ONSEMI MC54HC4016J

SEMICONDUCTOR TECHNICAL DATA
" #!
"!$ "!$
High–Performance Silicon–Gate CMOS
The MC54/74HC4016 utilizes silicon–gate CMOS technology to achieve
fast propagation delays, low ON resistances, and low OFF–channel leakage
current. This bilateral switch/multiplexer/demultiplexer controls analog and
digital voltages that may vary across the full power–supply range (from VCC
to GND).
The HC4016 is identical in pinout to the metal–gate CMOS MC14016 and
MC14066. Each device has four independent switches. The device has
been designed so that the ON resistances (RON) are much more linear over
input voltage than RON of metal–gate CMOS analog switches.
This device is identical in both function and pinout to the HC4066. The
ON/OFF Control inputs are compatible with standard CMOS outputs; with
pullup resistors, they are compatible with LSTTL outputs. For analog
switches with voltage–level translators, see the HC4316. For analog
switches with lower RON characteristics, use the HC4066.
• Fast Switching and Propagation Speeds
• High ON/OFF Output Voltage Ratio
• Low Crosstalk Between Switches
• Diode Protection on All Inputs/Outputs
• Wide Power–Supply Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
• Analog Input Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
• Improved Linearity and Lower ON Resistance over Input Voltage than
the MC14016 or MC14066
• Low Noise
• Chip Complexity: 32 FETs or 8 Equivalent Gates
14
1
A ON/OFF CONTROL
XB
B ON/OFF CONTROL
XC
C ON/OFF CONTROL
XD
D ON/OFF CONTROL
1
2
1
D SUFFIX
SOIC PACKAGE
CASE 751A–03
14
1
ORDERING INFORMATION
MC54HCXXXXJ
MC74HCXXXXN
MC74HCXXXXD
Ceramic
Plastic
SOIC
PIN ASSIGNMENT
YA
XA
1
14
YA
2
13
YB
3
12
XB
B ON/OFF
CONTROL
C ON/OFF
CONTROL
GND
4
11
VCC
A ON/OFF
CONTROL
D ON/OFF
CONTROL
XD
5
10
YD
6
9
YC
7
8
XC
13
4
3
YB
8
FUNCTION TABLE
ANALOG
OUTPUTS/INPUTS
5
9
YC
6
11
10
YD
12
ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD
PIN 14 = VCC
PIN 7 = GND
10/95
 Motorola, Inc. 1995
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
14
LOGIC DIAGRAM
XA
J SUFFIX
CERAMIC PACKAGE
CASE 632–08
1
REV 6
On/Off Control
Input
State of
Analog Switch
L
H
Off
On
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC4016
MAXIMUM RATINGS*
Symbol
Parameter
Value
Unit
– 0.5 to + 14.0
V
V
VCC
Positive DC Supply Voltage (Referenced to GND)
VIS
Analog Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
Vin
Digital Input Voltage (Referenced to GND)
– 1.5 to VCC + 1.5
V
DC Current Into or Out of Any Pin
± 25
mA
PD
Power Dissipation in Still Air, Plastic or Ceramic DIP†
SOIC Package†
750
500
mW
Tstg
Storage Temperature
– 65 to + 150
_C
I
TL
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
v
_C
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
260
300
v
* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
12.0
V
VCC
Positive DC Supply Voltage (Referenced to GND)
VIS
Analog Input Voltage (Referenced to GND)
GND
VCC
V
Vin
Digital Input Voltage (Referenced to GND)
GND
VCC
V
—
1.2
V
– 55
+ 125
_C
0
0
0
0
1000
500
400
250
ns
VIO*
Static or Dynamic Voltage Across Switch
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time, ON/OFF
Control Inputs (Figure 10)
VCC = 2.0 V
VCC = 4.5 V
VCC = 9.0 V
VCC = 12.0 V
* For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input components.
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
– 55 to
25_C
85_C
125_C
Unit
VIH
Minimum High–Level Voltage
ON/OFF Control Inputs
Ron = per spec
2.0
4.5
9.0
12.0
1.5
3.15
6.3
8.4
1.5
3.15
6.3
8.4
1.5
3.15
6.3
8.4
V
VIL
Maximum Low–Level Voltage
ON/OFF Control Inputs
Ron = per spec
2.0
4.5
9.0
12.0
0.3
0.9
1.8
2.4
0.3
0.9
1.8
2.4
0.3
0.9
1.8
2.4
V
Iin
Maximum Input Leakage Current,
ON/OFF Control Inputs
Vin = VCC or GND
12.0
±0.1
±1.0
±1.0
µA
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
VIO = 0 V
6.0
12.0
2
8
20
80
40
160
µA
ICC
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
MOTOROLA
2
High–Speed CMOS Logic Data
DL129 — Rev 6
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC4016
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Ron
VCC
V
– 55 to
25_C
85_C
125_C
Vin = VIH
VIS = VCC to GND
IS
2.0 mA (Figures 1, 2)
2.0†
4.5
9.0
12.0
—
320
170
170
—
400
215
215
—
480
255
255
Vin = VIH
VIS = VCC or GND (Endpoints)
IS
2.0 mA (Figures 1, 2)
2.0
4.5
9.0
12.0
—
180
135
135
—
225
170
170
—
270
205
205
Parameter
Test Conditions
Maximum “ON” Resistance
Unit
Ω
∆Ron
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin VIH
VIS = 1/2 (VCC – GND)
IS
2.0 mA
2.0
4.5
9.0
12.0
—
30
20
20
—
35
25
25
—
40
30
30
Ω
Ioff
Maximum Off–Channel Leakage
Current, Any One Channel
Vin = VIL
VIO = VCC or GND
Switch Off (Figure 3)
12.0
0.1
0.5
1.0
µA
Ion
Maximum On–Channel Leakage
Current, Any One Channel
Vin = VIH
VIS = VCC or GND
(Figure 4)
12.0
0.1
0.5
1.0
µA
†At supply voltage (V CC – GND) approaching 2 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage
operation, it is recommended that these devices only be used to control digital signals.
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
– 55 to
25_C
85_C
125_C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figures 8 and 9)
2.0
4.5
9.0
12.0
50
10
10
10
65
13
13
13
75
15
15
15
ns
tPLZ,
tPHZ
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
2.0
4.5
9.0
12.0
150
30
30
30
190
38
38
38
225
45
45
45
ns
tPZL,
tPZH
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
2.0
4.5
9.0
12.0
125
25
25
25
160
32
32
32
185
37
37
37
ns
ON/OFF Control Input
—
10
10
10
pF
Control Input = GND
Analog I/O
Feedthrough
—
—
35
1.0
35
1.0
35
1.0
C
Maximum Capacitance
NOTES:
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
Power Dissipation Capacitance (Per Switch)* (Figure 13)
15
pF
* Used to determine the no–load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC . For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
High–Speed CMOS Logic Data
DL129 — Rev 6
3
MOTOROLA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MC54/74HC4016
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND unless noted)
VCC
V
Limit*
25_C
54/74HC
Symbol
Parameter
Test Conditions
BW
Maximum On–Channel Bandwidth or
Minimum Frequency Response
(Figure 5)
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter Reads – 3 dB
RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
150
160
160
MHz
Off–Channel Feedthrough Isolation
(Figure 6)
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
– 50
– 50
– 50
dB
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
– 40
– 40
– 40
Vin
1 MHz Square Wave (tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
60
130
200
RL = 10 kΩ, CL = 10 pF
4.5
9.0
12.0
30
65
100
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
– 70
– 70
– 70
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
– 80
– 80
– 80
—
—
—
THD
Feedthrough Noise, Control to Switch
(Figure 7)
Crosstalk Between Any Two Switches
(Figure 12)
Total Harmonic Distortion
(Figure 14)
fin = 1 kHz, RL = 10 kΩ, CL = 50 pF
THD = THDMeasured – THDSource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
Unit
mVPP
dB
%
4.5
9.0
12.0
0.10
0.06
0.04
* Guaranteed limits not tested. Determined by design and verified by qualification.
MOTOROLA
4
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC4016
300
3000
2500
R on , ON RESISTANCE (OHMS)
R on , ON RESISTANCE (OHMS)
125°C
2000
1500
25°C
1000
– 55°C
500
0
0
250
200
125°C
150
25°C
100
– 55°C
50
0
.25
.50
.75
1.00 1.25
1.5 1.75 2.00
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO GND
0
Figure 1a. Typical On Resistance, VCC = 2.0 V
120
140
120
R on , ON RESISTANCE (OHMS)
125°C
25°C
100
80
– 55°C
60
40
20
0
0
.5
1.0 1.5 2.0
2.5
3.0
3.5 4.0
4.5 5.0
5.5
100
80
125°C
60
25°C
40
20
0
0
6.0
– 55°C
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO GND
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO GND
Figure 1c. Typical On Resistance, VCC = 6.0 V
Figure 1d. Typical On Resistance, VCC = 9.0 V
80
PLOTTER
70
R on , ON RESISTANCE (OHMS)
4.5
Figure 1b. Typical On Resistance, VCC = 4.5 V
160
R on , ON RESISTANCE (OHMS)
.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO GND
125°C
60
PROGRAMMABLE
POWER
SUPPLY
25°C
50
40
–
+
DC ANALYZER
VCC
– 55°C
30
MINI COMPUTER
DEVICE
UNDER TEST
20
ANALOG IN
10
0
0
1.0
2.0 3.0 4.0
5.0
6.0 7.0 8.0
9.0 10.0 11.0 12.0
GND
Vin, INPUT VOLTAGE (VOLTS), REFERENCED TO GND
Figure 1e. Typical On Resistance, VCC = 12.0 V
High–Speed CMOS Logic Data
DL129 — Rev 6
COMMON OUT
Figure 2. On Resistance Test Set–Up
5
MOTOROLA
MC54/74HC4016
VCC
VCC
VCC
VCC
14
GND
14
A
A
VCC
OFF
7
SELECTED
CONTROL
INPUT
VIL
7
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
VIS
ON
0.1µF
CL*
7
SELECTED
CONTROL
INPUT
SELECTED
CONTROL
INPUT
VIH
Figure 4. Maximum On Channel Leakage Current,
Channel to Channel, Test Set–Up
VOS
VCC
14
fin
N/C
ON
GND
VCC
14
fin
dB
METER
VOS
OFF
0.1µF
CL*
RL
dB
METER
SELECTED
CONTROL
INPUT
VCC
7
*Includes all probe and jig capacitance.
*Includes all probe and jig capacitance.
Figure 5. Maximum On–Channel Bandwidth
Test Set–Up
VCC
VCC/2
Figure 6. Off–Channel Feedthrough Isolation,
Test Set–Up
VCC/2
14
RL
RL
OFF/ON
VOS
IS
VCC
CL*
VCC
GND
Vin ≤ 1 MHz
tr = tf = 6 ns
7
ANALOG IN
SELECTED
CONTROL
INPUT
50%
GND
tPHL
tPLH
CONTROL
50%
ANALOG OUT
*Includes all probe and jig capacitance.
Figure 7. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up
MOTOROLA
Figure 8. Propagation Delays, Analog In to
Analog Out
6
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC4016
VCC
tr
tf
14
ANALOG IN
ANALOG OUT
ON
TEST
POINT
VCC
90%
50%
10%
CONTROL
GND
CL*
7
SELECTED
CONTROL
INPUT
tPZL
tPLZ
HIGH
IMPEDANCE
50%
VCC
ANALOG
OUT
tPZH
10%
VOL
90%
VOH
tPHZ
50%
HIGH
IMPEDANCE
*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set–Up
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
POSITION 1 WHEN TESTING tPHZ AND tPZH
VIS
POSITION 2 WHEN TESTING tPLZ AND tPZL
1
2
VCC
RL
VCC
VCC
fin
1 kΩ
14
1
VOS
ON
0.1 µF
TEST
POINT
ON/OFF
2
14
OFF
VCC OR GND
CL*
RL
RL
SELECTED
CONTROL
INPUT
SELECTED
CONTROL
INPUT
CL*
VCC/2
RL
CL*
VCC/2
7
7
VCC/2
*Includes all probe and jig capacitance.
*Includes all probe and jig capacitance
Figure 11. Propagation Delay Test Set–Up
Figure 12. Crosstalk Between Any Two Switches,
Test Set–Up
VCC
A
VIS
VCC
14
NC
OFF/ON
VOS
0.1 µF
NC
fin
ON
RL
7
CL*
TO
DISTORTION
METER
VCC/2
SELECTED
CONTROL
INPUT
7
SELECTED
CONTROL
INPUT
VCC
ON/OFF CONTROL
*Includes all probe and jig capacitance.
Figure 13. Power Dissipation Capacitance
Test Set–Up
High–Speed CMOS Logic Data
DL129 — Rev 6
Figure 14. Total Harmonic Distortion, Test Set–Up
7
MOTOROLA
MC54/74HC4016
0
– 10
FUNDAMENTAL FREQUENCY
– 20
dBm
– 30
– 40
– 50
DEVICE
– 60
SOURCE
– 70
– 80
– 90
– 100
1.0
2.0
3.0
FREQUENCY (kHz)
Figure 15. Plot, Harmonic Distortion
below, the difference between VCC and GND is twelve volts.
Therefore, using the configuration in Figure 16, a maximum
analog signal of twelve volts peak–to–peak can be controlled.
When voltage transients above VCC and/or below GND
are anticipated on the analog channels, external diodes (Dx)
are recommended as shown in Figure 17. These diodes
should be small signal, fast turn–on types able to absorb the
maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with
MO sorbs (Motorola high current surge protectors).
MOsorbs are fast turn–on devices ideally suited for precise
DC protection with no inherent wear–out mechanism.
APPLICATION INFORMATION
The ON/OFF Control pins should be at V CC or GND logic
levels, VCC being recognized as logic high and GND being
recognized as a logic low. Unused analog inputs/outputs
may be left floating (not connected). However, it is advisable
to tie unused analog inputs and outputs to VCC or GND
through a low value resistor. This minimizes crosstalk and
feedthrough noise that may be picked up by the unused I/O
pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and GND. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below GND. In the example
VCC = 12 V
+ 12 V
14
ANALOG I/O
ON
+ 12 V
ANALOG O/I
0V
0V
SELECTED
CONTROL
INPUT
+ 12 V
OTHER CONTROL
INPUTS
(VCC OR GND)
7
Figure 16. 12 V Application
VCC
VCC
Dx
14
Dx
ON
Dx
VCC
Dx
SELECTED
CONTROL
INPUT
7
OTHER CONTROL
INPUTS
(VCC OR GND)
Figure 17. Transient Suppressor Application
MOTOROLA
8
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC4016
+5 V
+5 V
14
ANALOG
SIGNALS
R*
R* R* R*
HC4016
LSTTL/
NMOS
14
HCT
BUFFER
LSTTL/
NMOS
5
6
ANALOG
SIGNALS
HC4016
5
6
CONTROL
INPUTS
15
14
ANALOG
SIGNALS
ANALOG
SIGNALS
14
CONTROL
INPUTS
15
7
7
R* = 2 TO 10 kΩ
a. Using Pull-Up Resistors
b. Using HCT Buffer
Figure 18. LSTTL/NMOS to HCMOS Interface
VDD = 5 V
13
1
VCC = 5 TO 12 V
16
14
ANALOG
SIGNALS
3
ANALOG
SIGNALS
HC4016
5
2
5
9
4
6
11
6
14
CONTROL
INPUTS
10
15
7
7
MC14504
14
8
Figure 19. TTL/NMOS–to–CMOS Level Converter
Analog Signal Peak–to–Peak Greater than 5 V
(Also see HC4316)
CHANNEL 4
1 OF 4
SWITCHES
CHANNEL 3
1 OF 4
SWITCHES
CHANNEL 2
1 OF 4
SWITCHES
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
–
INPUT
1 OF 4
SWITCHES
+
OUTPUT
LF356 OR
EQUIVALENT
0.01 µF
1
2
3 4
CONTROL INPUTS
Figure 20. 4–Input Multiplexer
High–Speed CMOS Logic Data
DL129 — Rev 6
Figure 21. Sample/Hold Amplifier
9
MOTOROLA
MC54/74HC4016
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC DIP PACKAGE
CASE 632–08
ISSUE Y
-A14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMESNION F MAY NARROW TO 0.76 (0.030)
WHERE THE LEAD ENTERS THE CERAMIC
BODY.
-B-
C
-T-
L
DIM
A
B
C
D
F
G
J
K
L
M
N
K
SEATING
PLANE
F
G
D 14 PL
0.25 (0.010)
M
N
T A
M
J 14 PL
0.25 (0.010)
S
M
T
B
S
N SUFFIX
PLASTIC DIP PACKAGE
CASE 646–06
ISSUE L
14
B
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
–A–
14
1
P 7 PL
0.25 (0.010)
7
G
D
0.25 (0.010)
MOTOROLA
M
T
B
S
M
F
M
K
14 PL
B
R X 45°
C
SEATING
PLANE
M
A
S
10
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
8
–B–
MILLIMETERS
MIN
MAX
19.05 19.94
6.23
7.11
3.94
5.08
0.39
0.50
1.40
1.65
2.54 BSC
0.21
0.38
3.18
4.31
7.62 BSC
0°
15°
0.51
1.01
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
1
INCHES
MIN
MAX
0.750 0.785
0.245 0.280
0.155 0.200
0.015 0.020
0.055 0.065
0.100 BSC
0.008 0.015
0.125 0.170
0.300 BSC
0°
15°
0.020 0.040
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.75
8.55
4.00
3.80
1.75
1.35
0.49
0.35
1.25
0.40
1.27 BSC
0.25
0.19
0.25
0.10
7°
0°
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
7°
0°
0.228 0.244
0.010 0.019
High–Speed CMOS Logic Data
DL129 — Rev 6
MC54/74HC4016
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] –TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
High–Speed CMOS Logic Data
DL129 — Rev 6
◊
CODELINE
*MC54/74HC4016/D*
11
MC54/74HC4016/D
MOTOROLA