PD - 95090B IRLR3915PbF IRLU3915PbF HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 55V RDS(on) = 14mΩ G Description ID = 30A S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. I-Pak D-Pak IRLR3915PbF IRLU3915PbF Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (6 sigma) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units 61 43 30 240 120 0.77 ± 16 200 600 See Fig.12a, 12b, 15, 16 A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient––– Typ. Max. Units ––– ––– 110 1.3 50 °C/W HEXFET(R) is a registered trademark of International Rectifier. www.irf.com 1 10/01/10 IRLR/U3915PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 55 ––– ––– ––– 1.0 42 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 12 14 ––– ––– ––– ––– ––– ––– 61 9.0 17 7.4 51 83 100 VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 1870 390 74 2380 290 540 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 14 VGS = 10V, ID = 30A mΩ 17 VGS = 5.0V, ID = 26A 3.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 30A 20 VDS = 55V, VGS = 0V µA 250 VDS = 55V, VGS = 0V, TJ = 125°C 200 VGS = 16V nA -200 VGS = -16V 92 ID = 30A 14 nC VDS = 44V 25 VGS = 10V ––– VDD = 28V ns ––– ID = 30A ––– RG = 8.5Ω ––– VGS = 10V D Between lead, ––– nH 6mm (0.25in.) G from package ––– and center of die contact S ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 44V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 61 showing the A G integral reverse ––– ––– 240 p-n junction diode. S ––– ––– 1.3 V TJ = 25°C, IS = 30A, VGS = 0V ––– 62 93 ns TJ = 25°C, IF = 30A, VDD = 25xjkl V ––– 110 170 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U3915PbF 1000 TOP 1000 100 BOTTOM 10 VGS 15V 10V 5.0V 3.0V 2.7V 2.5V 2.25V 2.0V 1 2.0V 0.1 0.01 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10000 100 BOTTOM 10 2.0V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.001 0.1 0.1 1 10 100 0.1 1000 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 70 T J = 25°C G fs , Forward Transconductance (S) 1000.00 ID, Drain-to-Source Current (Α) VGS 15V 10V 5.0V 3.0V 2.7V 2.5V 2.25V 2.0V T J = 175°C 100.00 10.00 1.00 VDS = 25V 20µs PULSE WIDTH 0.10 1.0 3.0 5.0 7.0 9.0 11.0 13.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 60 T J = 25°C 50 40 TJ = 175°C 30 20 10 0 15.0 0 10 20 30 40 50 60 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRLR/U3915PbF 100000 I D = 30A 10 VGS , Gate-to-Source Voltage (V) Ciss 1000 Coss 100 VDS = 11V Crss 8 6 4 2 10 0 1 10 0 100 20 30 40 50 60 70 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 1000 100 I SD , Reverse Drain Current (A) 10 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) OPERATION IN THIS AREA LIMITED BY R DS (on) 100 TJ = 175 10 °C TJ = 25 °C 1 V GS = 0 V 0.1 0.0 0.5 1.0 1.5 V SD,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 44V VDS = 27V Coss = Cds + Cgd 10000 C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse 10msec 1 2.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U3915PbF 70 2.5 LIMITED BY PACKAGE I D = 61A 60 I D , Drain Current (A) 40 30 20 10 0 25 50 75 100 125 150 175 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.0 50 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 ( ° C) TJ , Junction Temperature TC , Case Temperature ( °C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature (Z thJC ) 10 1 Thermal Response D = 0.50 0.20 0.10 0.1 P DM 0.05 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +TC 0.1 1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U3915PbF 500 15V 20V VGS + V - DD IAS E AS , Single Pulse Avalanche Energy (mJ) D.U.T RG 400 DRIVER L VDS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp TOP ID 12A 21A BOTTOM 30A 300 200 100 0 25 50 75 100 Starting Tj, Junction Temperature I AS 125 150 175 ( ° C) Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 2.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V 1.5 ID = 250µA 1.0 0.5 VGS -75 -50 -25 3mA 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRLR/U3915PbF Avalanche Current (A) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 10 0.10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 220 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 30A EAR , Avalanche Energy (mJ) 200 180 160 140 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLR/U3915PbF D.U.T Driver Gate Drive P.W. + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLR/U3915PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 2001 IN T HE ASS EMBLY LINE "A" PART NUMBER INT ERNAT IONAL RECT IFIER LOGO Note: "P" in assembly line position indicates "Lead-Free" IRF R120 116A 12 34 ASS EMBLY LOT CODE DAT E CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRF R120 12 ASS EMBLY LOT CODE 34 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) P = DES IGNAT ES LEAD-FREE PRODUCT QUALIFIED T O T HE CONSUMER LEVEL (OPT IONAL) YEAR 1 = 2001 WEEK 16 A = AS SEMBLY SIT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRLR/U3915PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information E XAMPLE: T HIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 2001 IN T HE AS SEMBLY LINE "A" INT ERNAT IONAL RE CT IF IER LOGO PART NUMBER IRF U120 119A 56 78 ASSE MBLY LOT CODE Note: "P" in as s embly line pos ition indicates Lead-Free" DAT E CODE YE AR 1 = 2001 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRF U120 56 ASS EMBLY LOT CODE 78 DAT E CODE P = DESIGNAT ES LE AD-FREE PRODUCT (OPT IONAL) YEAR 1 = 2001 WEEK 19 A = ASS EMBLY SIT E CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRLR/U3915PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.45mH, RG = 25Ω, IAS = 30A, VGS =10V. Part not recommended for use above this value. ISD ≤ 30A, di/dt ≤ 280A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2010 www.irf.com 11