N
H
J
K
G
D
DIM
A
B
C
D
F
G
H
J
K
L
M
N
M
SEATING
PLANE
N SUFFIX
PLASTIC PACKAGE
CASE 738−03
ISSUE E
−A−
20
11
1
10
−T−
L
DIM
A
B
C
D
E
F
G
J
K
L
M
N
K
SEATING
PLANE
G
M
N
E
F
D
J
20 PL
M
T A
11
−B−
10X
P
0.010 (0.25) M
1
B
M
10
20X
D
0.010 (0.25)
M
T A
B
S
J
S
F
R
C
−T−
18X
G
K
SEATING
PLANE
M
T B
M
M
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751D−04
ISSUE E
−A−
20
20 PL
0.25 (0.010)
0.25 (0.010)
M
http://onsemi.com
12
INCHES
MIN
MAX
0.940
0.990
0.260
0.295
0.150
0.200
0.015
0.022
0.055
0.065
0.100 BSC
0.020
0.050
0.008
0.012
0.125
0.160
0.300 BSC
0_
15_
0.010
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
B
C
MILLIMETERS
MIN
MAX
23.88
25.15
6.60
7.49
3.81
5.08
0.38
0.56
1.40
1.65
2.54 BSC
0.51
1.27
0.20
0.30
3.18
4.06
7.62 BSC
0_
15 _
0.25
1.02
X 45 _
INCHES
MIN
MAX
1.010
1.070
0.240
0.260
0.150
0.180
0.015
0.022
0.050 BSC
0.050
0.070
0.100 BSC
0.008
0.015
0.110
0.140
0.300 BSC
0_
15 _
0.020
0.040
MILLIMETERS
MIN
MAX
25.66
27.17
6.10
6.60
3.81
4.57
0.39
0.55
1.27 BSC
1.27
1.77
2.54 BSC
0.21
0.38
2.80
3.55
7.62 BSC
0_
15_
0.51
1.01
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150
(0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D DIMENSION
AT MAXIMUM MATERIAL CONDITION.
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
12.65
12.95
7.40
7.60
2.35
2.65
0.35
0.49
0.50
0.90
1.27 BSC
0.25
0.32
0.10
0.25
0_
7_
10.05
10.55
0.25
0.75
INCHES
MIN
MAX
0.499
0.510
0.292
0.299
0.093
0.104
0.014
0.019
0.020
0.035
0.050 BSC
0.010
0.012
0.004
0.009
0_
7_
0.395
0.415
0.010
0.029
MC74HC4351
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74HC4351/D