ATxmega128D4/64D4/32D4/16D4 - Complete

8/16-bit Atmel XMEGA D4 Microcontroller
ATxmega128D4 / ATxmega64D4 /
ATxmega32D4 / ATxmega16D4
Features
 High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller
 Nonvolatile program and data memories
16K - 128KBytes of in-system self-programmable flash
4K - 8KBytes boot section
 1K - 2KBytes EEPROM
 2K - 8KBytes internal SRAM


 Peripheral Features












Four-channel event system
Four 16-bit timer/counters
 Two timer/counters with 4 output compare or input capture channels
 Two timer/counters with 2 output compare or input capture channels
 High-resolution extensions on all timer/counters
 Advanced waveform extension (AWeX) on one timer/counter
Two USARTs with IrDA support for one USART
Two two-wire interfaces with dual address match (I2C and SMBus compatible)
Two serial peripheral interfaces (SPIs)
CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3) generator
16-bit real time counter (RTC) with separate oscillator
One twelve-channel, 12-bit, 200ksps Analog to Digital Converter
Two Analog Comparators with window compare function, and current sources
External interrupts on all general purpose I/O pins
Programmable watchdog timer with separate on-chip ultra low power oscillator
QTouch® library support
 Capacitive touch buttons, sliders and wheels
 Special microcontroller features
Power-on reset and programmable brown-out detection
Internal and external clock options with PLL and prescaler
 Programmable multilevel interrupt controller
 Five sleep modes
 Programming and debug interfaces
 PDI (program and debug interface)


 I/O and packages
34 Programmable I/O pins
44 - lead TQFP
 44 - pad VQFN/QFN
 49 - ball VFBGA


 Operating voltage

1.6 – 3.6V
 Operating frequency


0 – 12MHz from 1.6V
0 – 32MHz from 2.7V
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
1.
Ordering Information
Flash
(Bytes)
EEPROM
(Bytes)
SRAM
(Bytes)
128K + 8K
2K
8K
128K + 8K
2K
8K
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega32D4-AU
32K + 4K
1K
4K
ATxmega32D4-AUR(4)
32K + 4K
1K
4K
ATxmega16D4-AU
16K + 4K
1K
2K
16K + 4K
1K
2K
128K + 8K
2K
8K
128K + 8K
2K
8K
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega32D4-MH
32K + 4K
1K
4K
ATxmega32D4-MHR(4)
32K + 4K
1K
4K
ATxmega16D4-MH
16K + 4K
1K
2K
16K + 4K
1K
2K
128K + 8K
2K
8K
128K + 8K
2K
8K
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega32D4-CU
32K + 4K
1K
4K
ATxmega32D4-CUR(4)
32K + 4K
1K
4K
ATxmega16D4-CU
16K + 4K
1K
2K
16K + 4K
1K
2K
Ordering Code
ATxmega128D4-AU
ATxmega128D4-AUR
(4)
ATxmega64D4-AU
ATxmega64D4-AUR
ATxmega16D4-AUR
(4)
(4)
ATxmega128D4-MH
ATxmega128D4-MHR
(4)
ATxmega64D4-MH
ATxmega64D4-MHR
ATxmega16D4-MHR
(4)
(4)
ATxmega128D4-CU
ATxmega128D4-CUR
(4)
ATxmega64D4-CU
ATxmega64D4-CUR
ATxmega16D4-CUR
(4)
(4)
Speed
(MHz)
Power
Supply
Package(1)(2)(3)
Temp
44A
32
1.6 - 3.6V
44M1
-40C - 85C
49C2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
2
Flash
(Bytes)
EEPROM
(Bytes)
SRAM
(Bytes)
128K + 8K
2K
8K
128K + 8K
2K
8K
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega32D4-AN
32K + 4K
1K
4K
ATxmega32D4-ANR(4)
32K + 4K
1K
4K
ATxmega16D4-AN
16K + 4K
1K
2K
16K + 4K
1K
2K
ATxmega128D4-M7
128K + 8K
2K
8K
ATxmega128D4-M7R(4)
128K + 8K
2K
8K
ATxmega64D4-M7
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega32D4-M7
32K + 4K
1K
4K
ATxmega32D4-M7R(4)
32K + 4K
1K
4K
ATxmega16D4-M7
16K + 4K
1K
2K
16K + 4K
1K
2K
Ordering Code
ATxmega128D4-AN
ATxmega128D4-ANR
(4)
ATxmega64D4-AN
ATxmega64D4-ANR
ATxmega16D4-ANR
ATxmega64D4-M7R
ATxmega16D4-M7R
Notes:
1.
2.
3.
4.
(4)
(4)
(4)
(4)
Speed
(MHz)
Power
Supply
Package(1)(2)(3)
Temp
44A
32
1.6 - 3.6V
-40C - 105C
44M1
This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.
Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
For packaging information see ”Packaging information” on page 64.
Tape and Reel.
Package type
44A
44-lead, 10*10mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
44M1
44-Pad, 7*7*1mm body, lead pitch 0.50mm, 5.20mm exposed pad, thermally enhanced plastic very thin quad no lead package (VQFN)
49C2
49-ball (7 * 7 Array), 0.65mm pitch, 5.0*5.0*1.0mm, very thin, fine-pitch ball grid array package (VFBGA)
Typical Applications
Industrial control
Climate control
Low power battery applications
Factory automation
RF and ZigBee®
Power tools
Building control
USB connectivity
HVAC
Board control
Sensor control
Utility metering
White goods
Optical
Medical applications
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
3
2.
Pinout/Block diagram
Figure 2-1. Block Diagram and QFN/TQFP Pinout
Power
Ground
Programming, debug, test
GND
PR1
PR0
RESET/PDI
PDI
38
37
36
35
34
PA1
41
AVCC
PA2
42
39
PA3
43
PA0
PA4
44
40
External clock / Crystal pins
General Purpose I /O
Digital function
Analog function / Oscillators
Port R
PA5
1
PA6
2
XOSC
TOSC
33
PE3
32
PE2
31
VCC
30
GND
29
PE1
28
PE0
27
PD7
26
PD6
25
PD5
24
PD4
23
PD3
4
PB0
PB1
5
PB2
6
PB3
7
GND
8
VCC
9
OSC/CLK
Control
Internal
oscillators
Watchdog
Power
Supervision
Sleep
Controller
Real Time
Counter
Watchdog
Timer
Reset
Controller
Event System
Controller
CRC
OCD
Prog/Debug
Interface
AREF
ADC
AC0:1
Port B
3
PA7
Port A
DATA BUS
Interrupt
Controller
AREF
BUS
matrix
Internal
references
CPU
SRAM
EEPROM
FLASH
DATA BUS
Note:
1.
21
22
PD2
18
GND
PD1
17
PC7
20
16
PC6
PD0
15
PC5
19
14
PC4
Port E
VCC
13
PC3
TWI
TC0
SPI
12
Port D
PC2
Port C
USART0
TC0
SPI
11
TWI
PC1
TC0:1
10
USART0
PC0
IRCOM
EVENT ROUTING NETWORK
For full details on pinout and pin functions refer to “Pinout and Pin Functions” on page 49.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
4
Figure 2-2. VFBGA Pinout
Top view
1
2
3
4
5
Bottom view
6
7
7
6
5
4
3
2
1
A
A
B
B
C
C
D
D
E
E
F
F
G
G
1
2
3
4
5
6
7
A
PA3
AVCC
GND
PR1
PR0
PDI
PE3
B
PA4
PA1
PA0
GND
RESET/PDI_CLK
PE2
VCC
C
PA5
PA2
PA6
PA7
GND
PE1
GND
D
PB1
PB2
PB3
PB0
GND
PD7
PE0
E
GND
GND
PC3
GND
PD4
PD5
PD6
F
VCC
PC0
PC4
PC6
PD0
PD1
PD3
G
PC1
PC2
PC5
PC7
GND
VCC
PD2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
5
3.
Overview
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA device
achieves throughputs CPU approaching one million instructions per second (MIPS) per megahertz, allowing the system
designer to optimize power consumption versus processing speed.
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times
faster than conventional single-accumulator or CISC based microcontrollers.
The AVR XMEGA D4 devices provide the following features: in-system programmable flash with read-while-write
capabilities; internal EEPROM and SRAM; four-channel event system and programmable multilevel interrupt controller,
34 general purpose I/O lines, 16-bit real-time counter (RTC); four flexible, 16-bit timer/counters with compare and PWM
channels; two USARTs; two two-wire serial interfaces (TWIs); two serial peripheral interfaces (SPIs); one twelvechannel, 12-bit ADC with optional differential input with programmable gain; two analog comparators (ACs) with window
mode; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and
prescaler; and programmable brown-out detection.
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.
The XMEGA D4 devices have five software selectable power saving modes. The idle mode stops the CPU while allowing
the SRAM, event system, interrupt controller, and all peripherals to continue functioning. The power-down mode saves
the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI, or pin-change
interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run, allowing the application to
maintain a timer base while the rest of the device is sleeping. In standby mode, the external crystal oscillator keeps
running while the rest of the device is sleeping. This allows very fast startup from the external crystal, combined with low
power consumption. In extended standby mode, both the main oscillator and the asynchronous timer continue to run. To
further reduce power consumption, the peripheral clock to each individual peripheral can optionally be stopped in active
mode and idle sleep mode.
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR
microcontrollers.
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can
be reprogrammed in-system through the PDI interface. A boot loader running in the device can use any interface to
download the application program to the flash memory. The boot loader software in the boot flash section will continue to
run while the application flash section is updated, providing true read-while-write operation. By combining an 8/16-bit
RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that provides a
highly flexible and cost effective solution for many embedded applications.
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including C
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
6
3.1
Block Diagram
Figure 3-1. XMEGA D4 Block Diagram
Digital function
Programming, debug, test
Analog function
Oscillator/Crystal/Clock
General Purpose I/O
PR[0..1]
XTAL/
TOSC1
XTAL2/
TOSC2
Oscillator
Circuits/
Clock
Generation
PORT R (2)
Real Time
Counter
Watchdog
Oscillator
DATA BUS
Watchdog
Timer
ACA
Event System
Controller
PA[0..7]
Oscillator
Control
Sleep
Controller
Power
Supervision
POR/BOD &
RESET
PORT A (8)
ADCA
SRAM
GND
BUS Matrix
AREFA
Interrupt
Controller
VCC/10
VCC
Prog/Debug
Controller
PDI
RESET/
PDI_CLK
PDI_DATA
Int. Refs.
Tempref
CPU
CRC
OCD
AREFB
NVM Controller
PORT B (4)
Flash
EEPROM
DATA BUS
PORT D (8)
TCE0
TWIE
SPID
TCD0
USARTD0
SPIC
PORT C (8)
TWIC
TCC0:1
USARTC0
EVENT ROUTING NETWORK
IRCOM
PB[0..3]
To Clock
Generator
PORT E (4)
TOSC1
TOSC2
PC[0..7]
PD[0..7]
PE[0..3]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
7
4.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.
4.1
Recommended Reading

Atmel AVR XMEGA D manual

XMEGA application notes
This device data sheet only contains part specific information with a short description of each peripheral and module. The
XMEGA D manual describes the modules and peripherals in depth. The XMEGA application notes contain example code
and show applied use of the modules and peripherals.
All documentations are available from www.atmel.com/avr.
5.
Capacitive Touch Sensing
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced
reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the
touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch library is FREE and downloadable from the Atmel website at the following location:
http://www.atmel.com/tools/QTOUCHLIBRARY.aspx. For implementation details and other information, refer to the
QTouch library user guide - also available for download from the Atmel website.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
8
6.
AVR CPU
6.1
Features
 8/16-bit, high-performance Atmel AVR RISC CPU


137 instructions
Hardware multiplier
 32x8-bit registers directly connected to the ALU
 Stack in RAM
 Stack pointer accessible in I/O memory space
 Direct addressing of up to 16MB of program memory and 16MB of data memory
 True 16/24-bit access to 16/24-bit I/O registers
 Efficient support for 8-, 16-, and 32-bit arithmetic
 Configuration change protection of system-critical features
6.2
Overview
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the
program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable
Multilevel Interrupt Controller” on page 27.
6.3
Architectural Overview
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.
Figure 6-1. Block Diagram of the AVR CPU Architecture
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
9
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is
updated to reflect information about the result of the operation.
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data
space addressing, enabling efficient address calculations.
The memory spaces are linear. The data memory space and the program memory space are two different memory
spaces.
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be
memory mapped in the data memory.
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.
The program memory is divided in two sections, the application program section and the boot program section. Both
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for selfprogramming of the application flash memory must reside in the boot program section. The application section contains
an application table section with separate lock bits for write and read/write protection. The application table section can
be used for safe storing of nonvolatile data in the program memory.
6.4
ALU - Arithmetic Logic Unit
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the
status register is updated to reflect information about the result of the operation.
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware
multiplier supports signed and unsigned multiplication and fractional format.
6.4.1
Hardware Multiplier
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different
variations of signed and unsigned integer and fractional numbers:

Multiplication of unsigned integers

Multiplication of signed integers

Multiplication of a signed integer with an unsigned integer

Multiplication of unsigned fractional numbers

Multiplication of signed fractional numbers

Multiplication of a signed fractional number with an unsigned one
A multiplication takes two CPU clock cycles.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
10
6.5
Program Flow
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program
counter (PC) addresses the next instruction to be fetched.
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be
accessed through the five different addressing modes supported in the AVR CPU.
6.6
Status Register
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an
interrupt. This must be handled by software.
The status register is accessible in the I/O memory space.
6.7
Stack and Stack Pointer
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices
with more than 128KB of program memory, the return address is three bytes, and hence the SP is
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the
RETI instruction, and from subroutine calls using the RET instruction.
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one
when data is popped off the stack using the POP instruction.
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts
for up to four instructions or until the next I/O memory write.
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on page 15.
6.8
Register File
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register
file supports the following input/output schemes:

One 8-bit output operand and one 8-bit result input

Two 8-bit output operands and one 8-bit result input

Two 8-bit output operands and one 16-bit result input

One 16-bit output operand and one 16-bit result input
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
11
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash
program memory.
7.
Memories
7.1
Features
 Flash program memory








One linear address space
In-system programmable
Self-programming and boot loader support
Application section for application code
Application table section for application code or data storage
Boot section for application code or boot loader code
Separate read/write protection lock bits for all sections
Built in fast CRC check of a selectable flash program memory section
 Data memory
One linear address space
Single-cycle access from CPU
 SRAM
 EEPROM
 Byte and page accessible
 Optional memory mapping for direct load and store
 I/O memory
 Configuration and status registers for all peripherals and modules
 16 bit-accessible general purpose registers for global variables or flags


 Production signature row memory for factory programmed data
ID for each microcontroller device type
Serial number for each device
 Calibration bytes for factory calibrated peripherals


 User signature row
One flash page in size
Can be read and written from software
 Content is kept after chip erase


7.2
Overview
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write
operations. This prevents unrestricted access to the application software.
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can
only be written by an external programmer.
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has a
Flash memory signature row for calibration data, device identification, serial number etc.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
12
7.3
Flash Program Memory
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The
flash memory can be accessed for read and write from an external programmer through the PDI or from application
software running in the device.
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate
when executed from the boot loader section.
The application section contains an application table section with separate lock settings. This enables safe storage of
nonvolatile data in the program memory.
Figure 7-1. Flash Program Memory (Hexadecimal Address)
Word address
ATxmega128D4
ATxmega64D4
0
ATxmega32D4
0
ATxmega16D4
0
0
Application section
(128K/64K/32K/16K)
...
7.3.1
EFFF
/
77FF
/
37FF
/
17FF
F000
/
7800
/
3800
/
1800
FFFF
/
7FFF
/
3FFF
/
1FFF
10000
/
8000
/
4000
/
2000
10FFF
/
87FF
/
47FF
/
27FF
Application table section
(8K/4K/4K/4K)
Boot section
(8K/4K/4K/4K)
Application Section
The Application section is the section of the flash that is used for storing the executable application code. The protection
level for the application section can be selected by the boot lock bits for this section. The application section can not store
any boot loader code since the SPM instruction cannot be executed from the application section.
7.3.2
Application Table Section
The application table section is a part of the application section of the flash memory that can be used for storing data.
The size is identical to the boot loader section. The protection level for the application table section can be selected by
the boot lock bits for this section. The possibilities for different protection levels on the application section and the
application table section enable safe parameter storage in the program memory. If this section is not used for data,
application code can reside here.
7.3.3
Boot Loader Section
While the application section is used for storing the application code, the boot loader software must be located in the boot
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code
can be stored here.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
13
7.3.4
Production Signature Row
The production signature row is a separate memory section for factory programmed data. It contains calibration data for
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical
Characteristics” on page 64.
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer
coordinates for the device. The device ID for the available devices is shown in Table 7-1 on page 14.
The production signature row cannot be written or erased, but it can be read from application software and external
programmers.
Table 7-1.
Device ID Bytes for Atmel AVR XMEGA D4 Devices
Device
7.3.5
Device ID bytes
Byte 2
Byte 1
Byte 0
ATxmega16D4
42
94
1E
ATxmega32D4
42
95
1E
ATxmega64D4
47
96
1E
ATxmega128D4
47
97
1E
User Signature Row
The user signature row is a separate memory section that is fully accessible (read and write) from application software
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during
multiple program/erase operations and on-chip debug sessions.
7.4
Fuses and Lock Bits
The fuses are used to configure important system functions, and can only be written from an external programmer. The
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and
watchdog, startup configuration, JTAG enable, and JTAG user ID.
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should be
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the
lock bits are erased after the rest of the flash memory has been erased.
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.
Both fuses and lock bits are reprogrammable like the flash program memory.
7.5
Data Memory
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory
if available. The data memory is organized as one continuous memory section, see Figure 7-2 on page 15. To simplify
development, I/O Memory, EEPROM and SRAM will always have the same start addresses for all Atmel AVR XMEGA
devices.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
14
Figure 7-2. Data Memory Map (Hexadecimal Address)
Byte address
ATxmega64D4
0
FFF
I/O Registers (4K)
1000
EEPROM (2K)
17FF
Byte address
ATxmega32D4
0
FFF
1000
13FF
RESERVED
2000
2FFF
Byte address
Internal SRAM (4K)
I/O Registers (4K)
EEPROM (1K)
Byte address
ATxmega16D4
0
FFF
1000
13FF
RESERVED
2000
2FFF
Internal SRAM (4K)
I/O Registers (4K)
EEPROM (1K)
RESERVED
2000
27FF
Internal SRAM (2K)
ATxmega128D4
0
FFF
I/O Registers (4K)
1000
EEPROM (2K)
17FF
RESERVED
2000
3FFF
7.6
Internal SRAM (8K)
EEPROM
XMEGA D devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default)
or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory
mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is
accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address
0x1000.
7.7
I/O Memory
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,
single-cycle instructions for manipulation and checking of individual bits are available.
The I/O memory address for all peripherals and modules in XMEGA D4 is shown in the “Peripheral Module Address Map”
on page 54.
7.7.1
General Purpose I/O Registers
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
15
7.8
Data Memory and Bus Arbitration
Since the data memory is organized as four separate sets of memories, the bus masters (CPU, etc.) can access different
memory sections at the same time.
7.9
Memory Timing
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from
SRAM takes two cycles. EEPROM page load (write) takes one cycle, and three cycles are required for read. For burst
read, new data are available every second cycle. Refer to the instruction summary for more details on instructions and
instruction timing.
7.10
Device ID and Revision
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A
separate register contains the revision number of the device.
7.11
I/O Memory Protection
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers
themselves are protected by the configuration change protection mechanism.
7.12
Flash and EEPROM Page Size
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the
flash and byte accessible for the EEPROM.
Table 7-2 on page 16 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and
erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash
access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page
number and the least significant address bits (FWORD) give the word in the page.
Table 7-2.
Number of Words and Pages in the Flash
Devices
PC size
Flash size
Page Size
FWORD
bits
bytes
words
ATxmega16D4
14
16K + 4K
128
Z[7:1]
ATxmega32D4
15
32K + 4K
128
ATxmega64D4
16
64K + 4K
ATxmega128D4
17
128K + 8K
FPAGE
Application
Boot
Size
No of pages
Size
No of pages
Z[13:8]
16K
64
4K
16
Z[7:1]
Z[14:8]
32K
128
4K
16
128
Z[7:1]
Z[15:8]
64K
256
4K
16
128
Z[9:1]
Z[16:8]
128K
512
8K
32
Table 7-3 on page 17 shows EEPROM memory organization for the Atmel AVR XMEGA D4 devices. EEEPROM write
and erase operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at
a time. For EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The most significant bits in
the address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
16
Table 7-3.
Number of Bytes and Pages in the EEPROM
Devices
EEPROM
Page Size
E2BYTE
E2PAGE
No of Pages
Size
bytes
ATxmega16D4
1K
32
ADDR[4:0]
ADDR[10:5]
32
ATxmega32D4
1K
32
ADDR[4:0]
ADDR[10:5]
32
ATxmega64D4
2K
32
ADDR[4:0]
ADDR[10:5]
64
ATxmega128D4
2K
32
ADDR[4:0]
ADDR[10:5]
64
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
17
8.
Event System
8.1
Features
 System for direct peripheral-to-peripheral communication and signaling
 Peripherals can directly send, receive, and react to peripheral events
CPU independent operation
100% predictable signal timing
 Short and guaranteed response time


 Four event channels for up to four different and parallel signal routing configurations
 Events can be sent and/or used by most peripherals, clock system, and software
 Additional functions include


Quadrature decoders
Digital filtering of I/O pin state
 Works in active mode and idle sleep mode
8.2
Overview
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction
without the use of interrupts, CPU, and is thus a powerful tool for reducing the complexity, size and execution time of
application code. It also allows for synchronized timing of actions in several peripheral modules.
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing
network. How events are routed and used by the peripherals is configured in software.
Figure 8-1 shows a basic diagram of all connected peripherals. The event system can directly connect together analog to
digital converter, analog comparators, I/O port pins, the real-time counter, timer/counters, and IR communication module
(IRCOM). Events can also be generated from software and the peripheral clock.
Figure 8-1. Event System Overview and Connected Peripherals
CPU /
Software
Event Routing Network
ADC
Event
System
Controller
clkPER
Prescaler
Real Time
Counter
AC
Timer /
Counters
Port pins
IRCOM
The event routing network consists of four software-configurable multiplexers that control how events are routed and
used. These are called event channels, and allow for up to four parallel event routing configurations. The maximum
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
18
9.
System Clock and Clock Options
9.1
Features
 Fast start-up time
 Safe run-time clock switching
 Internal oscillators:
32MHz run-time calibrated and tuneable oscillator
2MHz run-time calibrated oscillator
 32.768kHz calibrated oscillator
 32kHz ultra low power (ULP) oscillator with 1kHz output


 External clock options
0.4MHz - 16MHz crystal oscillator
32.768kHz crystal oscillator
 External clock


 PLL with 20MHz - 128MHz output frequency


Internal and external clock options and 1x to 31x multiplication
Lock detector
 Clock prescalers with 1x to 2048x division
 Fast peripheral clocks running at two and four times the CPU clock
 Automatic run-time calibration of internal oscillators
 External oscillator and PLL lock failure detection with optional non-maskable interrupt
9.2
Overview
Atmel AVR XMEGA D4 devices have a flexible clock system supporting a large number of clock sources. It incorporates
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL)
is available, and can be used for automatic run-time calibration of the internal oscillators to remove frequency drift over
voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt and switch to the
internal oscillator if the external oscillator or PLL fails.
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and
prescalers can be changed from software at any time.
Figure 9-1 on page 20 presents the principal clock system in the XMEGA D4 family of devices. Not all of the clocks need
to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power
reduction registers, as described in “Power Management and Sleep Modes” on page 22.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
19
Figure 9-1. The Clock System, Clock Sources and Clock Distribution
Real Time
Counter
Peripherals
RAM
AVR CPU
Non-Volatile
Memory
clkPER
clkCPU
clkPER2
clkPER4
Brown-out
Detector
System Clock Prescalers
Watchdog
Timer
clkSYS
clkRTC
System Clock Multiplexer
(SCLKSEL)
RTCSRC
DIV32
DIV32
DIV32
PLL
PLLSRC
DIV4
XOSCSEL
32 kHz
Int. ULP
32.768 kHz
Int. OSC
32.768 kHz
TOSC
32 MHz
Int. Osc
2 MHz
Int. Osc
XTAL2
XTAL1
TOSC2
TOSC1
9.3
0.4 – 16 MHz
XTAL
Clock Sources
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other
clock sources, DFLLs and PLL, are turned off by default.
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the
internal oscillators, refer to the device datasheet.
9.3.1
32kHz Ultra Low Power Internal Oscillator
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
20
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.
This oscillator can be selected as the clock source for the RTC.
9.3.2
32.768kHz Calibrated Internal Oscillator
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz
output.
9.3.3
32.768kHz Crystal Oscillator
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.
9.3.4
0.4 - 16MHz Crystal Oscillator
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.
9.3.5
2MHz Run-time Calibrated Internal Oscillator
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time
calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.
9.3.6
32MHz Run-time Calibrated Internal Oscillator
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz.
9.3.7
External Clock Sources
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.
XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a
32.768kHz crystal oscillator.
9.3.8
PLL with 1x-31x Multiplication Factor
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a userselectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output
frequencies from all clock sources.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
21
10.
Power Management and Sleep Modes
10.1
Features
 Power management for adjusting power consumption and functions
 Five sleep modes
Idle
Power down
 Power save
 Standby
 Extended standby


 Power reduction register to disable clock and turn off unused peripherals in active and idle modes
10.2
Overview
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals
and all enabled reset sources can restore the microcontroller from sleep to active mode.
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power
management than sleep modes alone.
10.3
Sleep Modes
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA
microcontrollers have five different sleep modes tuned to match the typical functional stages during application
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution
starts.
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will
reset, start up, and execute from the reset vector.
10.3.1 Idle Mode
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but
all peripherals, including the interrupt controller, and event system are kept running. Any enabled interrupt will wake the
device.
10.3.2 Power-down Mode
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the twowire interface address match interrupt, and asynchronous port interrupts.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
22
10.3.3 Power-save Mode
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.
10.3.4 Standby Mode
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.
10.3.5 Extended Standby Mode
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
23
11.
System Control and Reset
11.1
Features
 Reset the microcontroller and set it to initial state when a reset source goes active
 Multiple reset sources that cover different situations






Power-on reset
External reset
Watchdog reset
Brownout reset
PDI reset
Software reset
 Asynchronous operation

No running system clock in the device is required for reset
 Reset status register for reading the reset source from the application code
11.2
Overview
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of
the accessed location can not be guaranteed.
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to
move the reset vector to the lowest address in the boot section.
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software
reset feature makes it possible to issue a controlled system reset from the user software.
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows
which sources have issued a reset since the last power-on.
11.3
Reset Sequence
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is
active. When all reset requests are released, the device will go through three stages before the device starts running
again:

Reset counter delay

Oscillator startup

Oscillator calibration
If another reset requests occurs during this process, the reset sequence will start over again.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
24
11.4
Reset Sources
11.4.1 Power-on Reset
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.
11.4.2 Brownout Detection
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip
erase and when the PDI is enabled.
11.4.3 External Reset
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.
11.4.4 Watchdog Reset
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one
to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 26.
11.4.5 Software Reset
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset
control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any
instruction from when a software reset is requested until it is issued.
11.4.6 Program and Debug Interface Reset
The program and debug interface reset contains a separate reset source that is used to reset the device during external
programming and debugging. This reset source is accessible only from external debuggers and programmers.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
25
12.
WDT – Watchdog Timer
12.1
Features
 Issues a device reset if the timer is not reset before its timeout period
 Asynchronous operation from dedicated oscillator
 1kHz output of the 32kHz ultra low power oscillator
 11 selectable timeout periods, from 8ms to 8s
 Two operation modes:


Normal mode
Window mode
 Configuration lock to prevent unwanted changes
12.2
Overview
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application
code.
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock
source, and will continue to operate to issue a system reset even if the main clocks fail.
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For
increased safety, a fuse for locking the WDT settings is also available.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
26
13.
Interrupts and Programmable Multilevel Interrupt Controller
13.1
Features
 Short and predictable interrupt response time
 Separate interrupt configuration and vector address for each interrupt
 Programmable multilevel interrupt controller
Interrupt prioritizing according to level and vector address
Three selectable interrupt levels for all interrupts: low, medium and high
 Selectable, round-robin priority scheme within low-level interrupts
 Non-maskable interrupts for critical functions


 Interrupt vectors optionally placed in the application section or the boot loader section
13.2
Overview
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are
serviced within a certain amount of time.
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.
13.3
Interrupt Vectors
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in
each peripheral. The base addresses for the Atmel AVR XMEGA D4 devices are shown in Table 13-1 on page 28. Offset
addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA D manual. For
peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 13-1 on page 28. The program
address is the word address.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
27
Table 13-1. Reset and Interrupt Vectors
Program Address
(Base Address)
Source
0x000
RESET
0x002
OSCF_INT_vect
Crystal Oscillator Failure Interrupt vector (NMI)
0x004
PORTC_INT_base
Port C Interrupt base
0x008
PORTR_INT_base
Port R Interrupt base
0x014
RTC_INT_base
Real Time Counter Interrupt base
0x018
TWIC_INT_base
Two-Wire Interface on Port C Interrupt base
0x01C
TCC0_INT_base
Timer/Counter 0 on port C Interrupt base
0x028
TCC1_INT_base
Timer/Counter 1 on port C Interrupt base
0x030
SPIC_INT_vect
SPI on port C Interrupt vector
0x032
USARTC0_INT_base
USART 0 on port C Interrupt base
0x040
NVM_INT_base
Non-Volatile Memory Interrupt base
0x044
PORTB_INT_base
Port B Interrupt base
0x056
PORTE_INT_base
Port E Interrupt base
0x05A
TWIE_INT_base
Two-Wire Interface on Port E Interrupt base
0x05E
TCE0_INT_base
Timer/Counter 0 on port E Interrupt base
0x080
PORTD_INT_base
Port D Interrupt base
0x084
PORTA_INT_base
Port A Interrupt base
0x088
ACA_INT_base
Analog Comparator on Port A Interrupt base
0x08E
ADCA_INT_base
Analog to Digital Converter on Port A Interrupt base
0x09A
TCD0_INT_base
Timer/Counter 0 on port D Interrupt base
0x0AE
SPID_INT_vector
SPI on port D Interrupt vector
0x0B0
USARTD0_INT_base
USART 0 on port D Interrupt base
Interrupt Description
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
28
14.
I/O Ports
14.1
Features
 34 general purpose input and output pins with individual configuration
 Output driver with configurable driver and pull settings:
Totem-pole
Wired-AND
 Wired-OR
 Bus-keeper
 Inverted I/O


 Input with synchronous and/or asynchronous sensing with interrupts and events
Sense both edges
Sense rising edges
 Sense falling edges
 Sense low level


 Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations
 Asynchronous pin change sensing that can wake the device from all sleep modes
 Two port interrupts with pin masking per I/O port
 Efficient and safe access to port pins
Hardware read-modify-write through dedicated toggle/clear/set registers
Configuration of multiple pins in a single operation
 Mapping of port registers into bit-accessible I/O memory space


 Peripheral clocks output on port pin
 Real-time counter clock output to port pin
 Event channels can be output on port pin
 Remapping of digital peripheral pin functions

14.2
Selectable USART, SPI, and timer/counter input/output pin locations
Overview
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from
all sleep modes, included the modes where no clocks are running.
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other
pin.
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus
application needs.
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, and PORTR.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
29
14.3
Output Driver
All port pins (Pxn) have programmable output configuration.
14.3.1 Push-pull
Figure 14-1. I/O Configuration - Totem-pole
DIRxn
OUTxn
Pxn
INxn
14.3.2 Pull-down
Figure 14-2. I/O Configuration - Totem-pole with Pull-down (on Input)
DIRxn
OUTxn
Pxn
INxn
14.3.3 Pull-up
Figure 14-3. I/O Configuration - Totem-pole with Pull-up (on Input)
DIRxn
OUTxn
Pxn
INxn
14.3.4 Bus-keeper
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level
was ‘1’, and pull-down if the last level was ‘0’.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
30
Figure 14-4. I/O Configuration - Totem-pole with Bus-keeper
DIRxn
OUTxn
Pxn
INxn
14.3.5 Others
Figure 14-5. Output Configuration - Wired-OR with Optional Pull-down
OUTxn
Pxn
INxn
Figure 14-6. I/O Configuration - Wired-AND with Optional Pull-up
INxn
Pxn
OUTxn
14.4
Input Sensing
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is
shown in Figure 14-7.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
31
Figure 14-7. Input Sensing System Overview
Asynchronous sensing
EDGE
DETECT
Interrupt
Control
IRQ
Synchronous sensing
Pxn
Synchronizer
INn
D
Q D
R
Q
EDGE
DETECT
Synchronous
Events
R
INVERTED I/O
Asynchronous
Events
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.
14.5
Alternate Port Functions
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for
that peripheral. “Pinout and Pin Functions” on page 49 shows which modules on peripherals that enable alternate
functions on a pin, and which alternate functions that are available on a pin.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
32
15.
TC0/1 – 16-bit Timer/Counter Type 0 and 1
15.1
Features
 Four 16-bit timer/counters


Three timer/counters of type 0
One timer/counter of type 1
 32-bit timer/counter support by cascading two timer/counters
 Up to four compare or capture (CC) channels


Four CC channels for timer/counters of type 0
Two CC channels for timer/counters of type 1
 Double buffered timer period setting
 Double buffered capture or compare channels
 Waveform generation:
Frequency generation
Single-slope pulse width modulation
 Dual-slope pulse width modulation


 Input capture:
Input capture with noise cancelling
Frequency capture
 Pulse width capture
 32-bit input capture


 Timer overflow and error interrupts/events
 One compare match or input capture interrupt/event per CC channel
 Can be used with event system for:
Quadrature decoding
Count and direction control
 Capture


 High-resolution extension

Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
 Advanced waveform extension:

Low- and high-side output with programmable dead-time insertion (DTI)
 Event controlled fault protection for safe disabling of drivers
15.2
Overview
Atmel AVR XMEGA devices have a set of four flexible 16-bit Timer/Counters (TC). Their capabilities include accurate
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC
channels can be used together with the base counter to do compare match control, frequency generation, and pulse
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either
capture or compare functions, but cannot perform both at the same time.
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.
The event system can also be used for direction control and capture trigger or to synchronize operations.
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.
Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels
each.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
33
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and highside output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can
also generate a synchronized bit pattern across the port pins.
The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter.
This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on page 36 for more details.
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High Resolution
Extension” on page 37 for more details.
Figure 15-1. Overview of a Timer/Counter and Closely Related Peripherals
Timer/Counter
Base Counter
Timer Period
Counter
Prescaler
Control Logic
clkPER
Event
System
clkPER4
Buffer
Capture
Control
Waveform
Generation
Dead-Time
Insertion
Pattern
Generation
Fault
Protection
PORT
Comparator
AWeX
Hi-Res
Compare/Capture Channel D
Compare/Capture Channel C
Compare/Capture Channel B
Compare/Capture Channel A
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD and PORTE each has one Timer/Conter0. Notation
of these are TCC0 (Time/Counter C0), TCC1, TCD0 and TCE0, respectively.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
34
16.
TC2 Timer/Counter Type 2
16.1
Features
 Six eight-bit timer/counters


Three Low-byte timer/counter
Three High-byte timer/counter
 Up to eight compare channels in each Timer/Counter 2


Four compare channels for the low-byte timer/counter
Four compare channels for the high-byte timer/counter
 Waveform generation

Single slope pulse width modulation
 Timer underflow interrupts/events
 One compare match interrupt/event per compare channel for the low-byte timer/counter
 Can be used with the event system for count control
16.2
Overview
There are three Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a system of
two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width modulation
(PWM) channels with individually controlled duty cycles, and is intended for applications that require a high number of
PWM channels.
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter,
respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare
match interrupts and events. The two eight-bit timer/counters have a shared clock source and separate period and
compare settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or from the event
system. The counters are always counting down.
PORTC, PORTD and PORTE each has one Timer/Counter 2. Notation of these are TCC2 (Time/Counter C2), TCD2 and
TCE2, respectively.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
35
17.
AWeX – Advanced Waveform Extension
17.1
Features
 Waveform output with complementary output from each compare channel
 Four dead-time insertion (DTI) units
8-bit resolution
Separate high and low side dead-time setting
 Double buffered dead time
 Optionally halts timer during dead-time insertion


 Pattern generation unit creating synchronised bit pattern across the port pins


Double buffered pattern generation
Optional distribution of one compare channel output across the port pins
 Event controlled fault protection for instant and predictable fault triggering
17.2
Overview
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)
modes. It is primarily intended for use with different types of motor control and other power control applications. It
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external
drivers. It can also generate a synchronized bit pattern across the port pins.
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any
AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the noninverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS
switching. The DTI output will override the normal port value according to the port override setting.
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator
unit is enabled, the DTI unit is bypassed.
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable
the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of
fault triggers.
The AWeX is available for TCC0. The notation of this is AWEXC.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
36
18.
Hi-Res – High Resolution Extension
18.1
Features
 Increases waveform generator resolution up to 8x (three bits)
 Supports frequency, single-slope PWM, and dual-slope PWM generation
 Supports the AWeX when this is used for the same timer/counter
18.2
Overview
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a
timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM
generation. It can also be used with the AWeX if this is used for the same timer/counter.
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension
is enabled.
There is one hi-res extension that can be enabled for each timer/counter on PORTC. The notation of this is HIRESC.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
37
19.
RTC – 16-bit Real-Time Counter
19.1
Features
 16-bit resolution
 Selectable clock source
32.768kHz external crystal
External clock
 32.768kHz internal oscillator
 32kHz internal ULP oscillator


 Programmable 10-bit clock prescaling
 One compare register
 One period register
 Clear counter on period overflow
 Optional interrupt/event on overflow and compare match
19.2
Overview
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal
oscillator or the 32kHz internal ULP oscillator.
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period
register value.
Figure 19-1. Real-time Counter Overview
External Clock
TOSC1
TOSC2
32.768kHz Crystal Osc
32.768kHz Int. Osc
DIV32
DIV32
32kHz int ULP (DIV32)
PER
RTCSRC
clkRTC
10-bit
prescaler
=
TOP/
Overflow
=
”match”/
Compare
CNT
COMP
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
38
20.
TWI – Two-Wire Interface
20.1
Features
 Two identical two-wire interface peripherals
 Bidirectional, two-wire communication interface
Phillips I2C compatible
 System Management Bus (SMBus) compatible

 Bus master and slave operation supported
Slave operation
Single bus master operation
 Bus master in multi-master bus environment
 Multi-master arbitration


 Flexible slave address match functions
7-bit and general call address recognition in hardware
10-bit addressing supported
 Address mask register for dual address match or address range masking
 Optional software address recognition for unlimited number of addresses


 Slave can operate in all sleep modes, including power-down
 Slave address match can wake device from all sleep modes
 100kHz and 400kHz bus frequency support
 Slew-rate limited output drivers
 Input filter for bus noise and spike suppression
 Support arbitration between start/repeated start and data bit (SMBus)
 Slave arbitration allows support for address resolve protocol (ARP) (SMBus)
20.2
Overview
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.
The TWI module supports master and slave functionality. The master and slave functionality are separated from each
other, and can be enabled and configured separately. The master module supports multi-master bus operation and
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command
and smart mode can be enabled to auto-trigger operations and reduce software complexity.
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is
also supported. A dedicated address mask register can act as a second address match register or as a register for
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address
matching to let this be handled in software instead.
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave
modes.
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by
the TWI bus.
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
39
21.
SPI – Serial Peripheral Interface
21.1
Features
 Two identical SPI peripherals
 Full-duplex, three-wire synchronous data transfer
 Master or slave operation
 Lsb first or msb first data transfer
 Eight programmable bit rates
 Interrupt flag at the end of transmission
 Write collision flag to indicate data collision
 Wake up from idle sleep mode
 Double speed master mode
21.2
Overview
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several
microcontrollers. The SPI supports full-duplex communication.
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
40
22.
USART
22.1
Features
 Two identical USART peripherals
 Full-duplex operation
 Asynchronous or synchronous operation


Synchronous clock rates up to 1/2 of the device clock frequency
Asynchronous clock rates up to 1/8 of the device clock frequency
 Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
 Fractional baud rate generator


Can generate desired baud rate from any system clock frequency
No need for external oscillator with certain frequencies
 Built-in error detection and correction schemes
Odd or even parity generation and parity check
Data overrun and framing error detection
 Noise filtering includes false start bit detection and digital low-pass filter


 Separate interrupts for
Transmit complete
Transmit data register empty
 Receive complete


 Multiprocessor communication mode


Addressing scheme to address a specific devices on a multidevice bus
Enable unaddressed devices to automatically ignore all frames
 Master SPI mode


Double buffered operation
Operation up to 1/2 of the peripheral clock frequency
 IRCOM module for IrDA compliant pulse modulation/demodulation
22.2
Overview
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.
The USART can be configured to operate in SPI master mode and used for SPI communication.
Communication is frame based, and the frame format can be customized to support a wide range of standards. The
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can
also be enabled.
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.
The registers are used in both modes, but their functionality differs for some control settings.
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and
demodulation for baud rates up to 115.2kbps.
PORTC and PORTD each has one USART. Notation of these peripherals are USARTC0 and USARTD0 respectively.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
41
23.
IRCOM – IR Communication Module
23.1
Features
 Pulse modulation/demodulation for infrared communication
 IrDA compatible for baud rates up to 115.2kbps
 Selectable pulse modulation scheme
3/16 of the baud rate period
Fixed pulse period, 8-bit programmable
 Pulse modulation disabled


 Built-in filtering
 Can be connected to and used by any USART
23.2
Overview
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates
up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
42
24.
CRC – Cyclic Redundancy Check Generator
24.1
Features
 Cyclic redundancy check (CRC) generation and checking for
Communication data
Program or data in flash memory
 Data in SRAM and I/O memory space


 Integrated with flash memory and CPU


Automatic CRC of the complete or a selectable range of the flash memory
CPU can load data to the CRC generator through the I/O interface
 CRC polynomial software selectable to


CRC-16 (CRC-CCITT)
CRC-32 (IEEE 802.3)
 Zero remainder detection
24.2
Overview
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and
it is commonly used to determine the correctness of a data transmission, and data present in the data and program
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be
appended to the data and used as a checksum. When the same data are later received or read, the device or application
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or
simply not using the incorrect data.
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error
bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRCCCITT) and CRC-32 (IEEE 802.3).

CRC-16:
Polynomial:
Hex value:

x16+x12+x5+1
0x1021
CRC-32:
Polynomial:
Hex value:
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
0x04C11DB7
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
43
25.
ADC – 12-bit Analog to Digital Converter
25.1
Features
 One Analog to Digital Converters (ADC)
 12-bit resolution
 Up to 200 thousand samples per second


Down to 3.6µs conversion time with 8-bit resolution
Down to 5.0µs conversion time with 12-bit resolution
 Differential and single-ended input
Up to 12 single-ended inputs
12x4 differential inputs without gain
 12x4 differential input with gain


 Built-in differential gain stage
 1/2x,
1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options
 Single, continuous and scan conversion options
 Three internal inputs
Internal temperature sensor
AVCC voltage divided by 10
 1.1V bandgap voltage


 Internal and external reference options
 Compare function for accurate monitoring of user defined thresholds
 Optional event triggered conversion for accurate timing
 Optional interrupt/event on compare result
25.2
Overview
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 200
thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.
The ADC measurements can either be started by application software or an incoming event from another peripheral in
the device. The ADC measurements can be started with predictable timing, and without software intervention.
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the
ADC. The AVCC/10 and the bandgap voltage can also be measured by the ADC.
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention
required.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
44
Figure 25-1. ADC overview
ADC0
•
•
•
ADC11
Compare
Register
<
>
VINP
Internal
signals
ADC0
•
•
•
ADC7
Threshold
(Int Req)
CH0 Result
VINN
Internal 1.00V
Internal AVCC/1.6V
Internal AVCC/2
AREFA
AREFB
Reference
Voltage
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from 5.0µs
for 12-bit to 3.6µs for 8-bit result.
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when
the result is represented as a signed integer (signed 16-bit number).
Notation of this peripheral is ADCA. The PORTA has ADCA inputs 0..7 and PORTB has ADCA inputs 8..11.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
45
26.
AC – Analog Comparator
26.1
Features
 Two Analog Comparators (ACs)
 Selectable hysteresis
No
Small
 Large


 Analog comparator output available on pin
 Flexible input selection
All pins on the port
Bandgap reference voltage
 A 64-level programmable voltage scaler of the internal AVCC voltage


 Interrupt and event generation on:
Rising edge
Falling edge
 Toggle


 Window function interrupt and event generation on:
Signal above window
Signal inside window
 Signal below window


 Constant current source with configurable output pin selection
26.2
Overview
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several
different combinations of input change.
The important property of the analog comparator’s dynamic behavior is the hysteresis. It can be adjusted in order to
achieve the optimal operation for each application.
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The
analog comparator output state can also be output on a pin for use by external devices.
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,
external resistors used to charge capacitors in capacitive touch sensing applications.
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in
window mode to compare a signal to a voltage range instead of a voltage level.
PORTA has one AC pair. Notation is ACA.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
46
Figure 26-1. Analog Comparator Overview
Pin Input
+
AC0OUT
Pin Input
Hysteresis
Enable
Voltage
Scaler
ACnMUXCTRL
ACnCTRL
Interrupt
Mode
WINCTRL
Enable
Bandgap
Interrupt
Sensititivity
Control
&
Window
Function
Interrupts
Events
Hysteresis
+
Pin Input
AC1OUT
Pin Input
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in
Figure 26-2.
Figure 26-2. Analog Comparator Window Function
+
AC0
Upper limit of window
Interrupt
sensitivity
control
Input signal
Interrupts
Events
+
AC1
Lower limit of window
-
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
47
27.
Programming and Debugging
27.1
Features
 Programming
External programming through PDI interface
 Minimal protocol overhead for fast operation
 Built-in error detection and handling for reliable operation
 Boot loader support for programming through any communication interface

 Debugging






Nonintrusive, real-time, on-chip debug system
No software or hardware resources required from device except pin connection
Program flow control
 Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor
Unlimited number of user program breakpoints
Unlimited number of user data breakpoints, break on:
 Data location read, write, or both read and write
 Data location content equal or not equal to a value
 Data location content is greater or smaller than a value
 Data location content is within or outside a range
No limitation on device clock frequency
 Program and Debug Interface (PDI)
Two-pin interface for external programming and debugging
Uses the Reset pin and a dedicated pin
 No I/O pins required during programming or debugging


27.2
Overview
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip
debugging of a device.
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user
signature row.
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler
level.
Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the Reset
pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any external
programmer or on-chip debugger/emulator can be directly connected to this interface.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
48
28.
Pinout and Pin Functions
The device pinout is shown in ”Pinout/Block Diagram” on page 3. In addition to general purpose I/O functionality, each
pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin.
Only one of the pin functions can be used at time.
28.1
Alternate Pin Function Description
The tables below show the notation for all pin functions available and describe its function.
28.1.1 Operation/Power Supply
VCC
Digital supply voltage
AVCC
Analog supply voltage
GND
Ground
28.1.2 Port Interrupt functions
SYNC
Port pin with full synchronous and limited asynchronous interrupt function
ASYNC
Port pin with full synchronous and full asynchronous interrupt function
28.1.3 Analog Functions
ACn
Analog Comparator input pin n
ACnOUT
Analog Comparator n Output
ADCn
Analog to Digital Converter input pin n
AREF
Analog reference input pin
28.1.4 Timer/Counter and AWEX Functions
OCnxLS
Output Compare Channel x Low Side for Timer/Counter n
OCnxHS
Output Compare Channel x High Side for Timer/Counter n
28.1.5 Communication Functions
SCL
Serial Clock for TWI
SDA
Serial Data for TWI
XCKn
Transfer Clock for USART n
RXDn
Receiver Data for USART n
TXDn
Transmitter Data for USART n
SS
Slave Select for SPI
MOSI
Master Out Slave In for SPI
MISO
Master In Slave Out for SPI
SCK
Serial Clock for SPI
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
49
28.1.6 Oscillators, Clock and Event
TOSCn
Timer Oscillator pin n
XTALn
Input/Output for Oscillator pin n
CLKOUT
Peripheral Clock Output
EVOUT
Event Channel Output
RTCOUT
RTC Clock Source Output
28.1.7 Debug/System Functions
RESET
Reset pin
PDI_CLK
Program and Debug Interface Clock pin
PDI_DATA
Program and Debug Interface Data pin
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
50
28.2
Alternate Pin Functions
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that
enable and use the alternate pin functions.
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the
first table where this apply.
Table 28-1. Port A - Alternate Functions
PORT A
PIN#
ADCA
POS/GAINPOS
ADCA
INTERRUPT
NEG
ADCA
GAINNEG
ACAPOS
ACANEG
GND
38
AVCC
39
PA0
40
SYNC
ADC0
ADC0
AC0
AC0
PA1
41
SYNC
ADC1
ADC1
AC1
AC1
PA2
42
SYNC/ASYNC
ADC2
ADC2
AC2
PA3
43
SYNC
ADC3
ADC3
AC3
PA4
44
SYNC
ADC4
ADC4
AC4
PA5
1
SYNC
ADC5
ADC5
AC5
PA6
2
SYNC
ADC6
ADC6
AC6
PA7
3
SYNC
ADC7
ADC7
ACAOUT
REFA
AREF
AC3
AC5
AC7
AC0OUT
Table 28-2. Port B - Alternate Functions
PORT B
PIN#
INTERRUPT
ADCAPOS/GAINPOS
REFB
PB0
4
SYNC
ADC8
AREF
PB1
5
SYNC
ADC9
PB2
6
SYNC/ASYNC
ADC10
PB3
7
SYNC
ADC11
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
51
Table 28-3. Port C - Alternate Functions
PORT C
PIN#
INTERRUPT
TCC0(1)(2)
AWEXC
TCC1
USARTC0(3)
SPIC(4)
TWIC
CLOCKOUT
GND
8
VCC
9
PC0
10
SYNC
OC0A
OC0ALS
PC1
11
SYNC
OC0B
OC0AHS
XCK0
PC2
12
SYNC/ASYNC
OC0C
OC0BLS
RXD0
PC3
13
SYNC
OC0D
OC0BHS
TXD0
PC4
14
SYNC
OC0CLS
OC1A
SS
PC5
15
SYNC
OC0CHS
OC1B
MOSI
PC6
16
SYNC
OC0DLS
MISO
clkRTC
PC7
17
SYNC
OC0DHS
SCK
clkPER
Notes:
1.
2.
3.
4.
5.
6.
(5)
EVENTOUT(6)
SDA
SCL
EVOUT
Pin mapping of all TC0 can optionally be moved to high nibble of port
If TC0 is configured as TC2 all eight pins can be used for PWM output.
Pin mapping of all USART0 can optionally be moved to high nibble of port.
Pins MOSI and SCK for all SPI can optionally be swapped.
CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7.
EVOUT can optionally be moved between port C, D and E and between pin 4 and 7.
Table 28-4. Port D - Alternate Functions
PORT D
PIN #
INTERRUPT
TCD0
USARTD0
SPID
GND
18
VCC
19
PD0
20
SYNC
OC0A
PD1
21
SYNC
OC0B
XCK0
PD2
22
SYNC/ASYNC
OC0C
RXD0
PD3
23
SYNC
OC0D
TXD0
PD4
24
SYNC
SS
PD5
25
SYNC
MOSI
PD6
26
SYNC
MISO
PD7
27
SYNC
SCK
CLOCKOUT
EVENTOUT
clkPER
EVOUT
Table 28-5. Port E - Alternate Functions
PORT E
PIN #
INTERRUPT
TCE0
TWIE
PE0
28
SYNC
OC0A
SDA
PE1
29
SYNC
OC0B
SCL
GND
30
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
52
PORT E
PIN #
INTERRUPT
TCE0
VCC
31
PE2
32
SYNC/ASYNC
OC0C
PE3
33
SYNC
OC0D
TWIE
Table 28-6. Port F - Alternate Functions
PORT R
PIN #
INTERRUPT
PDI
XTAL
TOSC(1)
PDI
34
PDI_DATA
RESET
35
PDI_CLOCK
PRO
36
SYNC
XTAL2
TOSC2
PR1
37
SYNC
XTAL1
TOSC1
Note:
1.
TOSC pins can optionally be moved to PE2/PE3
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
53
29.
Peripheral Module Address Map
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA D4. For complete
register description and summary for each peripheral module, refer to the XMEGA D manual.
Table 29-1. Peripheral Module Address Map
Base address
Name
Description
0x0000
GPIO
General purpose IO registers
0x0010
VPORT0
Virtual Port 0
0x0014
VPORT1
Virtual Port 1
0x0018
VPORT2
Virtual Port 2
0x001C
VPORT3
Virtual Port 2
0x0030
CPU
CPU
0x0040
CLK
Clock control
0x0048
SLEEP
Sleep controller
0x0050
OSC
Oscillator control
0x0060
DFLLRC32M
DFLL for the 32 MHz internal RC oscillator
0x0068
DFLLRC2M
DFLL for the 2 MHz RC oscillator
0x0070
PR
Power reduction
0x0078
RST
Reset controller
0x0080
WDT
Watch-dog timer
0x0090
MCU
MCU control
0x00A0
PMIC
Programmable multilevel interrupt controller
0x00B0
PORTCFG
0x0180
EVSYS
Event system
0x00D0
CRC
CRC module
0x01C0
NVM
Nonvolatile memory (NVM) controller
0x0200
ADCA
Analog to digital converter on port A
0x0380
ACA
Analog comparator pair on port A
0x0400
RTC
Real time counter
0x0480
TWIC
Two wire interface on port C
0x04A0
TWIE
Two wire interface on port E
0x0600
PORTA
Port A
0x0620
PORTB
Port B
0x0640
PORTC
Port C
0x0660
PORTD
Port D
Port configuration
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
54
Base address
Name
Description
0x0680
PORTE
Port E
0x07E0
PORTR
Port R
0x0800
TCC0
Timer/counter 0 on port C
0x0840
TCC1
Timer/counter 1 on port C
0x0880
AWEXC
Advanced waveform extension on port C
0x0890
HIRESC
High resolution extension on port C
0x08A0
USARTC0
0x08C0
SPIC
0x08F8
IRCOM
0x0900
TCD0
0x09A0
USARTD0
0x09C0
SPID
Serial peripheral interface on port D
0x0A00
TCE0
Timer/counter 0 on port E
USART 0 on port C
Serial peripheral interface on port C
Infrared communication module
Timer/counter 0 on port D
USART 0 on port D
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
55
30.
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
Arithmetic and Logic Instructions
ADD
Rd, Rr
Add without Carry
Rd

Rd + Rr
Z,C,N,V,S,H
1
ADC
Rd, Rr
Add with Carry
Rd

Rd + Rr + C
Z,C,N,V,S,H
1
ADIW
Rd, K
Add Immediate to Word
Rd

Rd + 1:Rd + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract without Carry
Rd

Rd - Rr
Z,C,N,V,S,H
1
SUBI
Rd, K
Subtract Immediate
Rd

Rd - K
Z,C,N,V,S,H
1
SBC
Rd, Rr
Subtract with Carry
Rd

Rd - Rr - C
Z,C,N,V,S,H
1
SBCI
Rd, K
Subtract Immediate with Carry
Rd

Rd - K - C
Z,C,N,V,S,H
1
SBIW
Rd, K
Subtract Immediate from Word
Rd + 1:Rd

Rd + 1:Rd - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND
Rd

Rd  Rr
Z,N,V,S
1
ANDI
Rd, K
Logical AND with Immediate
Rd

Rd  K
Z,N,V,S
1
OR
Rd, Rr
Logical OR
Rd

Rd v Rr
Z,N,V,S
1
ORI
Rd, K
Logical OR with Immediate
Rd

Rd v K
Z,N,V,S
1
EOR
Rd, Rr
Exclusive OR
Rd

Rd  Rr
Z,N,V,S
1
COM
Rd
One’s Complement
Rd

$FF - Rd
Z,C,N,V,S
1
NEG
Rd
Two’s Complement
Rd

$00 - Rd
Z,C,N,V,S,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd

Rd v K
Z,N,V,S
1
CBR
Rd,K
Clear Bit(s) in Register
Rd

Rd  ($FFh - K)
Z,N,V,S
1
INC
Rd
Increment
Rd

Rd + 1
Z,N,V,S
1
DEC
Rd
Decrement
Rd

Rd - 1
Z,N,V,S
1
TST
Rd
Test for Zero or Minus
Rd

Rd  Rd
Z,N,V,S
1
CLR
Rd
Clear Register
Rd

Rd  Rd
Z,N,V,S
1
SER
Rd
Set Register
Rd

$FF
None
1
MUL
Rd,Rr
Multiply Unsigned
R1:R0

Rd x Rr (UU)
Z,C
2
MULS
Rd,Rr
Multiply Signed
R1:R0

Rd x Rr (SS)
Z,C
2
MULSU
Rd,Rr
Multiply Signed with Unsigned
R1:R0

Rd x Rr (SU)
Z,C
2
FMUL
Rd,Rr
Fractional Multiply Unsigned
R1:R0

Rd x Rr<<1 (UU)
Z,C
2
FMULS
Rd,Rr
Fractional Multiply Signed
R1:R0

Rd x Rr<<1 (SS)
Z,C
2
FMULSU
Rd,Rr
Fractional Multiply Signed with Unsigned
R1:R0

Rd x Rr<<1 (SU)
Z,C
2
DES
K
Data Encryption
if (H = 0) then R15:R0
else if (H = 1) then R15:R0


Encrypt(R15:R0, K)
Decrypt(R15:R0, K)
PC

PC + k + 1
None
2
1/2
Branch instructions
RJMP
k
Relative Jump
IJMP
Indirect Jump to (Z)
PC(15:0)
PC(21:16)


Z,
0
None
2
EIJMP
Extended Indirect Jump to (Z)
PC(15:0)
PC(21:16)


Z,
EIND
None
2
PC

k
None
3
JMP
k
Jump
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
56
Mnemonics
Operands
Description
RCALL
k
Relative Call Subroutine
Operation
Flags
#Clocks
PC

PC + k + 1
None
2 / 3(1)
ICALL
Indirect Call to (Z)
PC(15:0)
PC(21:16)


Z,
0
None
2 / 3(1)
EICALL
Extended Indirect Call to (Z)
PC(15:0)
PC(21:16)


Z,
EIND
None
3(1)
call Subroutine
PC

k
None
3 / 4(1)
RET
Subroutine Return
PC

STACK
None
4 / 5(1)
RETI
Interrupt Return
PC

STACK
I
4 / 5(1)
if (Rd = Rr) PC

PC + 2 or 3
None
1/2/3
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
CP
Rd,Rr
Compare
CPC
Rd,Rr
Compare with Carry
CPI
Rd,K
Compare with Immediate
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b) = 0) PC

PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register Set
if (Rr(b) = 1) PC

PC + 2 or 3
None
1/2/3
SBIC
A, b
Skip if Bit in I/O Register Cleared
if (I/O(A,b) = 0) PC

PC + 2 or 3
None
2/3/4
SBIS
A, b
Skip if Bit in I/O Register Set
If (I/O(A,b) =1) PC

PC + 2 or 3
None
2/3/4
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC

PC + k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC

PC + k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC

PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC

PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC

PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC

PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC

PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC

PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC

PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC

PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N  V= 0) then PC

PC + k + 1
None
1/2
BRLT
k
Branch if Less Than, Signed
if (N  V= 1) then PC

PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC

PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC

PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC

PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC

PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC

PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC

PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if (I = 1) then PC

PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if (I = 0) then PC

PC + k + 1
None
1/2
Rd

Rr
None
1
Rd+1:Rd

Rr+1:Rr
None
1
Rd - Rr
Z,C,N,V,S,H
1
Rd - Rr - C
Z,C,N,V,S,H
1
Rd - K
Z,C,N,V,S,H
1
Data transfer instructions
MOV
Rd, Rr
Copy Register
MOVW
Rd, Rr
Copy Register Pair
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
57
Mnemonics
Operands
Description
LDI
Rd, K
Load Immediate
Operation
Rd

Flags
K
#Clocks
None
1
(1)(2)
LDS
Rd, k
Load Direct from data space
Rd

(k)
None
2
LD
Rd, X
Load Indirect
Rd

(X)
None
1(1)(2)
LD
Rd, X+
Load Indirect and Post-Increment
Rd
X


(X)
X+1
None
1(1)(2)
LD
Rd, -X
Load Indirect and Pre-Decrement
X  X - 1,
Rd  (X)


X-1
(X)
None
2(1)(2)
LD
Rd, Y
Load Indirect
Rd  (Y)

(Y)
None
1(1)(2)
LD
Rd, Y+
Load Indirect and Post-Increment
Rd
Y


(Y)
Y+1
None
1(1)(2)
LD
Rd, -Y
Load Indirect and Pre-Decrement
Y
Rd


Y-1
(Y)
None
2(1)(2)
LDD
Rd, Y+q
Load Indirect with Displacement
Rd

(Y + q)
None
2(1)(2)
LD
Rd, Z
Load Indirect
Rd

(Z)
None
1(1)(2)
LD
Rd, Z+
Load Indirect and Post-Increment
Rd
Z


(Z),
Z+1
None
1(1)(2)
LD
Rd, -Z
Load Indirect and Pre-Decrement
Z
Rd


Z - 1,
(Z)
None
2(1)(2)
LDD
Rd, Z+q
Load Indirect with Displacement
Rd

(Z + q)
None
2(1)(2)
STS
k, Rr
Store Direct to Data Space
(k)

Rd
None
2(1)
ST
X, Rr
Store Indirect
(X)

Rr
None
1(1)
ST
X+, Rr
Store Indirect and Post-Increment
(X)
X


Rr,
X+1
None
1(1)
ST
-X, Rr
Store Indirect and Pre-Decrement
X
(X)


X - 1,
Rr
None
2(1)
ST
Y, Rr
Store Indirect
(Y)

Rr
None
1(1)
ST
Y+, Rr
Store Indirect and Post-Increment
(Y)
Y


Rr,
Y+1
None
1(1)
ST
-Y, Rr
Store Indirect and Pre-Decrement
Y
(Y)


Y - 1,
Rr
None
2(1)
STD
Y+q, Rr
Store Indirect with Displacement
(Y + q)

Rr
None
2(1)
ST
Z, Rr
Store Indirect
(Z)

Rr
None
1(1)
ST
Z+, Rr
Store Indirect and Post-Increment
(Z)
Z


Rr
Z+1
None
1(1)
ST
-Z, Rr
Store Indirect and Pre-Decrement
Z

Z-1
None
2(1)
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q)

Rr
None
2(1)
Load Program Memory
R0

(Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd

(Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Increment
Rd
Z


(Z),
Z+1
None
3
Extended Load Program Memory
R0

(RAMPZ:Z)
None
3
ELPM
ELPM
Rd, Z
Extended Load Program Memory
Rd

(RAMPZ:Z)
None
3
ELPM
Rd, Z+
Extended Load Program Memory and PostIncrement
Rd
Z


(RAMPZ:Z),
Z+1
None
3
(RAMPZ:Z)

R1:R0
None
-
SPM
Store Program Memory
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
58
Mnemonics
Operands
Description
Operation
SPM
Z+
Store Program Memory and Post-Increment
by 2
IN
Rd, A
In From I/O Location
OUT
A, Rr
Out To I/O Location
PUSH
Rr
Push Register on Stack
POP
Rd
XCH
Flags
#Clocks
(RAMPZ:Z)
Z


R1:R0,
Z+2
None
-
Rd

I/O(A)
None
1
I/O(A)

Rr
None
1
STACK

Rr
None
1(1)
Pop Register from Stack
Rd

STACK
None
2(1)
Z, Rd
Exchange RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp
None
2
LAS
Z, Rd
Load and Set RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp v (Z)
None
2
LAC
Z, Rd
Load and Clear RAM location
Temp
Rd
(Z)



Rd,
(Z),
($FFh – Rd)  (Z)
None
2
LAT
Z, Rd
Load and Toggle RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp  (Z)
None
2
Rd(n+1)
Rd(0)
C



Rd(n),
0,
Rd(7)
Z,C,N,V,H
1
Rd(n)
Rd(7)
C



Rd(n+1),
0,
Rd(0)
Z,C,N,V
1
Rd(0)
Rd(n+1)
C



C,
Rd(n),
Rd(7)
Z,C,N,V,H
1
Bit and bit-test instructions
LSL
Rd
Logical Shift Left
LSR
Rd
Logical Shift Right
ROL
Rd
Rotate Left Through Carry
ROR
Rd
Rotate Right Through Carry
Rd(7)
Rd(n)
C



C,
Rd(n+1),
Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n)

Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)

Rd(7..4)
None
1
BSET
s
Flag Set
SREG(s)

1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s)

0
SREG(s)
1
SBI
A, b
Set Bit in I/O Register
I/O(A, b)

1
None
1
CBI
A, b
Clear Bit in I/O Register
I/O(A, b)

0
None
1
BST
Rr, b
Bit Store from Register to T
T

Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b)

T
None
1
SEC
Set Carry
C

1
C
1
CLC
Clear Carry
C

0
C
1
SEN
Set Negative Flag
N

1
N
1
CLN
Clear Negative Flag
N

0
N
1
SEZ
Set Zero Flag
Z

1
Z
1
CLZ
Clear Zero Flag
Z

0
Z
1
SEI
Global Interrupt Enable
I

1
I
1
CLI
Global Interrupt Disable
I

0
I
1
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
59
Mnemonics
Operands
Description
Operation
Flags
#Clocks
SES
Set Signed Test Flag
S

1
S
1
CLS
Clear Signed Test Flag
S

0
S
1
SEV
Set Two’s Complement Overflow
V

1
V
1
CLV
Clear Two’s Complement Overflow
V

0
V
1
SET
Set T in SREG
T

1
T
1
CLT
Clear T in SREG
T

0
T
1
SEH
Set Half Carry Flag in SREG
H

1
H
1
CLH
Clear Half Carry Flag in SREG
H

0
H
1
None
1
None
1
MCU control instructions
BREAK
Break
NOP
No Operation
SLEEP
Sleep
(see specific descr. for Sleep)
None
1
WDR
Watchdog Reset
(see specific descr. for WDR)
None
1
Notes:
1.
2.
(See specific descr. for BREAK)
Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.
One extra cycle must be added when accessing internal SRAM.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
60
31.
Packaging information
31.1
44A
PIN 1 IDENTIFIER
PIN 1
e
B
E1
E
A1
A2
D1
D
C
0°~7°
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
SYMBOL
Notes:
1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10mm maximum.
A2
0.95
1.00
1.05
D
11.75
12.00
12.25
D1
9.90
10.00
10.10
E
11.75
12.00
12.25
E1
9.90
10.00
10.10
B
0.30
0.37
0.45
C
0.09
(0.17)
0.20
L
0.45
0.60
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
06/02/2014
44A, 44-lead, 10 x 10mm body size, 1.0mm body thickness,
0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)
44A
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
C
61
31.2
44M1
D
Marked Pin# 1 I D
E
SE ATING PLAN E
A1
TOP VIE W
A3
A
K
L
Pin #1 Co rner
D2
1
2
3
SIDE VIEW
Pin #1
Triangle
Option A
E2
Option B
K
Option C
b
e
Pin #1
Cham fer
(C 0.30)
Pin #1
Notch
(0.20 R)
B OT TOM VIE W
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
A1
–
0.02
0.05
A3
0.20 REF
b
0.18
0.23
0.30
D
6.90
7.00
7.10
D2
5.00
5.20
5.40
E
6.90
7.00
7.10
E2
5.00
5.20
5.40
e
Note: JEDEC Standard MO-220, Fig
. 1 (S AW Singulation) VKKD-3 .
NOT E
0.50 BSC
L
0.59
0.64
0.69
K
0.20
0.26
0.41
02/13/2014
Package Drawing Contact:
[email protected]
TITLE
44M1, 44-pad, 7 x 7 x 1.0mm body, lead
pitch 0.50mm, 5.20mm exposed pad, thermally
enhanced plastic very thin quad flat no
lead package (VQFN)
GPC
ZWS
DRAWING NO.
44M1
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
REV.
H
62
31.3
49C2
E
A1 BALL ID
0.10
D
A1
TOP VIEW
A
A2
SIDE VIEW
E1
G
e
F
E
D
D1
COMMON DIMENSIONS
(Unit of Measure = mm)
C
B
1
A1 BALL CORNER
MIN
NOM
MAX
A
–
–
1.00
A1
0.20
–
–
A2
0.65
–
–
D
4.90
5.00
5.10
SYMBOL
A
2
3
4
5
b
6
7
e
49 - Ø0.35 ±0.05
BOTTOM VIEW
D1
E 4.90
3.90 BSC
5.00
5.10
E1
b
NOTE
3.90 BSC
0.30
0.35
e
0.40
0.65 BSC
3/14/08
TITLE
49C2, 49-ball (7 x 7 array), 0.65mm pitch,
Package Drawing Contact:
[email protected] 5.0 x 5.0 x 1.0mm, very thin, fine-pitch
ball grid array package (VFBGA)
GPC
CBD
DRAWING NO.
49C2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
REV.
A
63
32.
Electrical Characteristics
All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum
values are valid across operating temperature and voltage unless other conditions are given.
32.1
ATxmega16D4
32.1.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 32-1 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 32-1. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a Gnd pin
200
VPIN
Pin voltage with respect to Gnd and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
150
mA
°C
32.1.2 General Operating Ratings
The device must operate within the ratings listed in Table 32-2 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 32-2. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 32-3. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
Units
MHz
64
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-15 the Frequency vs. VCC curve is linear
between 1.8V < VCC < 2.7V.
Figure 32-1. Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
65
32.1.3 Current Consumption
Table 32-4. Current Consumption for Active Mode and Sleep Modes
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
40
VCC = 3.0V
80
VCC = 1.8V
200
VCC = 3.0V
410
VCC = 1.8V
350
600
0.75
1.4
7.5
12
VCC = 3.0V
2.8
VCC = 1.8V
42
VCC = 3.0V
85
VCC = 1.8V
85
225
170
350
2.7
5.5
0.1
1.0
2.0
4.5
T = 105°C
0.1
7.0
WDT and sampled BOD enabled,
T = 25°C
1.4
3.0
3.0
6.0
1.4
10
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.5
VCC = 3.0V
1.5
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2.0
VCC = 3.0V
0.7
2.0
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3.0
VCC = 3.0V
1.0
3.0
VCC = 3.0V
300
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.0
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
66
Table 32-5. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
ULP oscillator
0.8
32.768kHz int. oscillator
29
2MHz int. oscillator
32MHz int. oscillator
PLL
BOD
Max.
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
245
DFLL enabled with 32.768kHz int. osc. as reference
410
20x multiplication factor,
32MHz int. osc. DIV4 as reference
290
Watchdog timer
ICC
Typ.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
175
Temperature sensor
170
1.2
16ksps
VREF = Ext ref
ADC
75ksps
VREF = Ext ref
USART
1.
1.0
CURRLIMIT = MEDIUM
0.9
CURRLIMIT = HIGH
0.8
CURRLIMIT = LOW
1.7
mA
200ksps
VREF = Ext ref
3.1
Rx and Tx enabled, 9600 BAUD
11
µA
4
mA
Flash memory and EEPROM programming
Note:
CURRLIMIT = LOW
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
67
32.1.4 Wake-up Time from Sleep Modes
Table 32-6. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from idle,
standby, and extended standby
mode
twakeup
Wake-up time from power-save
and power-down mode
Note:
1.
Condition
Min.
Typ.(1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
5.0
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-2. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 32-2. Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
68
32.1.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output
voltage limits reflect or exceed this specification.
Table 32-7. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL (2)
Parameter
Min.
Max.
Units
-20
20
mA
VCC = 2.4 - 3.6V
0.7*Vcc
VCC+0.5
VCC = 1.6 - 2.4V
0.8*VCC
VCC+0.5
VCC = 2.4- 3.6V
-0.5
0.3*VCC
VCC = 1.6 - 2.4V
-0.5
0.2*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
IIN
Input leakage current I/O pin
RP
Pull/buss keeper resistor
Notes:
Condition
1.
2.
Typ.
VCC = 3.3V
IOH = -4mA
2.6
2.9
VCC = 3.0V
IOH = -3mA
2.1
2.7
VCC = 1.8V
IOH = -1mA
1.4
1.6
VCC = 3.3V
IOL = 8mA
0.4
0.76
VCC = 3.0V
IOL = 5mA
0.3
0.64
VCC = 1.8V
IOL = 3mA
0.2
0.46
<0.01
1
T = 25°C
V
25
µA
k
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
69
32.1.6 ADC Characteristics
Table 32-8. Power Supply, Reference and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1
AVCC- 0.6
Units
V
Rin
Input resistance
Switched
4.5
k
Cin
Input capacitance
Switched
5
pF
RAREF
Reference input resistance
(leakage only)
CAREF
Reference input capacitance
Static load
Input range
Vin
∆V
Conversion range
Differential mode, Vinp - Vinn
Conversion range
Single ended unsigned mode, Vinp
>10
M
7
pF
0
VREF
-VREF
VREF
-V
VREF-V
Fixed offset voltage
200
V
LSB
Table 32-9. Clock and Timing
Symbol
ClkADC
Parameter
ADC clock frequency
Condition
Min.
Maximum is 1/4 of peripheral clock
frequency
100
Measuring internal signals
fClkADC
Typ.
1800
Sample rate
Sample rate
Units
kHz
125
300
Current limitation (CURRLIMIT) off
fADC
Max.
CURRLIMIT = LOW
300
16
250
CURRLIMIT = MEDIUM
150
CURRLIMIT = HIGH
50
Sampling time
Configurable in steps of 1/2 ClkADC cycles
up to 32 ClkADC cycles
0.28
320
Conversion time (latency)
(RES+1)/2 + GAIN
RES (Resolution) = 8 or 12, GAIN=0 to 3
4.5
10
Start-up time
ADC clock cycles
12
24
ADC settling time
After changing reference or input mode
7
7
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ksps
µs
ClkADC
cycles
70
Table 32-10. Accuracy Characteristics
Symbol
RES
Condition(2)
Parameter
Resolution
12-bit resolution
Differential mode
INL(1)
Integral non-linearity
Differential mode
Differential non-linearity
Single ended
unsigned mode
Offset Error
Typ.
Max.
Differential
8
12
12
Single ended signed
7
11
11
Single ended unsigned
8
12
12
16ksps, VREF = 3V
0.5
1
16ksps, all VREF
0.8
2
200ksps, VREF = 3V
0.6
1
1
2
16ksps, VREF = 3.0V
0.5
1
16ksps, all VREF
1.3
2
16ksps, VREF = 3V
0.3
1
16ksps, all VREF
0.5
1
200ksps, VREF = 3V
0.35
1
200ksps, all VREF
0.5
1
16ksps, VREF = 3.0V
0.6
1
16ksps, all VREF
0.6
1
200ksps, all VREF
Single ended
unsigned mode
DNL(1)
Min.
Differential mode
Differential mode
Gain Error
Single ended
unsigned mode
1.
2.
Bits
lsb
8
mV
Temperature drift
0.01
mV/K
Operating voltage drift
0.25
mV/V
External reference
-5
AVCC/1.6
-5
AVCC/2.0
-6
Bandgap
±10
Temperature drift
0.02
mV/K
Operating voltage drift
2
mV/V
External reference
-8
AVCC/1.6
-8
AVCC/2.0
-8
Bandgap
±10
Temperature drift
0.03
mV/K
2
mV/V
Operating voltage drift
Notes:
Units
mV
mV
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
71
Table 32-11. Gain Stage Characteristics
Rin
Input resistance
Switched in normal mode
4.0
k
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
1/2
Clock frequency
Same as ADC
100
Gain Error
Offset Error,
input referred
0
1
0.5x gain, normal mode
-1
1x gain, normal mode
-1
8x gain, normal mode
-1
64x gain, normal mode
10
0.5x gain, normal mode
10
1x gain, normal mode
5
8x gain, normal mode
-20
64x gain, normal mode
-150
AVCC- 0.6
V
3
ClkADC
cycles
1800
kHz
%
mV
32.1.7 Analog Comparator Characteristics
Table 32-12. Analog Comparator Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
Voff
Input offset voltage
VCC=1.6V - 3.6V
<±10
mV
Ilk
Input leakage current
VCC=1.6V - 3.6V
<1
nA
Input voltage range
-0.1
AC startup time
AVCC
100
Vhys1
Hysteresis, none
VCC=1.6V - 3.6V
0
Vhys2
Hysteresis, small
VCC=1.6V - 3.6V
11
Vhys3
Hysteresis, large
VCC=1.6V - 3.6V
26
tdelay
Propagation delay
VCC = 3.0V, T= 85°C
16
VCC=1.6V - 3.6V
16
Integral non-linearity (INL)
0.3
64-level voltage scaler
V
µs
mV
90
0.5
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ns
lsb
72
32.1.8 Bandgap and Internal 1.0V Reference Characteristics
Table 32-13. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Typ.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
Variation over voltage and temperature
Calibrated at T= 85°C, VCC = 3.0V
0.98
1
Units
µs
1.5
Bandgap voltage
INT1V
Max.
1.02
±1.0
V
%
32.1.9 Brownout Detection Characteristics
Table 32-14. Brownout Detection Characteristics(1)
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
Note:
Typ.
Max.
1.50
1.62
1.75
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
VHYST
Min.
Continuous mode
µs
1000
Hysteresis
1.
V
0.4
Sampled mode
Units
1.2
%
BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.
32.1.10 External Reset Characteristics
Table 32-15. External Reset Characteristics
Symbol
tEXT
Parameter
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Condition
Reset pin pull-up resistor
Min.
Typ.
1000
90
VCC = 2.7 - 3.6V
0.6*VCC
VCC = 1.6 - 2.7V
0.6*VCC
Max.
Units
ns
VCC = 2.7 - 3.6V
0.5*VCC
VCC = 1.6 - 2.7V
0.4*VCC
25
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
V
k
73
32.1.11 Power-on Reset Characteristics
Table 32-16. Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
1.3
Max.
Units
V
1.59
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
32.1.12 Flash and EEPROM Memory Characteristics
Table 32-17. Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
Typ.
Max.
Units
Cycle
Year
Cycle
Year
Table 32-18. Programming Time
Symbol
Parameter
Chip erase(2)
Flash
EEPROM
Notes:
1.
Condition
Min.
Typ.(1)
16KB Flash, EEPROM
45
Page erase
4
Page write
4
Atomic page erase and write
8
Page erase
4
Page write
4
Atomic page erase and write
8
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
74
2.
EEPROM is not erased if the EESAVE fuse is programmed.
32.1.13 Clock and Oscillator Characteristics
32.1.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 32-19. 32.768kHz Internal Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
32.1.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics
Table 32-20. 2MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Units
DFLL calibration stepsize
0.18
32.1.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 32-21. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
Typ.
Max.
DFLL can tune to this frequency over
voltage and temperature
30
32
55
Factory calibrated frequency
Factory calibration accuracy
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.19
32.1.13.4 32kHz Internal ULP Oscillator Characteristics
Table 32-22. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Accuracy
Typ.
32
T = 85C, VCC= 3.0V
kHz
-12
12
-30
30
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
%
75
32.1.13.5 Internal Phase Locked Loop (PLL) Characteristics
Table 32-23. Internal PLL Characteristics.
Symbol
fIN
Input frequency
Output frequency (1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
32.1.13.6 External Clock Characteristics
Figure 32-3. External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 32-24. External Clock(1)
Symbol
Parameter
Clock frequency(2)
1/tCK
tCK
Clock period
tCH/CL
Clock high/low time
VIL/IH
Low/high level input voltage
tCK
Reduction in period time from one
clock cycle to the next
Notes:
1.
2.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7.0
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
See Table 32-7 on page 69
V
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
76
32.1.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 32-25. External 16MHz Crystal Oscillator and XOSC Characteristics
.
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=0
FRQRANGE=0
0.03
FRQRANGE=1
0.03
FRQRANGE=2 or 3
0.03
0.003
FRQRANGE=0
50
FRQRANGE=1
50
FRQRANGE=2 or 3
50
XOSCPWR=1
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
RQ
Negative impedance
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
Units
ns
0
XOSCPWR=1
Duty cycle
Max.
0
XOSCPWR=1
Frequency error
Typ.
%
50
0.4MHz resonator,
CL=100pF
44k
1MHz crystal, CL=20pF
67k
2MHz crystal, CL=20pF
67k
2MHz crystal
82k
8MHz crystal
1500
9MHz crystal
1500
8MHz crystal
2700
9MHz crystal
2700
12MHz crystal
1000
9MHz crystal
3600
12MHz crystal
1300
16MHz crystal
590
9MHz crystal
390
12MHz crystal
50
16MHz crystal
10
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015

77
Symbol
Parameter
Condition
Min.
9MHz crystal
1500
12MHz crystal
650
16MHz crystal
270
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
1000
16MHz crystal
440
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
1300
16MHz crystal
590
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
Negative impedance
RQ
ESR
Start-up time
Typ.
SF = safety factor
Max.

min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Units
k
ms
pF
32.1.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 32-26. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
Min.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Crystal load capacitance 12pF
28
CTOSC1
Parasitic capacitance TOSC1 pin
3.5
CTOSC2
Parasitic capacitance TOSC2 pin
3.5
Recommended safety factor
Note:
Condition
capacitance load matched to
crystal specification
Units
k
pF
3
See Figure 32-4 for definition.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
78
Figure 32-4. TOSC Input Capacitance
CL1
CL2
Device internal
External
TOSC1
TOSC2
32.768KHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
32.1.14 SPI Characteristics
Figure 32-5. SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
79
Figure 32-6. SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
80
Table 32-27. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 20-3 in
XMEGA C Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
32.1.15 Two-Wire Interface Characteristics
Table 32-28 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA
Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 3221.
Figure 32-7. Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tHD;STA
tSU;DAT
tSU;STO
SDA
tBUF
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
81
Table 32-28. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3VCC
Vhys
Hysteresis of Schmitt trigger inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL clock frequency
0.05VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
fSCL  100kHz
RP
Value of pull-up resistor
tHD;STA
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Units
V
0
0.4
20+0.1Cb (1)(2)
300
20+0.1Cb (1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
100ns
--------------Cb
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
300ns
--------------Cb
ns

µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
82
32.2
ATxmega32D4
32.2.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 32-29 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 32-29. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a Gnd pin
200
VPIN
Pin voltage with respect to Gnd
and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
mA
°C
150
32.2.2 General Operating Ratings
The device must operate within the ratings listed in Table 32-30 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 32-30. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 32-31. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 the Frequency vs. VCC curve is linear
between 1.8V < VCC < 2.7V.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
83
Figure 32-8. Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
84
32.2.3 Current Consumption
Table 32-32. Current Consumption for Active Mode and Sleep Modes
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
40
VCC = 3.0V
80
VCC = 1.8V
200
VCC = 3.0V
410
VCC = 1.8V
350
600
0.75
1.4
7.5
12
VCC = 3.0V
2.8
VCC = 1.8V
42
VCC = 3.0V
85
VCC = 1.8V
85
225
170
350
2.7
5.5
0.1
1.0
2.0
4.5
T = 105°C
0.1
7.0
WDT and sampled BOD enabled,
T = 25°C
1.4
3.0
3.0
6.0
1.4
10
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.5
VCC = 3.0V
1.5
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2.0
VCC = 3.0V
0.7
2.0
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3.0
VCC = 3.0V
1.0
3.0
VCC = 3.0V
300
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.0
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
85
Table 32-33. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
ULP oscillator
0.8
32.768kHz int. oscillator
29
2MHz int. oscillator
32MHz int. oscillator
PLL
BOD
Max.
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
245
DFLL enabled with 32.768kHz int. osc. as reference
410
20x multiplication factor,
32MHz int. osc. DIV4 as reference
290
Watchdog timer
ICC
Typ.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
175
Temperature sensor
170
1.2
16ksps
VREF = Ext ref
ADC
75ksps
VREF = Ext ref
USART
1.
1.0
CURRLIMIT = MEDIUM
0.9
CURRLIMIT = HIGH
0.8
CURRLIMIT = LOW
1.7
mA
200ksps
VREF = Ext ref
3.1
Rx and Tx enabled, 9600 BAUD
11
µA
4
mA
Flash memory and EEPROM programming
Note:
CURRLIMIT = LOW
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
86
32.2.4 Wake-up Time from Sleep Modes
Table 32-34. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from idle,
standby, and extended standby
mode
twakeup
Wake-up time from power-save
and power-down mode
Note:
1.
Condition
Min.
Typ. (1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
5.0
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-9. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 32-9. Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
87
32.2.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output
voltage limits reflect or exceed this specification.
Table 32-35. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL (2)
Parameter
Min.
Max.
Units
-20
20
mA
VCC = 2.4 - 3.6V
0.7*Vcc
VCC+0.5
VCC = 1.6 - 2.4V
0.8*VCC
VCC+0.5
VCC = 2.4- 3.6V
-0.5
0.3*VCC
VCC = 1.6 - 2.4V
-0.5
0.2*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
IIN
Input leakage current I/O pin
RP
Pull/buss keeper resistor
Notes:
Condition
1.
2.
Typ.
VCC = 3.3V
IOH = -4mA
2.6
2.9
VCC = 3.0V
IOH = -3mA
2.1
2.7
VCC = 1.8V
IOH = -1mA
1.4
1.6
VCC = 3.3V
IOL = 8mA
0.4
0.76
VCC = 3.0V
IOL = 5mA
0.3
0.64
VCC = 1.8V
IOL = 3mA
0.2
0.46
<0.01
1
T = 25°C
V
25
µA
k
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
88
32.2.6 ADC Characteristics
Table 32-36. Power Supply, Reference and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1
AVCC- 0.6
Units
V
Rin
Input resistance
Switched
4.5
k
Cin
Input capacitance
Switched
5
pF
RAREF
Reference input resistance
(leakage only)
CAREF
Reference input capacitance
Static load
Vin
∆V
Input range
Conversion range
Differential mode, Vinp - Vinn
Conversion range
Single ended unsigned mode, Vinp
>10
M
7
pF
0
VREF
-VREF
VREF
-V
VREF-V
Fixed offset voltage
200
V
LSB
Table 32-37. Clock and Timing
Symbol
ClkADC
Parameter
ADC clock frequency
Condition
Min.
Maximum is 1/4 of peripheral clock
frequency
100
Measuring internal signals
fClkADC
Typ.
1800
Sample rate
Sample rate
Units
kHz
125
300
Current limitation (CURRLIMIT) off
fADC
Max.
CURRLIMIT = LOW
300
16
250
CURRLIMIT = MEDIUM
150
CURRLIMIT = HIGH
50
Sampling time
Configurable in steps of 1/2 ClkADC cycles
up to 32 ClkADC cycles
0.28
320
Conversion time (latency)
(RES+1)/2 + GAIN
RES (Resolution) = 8 or 12, GAIN=0 to 3
4.5
10
Start-up time
ADC clock cycles
12
24
ADC settling time
After changing reference or input mode
7
7
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ksps
µs
ClkADC
cycles
89
Table 32-38. Accuracy Characteristics
Symbol
RES
Condition(2)
Parameter
Resolution
12-bit resolution
Differential mode
INL(1)
Integral non-linearity
Differential mode
Differential non-linearity
Single ended
unsigned mode
Offset Error
Gain Error
Gain Error
Typ.
Max.
Differential
8
12
12
Single ended signed
7
11
11
Single ended unsigned
8
12
12
16ksps, VREF = 3V
0.5
1
16ksps, all VREF
0.8
2
200ksps, VREF = 3V
0.6
1
1
2
16ksps, VREF = 3.0V
0.5
1
16ksps, all VREF
1.3
2
16ksps, VREF = 3V
0.3
1
16ksps, all VREF
0.5
1
200ksps, VREF = 3V
0.35
1
200ksps, all VREF
0.5
1
16ksps, VREF = 3.0V
0.6
1
16ksps, all VREF
0.6
1
200ksps, all VREF
Single ended
unsigned mode
DNL(1)
Min.
Differential mode
Differential mode
Single ended
unsigned mode
1.
2.
Bits
lsb
8
mV
Temperature drift
0.01
mV/K
Operating voltage drift
0.25
mV/V
External reference
-5
AVCC/1.6
-5
AVCC/2.0
-6
Bandgap
±10
Temperature drift
0.02
mV/K
Operating voltage drift
2
mV/V
External reference
-8
AVCC/1.6
-8
AVCC/2.0
-8
Bandgap
±10
Temperature drift
0.03
mV/K
2
mV/V
Operating voltage drift
Notes:
Units
mV
mV
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
90
Table 32-39. Gain Stage Characteristics
Rin
Input resistance
Switched in normal mode
4.0
k
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
1/2
Clock rate
Same as ADC
100
Gain error
Offset error,
input referred
0
1
0.5x gain, normal mode
-1
1x gain, normal mode
-1
8x gain, normal mode
-1
64x gain, normal mode
10
0.5x gain, normal mode
10
1x gain, normal mode
5
8x gain, normal mode
-20
64x gain, normal mode
-150
AVCC- 0.6
V
3
ClkADC
cycles
1800
kHz
%
mV
32.2.7 Analog Comparator Characteristics
Table 32-40. Analog Comparator Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
Voff
Input offset voltage
VCC=1.6V - 3.6V
<±10
mV
Ilk
Input leakage current
VCC=1.6V - 3.6V
<1
nA
Input voltage range
-0.1
AC startup time
AVCC
100
Vhys1
Hysteresis, none
VCC=1.6V - 3.6V
0
Vhys2
Hysteresis, small
VCC=1.6V - 3.6V
11
Vhys3
Hysteresis, large
VCC=1.6V - 3.6V
26
tdelay
Propagation delay
VCC = 3.0V, T= 85°C
16
VCC=1.6V - 3.6V
16
Integral non-linearity (INL)
0.3
64-level voltage scaler
V
µs
mV
90
0.5
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ns
lsb
91
32.2.8 Bandgap and Internal 1.0V Reference Characteristics
Table 32-41. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Typ.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
Variation over voltage and temperature
Calibrated at T= 85°C, VCC = 3.0V
0.98
1
Units
µs
1.5
Bandgap voltage
INT1V
Max.
1.02
±1.0
V
%
32.2.9 Brownout Detection Characteristics
Table 32-42. Brownout Detection Characteristics(1)
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
Note:
Typ.
Max.
1.50
1.62
1.75
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
VHYST
Min.
Continuous mode
µs
1000
Hysteresis
1.
V
0.4
Sampled mode
Units
1.2
%
BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.
32.2.10 External Reset Characteristics
Table 32-43. External Reset Characteristics
Symbol
tEXT
Parameter
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Condition
Reset pin pull-up resistor
Min.
Typ.
1000
90
VCC = 2.7 - 3.6V
0.6*VCC
VCC = 1.6 - 2.7V
0.6*VCC
Max.
Units
ns
VCC = 2.7 - 3.6V
0.5*VCC
VCC = 1.6 - 2.7V
0.4*VCC
25
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
V
k
92
32.2.11 Power-on Reset Characteristics
Table 32-44. Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
Typ.
Max.
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
32.2.12 Flash and EEPROM Memory Characteristics
Table 32-45. Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
Units
Cycle
Year
Cycle
Year
Table 32-46. Programming Time
Symbol
Parameter
(2)
Chip erase
Flash
EEPROM
Notes:
1.
2.
Condition
Min.
Typ.(1)
32KB Flash, EEPROM
50
Page erase
4
Page write
4
Atomic page erase and write
8
Page erase
4
Page write
4
Atomic page erase and write
8
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
93
32.2.13 Clock and Oscillator Characteristics
32.2.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 32-47. 32.768kHz Internal Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
32.2.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics
Table 32-48. 2MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Units
DFLL calibration stepsize
0.18
32.2.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 32-49. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
Typ.
Max.
DFLL can tune to this frequency over
voltage and temperature
30
32
55
Factory calibrated frequency
Factory calibration accuracy
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.19
32.2.13.4 32kHz Internal ULP Oscillator Characteristics
Table 32-50. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Accuracy
Typ.
32
T = 85C, VCC= 3.0V
kHz
-12
12
-30
30
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
%
94
32.2.13.5 Internal Phase Locked Loop (PLL) Characteristics
Table 32-51. Internal PLL Characteristics
Symbol
fIN
Input frequency
Output frequency(1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
32.2.13.6External Clock Characteristics
Figure 32-10.External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 32-52. External Clock(1)
Symbol
Parameter
Clock frequency(2)
1/tCK
tCK
Clock period
tCH/CL
Clock high/low time
VIL/IH
Low/high level input voltage
tCK
Reduction in period time from one
clock cycle to the next
Notes:
1.
2.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7.0
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
See Table 32-7 on page 69
V
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
95
32.2.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 32-53. External 16MHz Crystal Oscillator and XOSC Characteristics
.
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=0
FRQRANGE=0
0.03
FRQRANGE=1
0.03
FRQRANGE=2 or 3
0.03
0.003
FRQRANGE=0
50
FRQRANGE=1
50
FRQRANGE=2 or 3
50
XOSCPWR=1
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
RQ
Negative impedance
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
Units
ns
0
XOSCPWR=1
Duty cycle
Max.
0
XOSCPWR=1
Frequency error
Typ.
%
50
0.4MHz resonator,
CL=100pF
44k
1MHz crystal, CL=20pF
67k
2MHz crystal, CL=20pF
67k
2MHz crystal
82k
8MHz crystal
1500
9MHz crystal
1500
8MHz crystal
2700
9MHz crystal
2700
12MHz crystal
1000
9MHz crystal
3600
12MHz crystal
1300
16MHz crystal
590
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015

96
Symbol
Parameter
Condition
Negative impedance
ESR
Start-up time
Typ.
9MHz crystal
390
12MHz crystal
50
16MHz crystal
10
9MHz crystal
1500
12MHz crystal
650
16MHz crystal
270
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
1000
16MHz crystal
440
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
1300
16MHz crystal
590
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
RQ
Min.
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
SF = safety factor
Max.

min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Units
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
k
ms
pF
97
32.2.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 32-54. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
Condition
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Crystal load capacitance 12pF
28
CTOSC1
Parasitic capacitance TOSC1 pin
3.5
CTOSC2
Parasitic capacitance TOSC2 pin
3.5
Recommended safety factor
Note:
Min.
capacitance load matched to
crystal specification
Units
k
pF
3
See Figure 32-11 for definition.
Figure 32-11.TOSC Input Capacitance
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768KHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
98
32.2.14 SPI Characteristics
Figure 32-12.SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 32-13.SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
99
Table 32-55. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 20-3 in
XMEGA C Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
32.2.15 Two-Wire Interface Characteristics
Table 32-56 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA
Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 3214.
Figure 32-14.Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tHD;STA
tSU;DAT
tSU;STO
SDA
tBUF
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
100
Table 32-56. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3VCC
Vhys
Hysteresis of Schmitt trigger inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL clock frequency
0.05VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
fSCL  100kHz
RP
Value of pull-up resistor
tHD;STA
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
Data setup time
tSU;DAT
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Units
V
0
0.4
20+0.1Cb (1)(2)
300
20+0.1Cb (1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
100ns
--------------Cb
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
300ns
--------------Cb
ns

µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
101
32.3
ATxmega64D4
32.3.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 32-57 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 32-57. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a Gnd pin
200
VPIN
Pin voltage with respect to Gnd
and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
mA
°C
150
32.3.2 General Operating Ratings
The device must operate within the ratings listed in Table 32-58 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 32-58. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 32-59. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
102
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-15 the Frequency vs. VCC curve is linear
between 1.8V < VCC < 2.7V.
Figure 32-15.Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
103
32.3.3 Current Consumption
Table 32-60. Current Consumption for Active Mode and Sleep Modes
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
68
VCC = 3.0V
145
VCC = 1.8V
260
VCC = 3.0V
540
VCC = 1.8V
460
600
0.96
1.4
9.8
12
VCC = 3.0V
3.9
VCC = 1.8V
62
VCC = 3.0V
118
VCC = 1.8V
125
225
240
350
3.8
5.5
0.1
1.0
1.2
4.5
T = 105°C
0.1
6.0
WDT and sampled BOD enabled,
T = 25°C
1.3
3.0
2.4
6.0
1.3
8.0
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.3
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2
VCC = 3.0V
0.7
2
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3
VCC = 3.0V
1.0
3
VCC = 3.0V
320
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.4
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
104
Table 32-61. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
Typ.
ULP oscillator
1.0
32.768kHz int. oscillator
27
2MHz int. oscillator
32MHz int. oscillator
PLL
ICC
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
270
DFLL enabled with 32.768kHz int. osc. as reference
460
20x multiplication factor,
32MHz int. osc. DIV4 as reference
220
Watchdog Timer
BOD
Max.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
100
Temperature sensor
95
3.0
ADC
AC
150ksps
VREF = Ext ref
CURRLIMIT = LOW
2.6
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
High Speed Mode
Timer/Counter
USART
1.
330
16
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
mA
µA
2.5
4
8
mA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
105
32.3.4 Wake-up Time from Sleep Modes
Table 32-62. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
Condition
Min.
Typ.(1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-16. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 32-16.Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
106
32.3.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output
voltage limits reflect or exceed this specification.
Table 32-63. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL(2)
Parameter
Min.
Max.
Units
-15
15
mA
VCC = 2.7 - 3.6V
2
VCC+0.3
V
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.7*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.3*VCC
VCC = 2.0 - 2.7V
-0.3
0.3*VCC
VCC = 1.6 - 2.0V
-0.3
0.3*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
IIN
Input leakage current
RP
Pull/Buss keeper resistor
tr
Notes:
Condition
Rise time
1.
2.
Typ.
VCC = 3.0 - 3.6V
IOH = -2mA
2.4
0.94*VCC
VCC = 3.3V
IOH = -4mA
2.6
2.9
VCC = 3.0V
IOH = -3mA
2.1
2.6
VCC = 1.8V
IOH = -1mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05*VCC
0.4
VCC = 3.3V
IOL = 8mA
0.4
0.76
VCC = 3.0V
IOL = 5mA
0.3
0.64
VCC = 1.8V
IOL = 3mA
0.2
0.46
<0.001
0.1
T = 25°C
No load
µA
24
k
4
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC must not exceed 200mA.
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC must not exceed 200mA.
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
107
32.3.6 ADC Characteristics
Table 32-64. Power Supply, Reference and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1.0
AVCC- 0.6
Units
V
Rin
Input resistance
Switched
4.0
k
Csample
Input capacitance
Switched
4.4
pF
RAREF
Reference input resistance
(leakage only)
>10
M
CAREF
Reference input capacitance
Static load
7.0
pF
VIN
Input range
Conversion range
Differential mode, Vinp - Vinn
VIN
Conversion range
Single ended unsigned mode, Vinp
∆V
Fixed offset voltage
-0.1
AVCC+0.1
-VREF
VREF
-V
VREF-V
190
V
LSB
Table 32-65. Clock and Timing
Symbol
ClkADC
fClkADC
Parameter
ADC clock frequency
Condition
Min.
Typ.
Maximum is 1/4 of Peripheral clock
frequency
100
1400
Measuring internal signals
100
125
Sample rate
Sample rate
CURRLIMIT = LOW
kHz
200
14
150
CURRLIMIT = MEDIUM
100
CURRLIMIT = HIGH
50
Sampling time
1/2 ClkADC cycle
Conversion time (latency)
(RES+2)/2+GAIN
RES = 8 or 12, GAIN = 0, 1, 2 or 3
Start-up time
ADC settling time
Units
200
Current limitation (CURRLIMIT) off
fADC
Max.
0.25
ksps
5
µs
7
10
ClkADC
cycles
ADC clock cycles
12
24
After changing reference or input mode
7
7
After ADC flush
1
1
5
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ClkADC
cycles
108
Table 32-66. Accuracy Characteristics
Symbol
Parameter
Condition(2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±3
All VREF
±1.5
±4
VCC-1.0V < VREF< VCC-0.6V
±1.0
±3
All VREF
±1.5
±4
guaranteed monotonic
<±0.8
<±1
50ksps
INL(1)
Integral non-linearity
200ksps
DNL
(1)
Differential non-linearity
Offset error
-1
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Differential
mode
Gain error
Noise
Notes:
1.
2.
lsb
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
200ksps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
109
Table 32-67. Gain Stage Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
Rin
Input resistance
Switched in normal mode
4.0
k
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
INL(1)
Integral non-linearity
Gain error
Offset error,
input referred
0
14
50ksps
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
8x gain, normal mode
64x gain, normal mode
Note:
1.
V
ClkADC
cycles
1
1x gain, normal mode
Noise
VCC- 0.6
200
kHz
±4
lsb
%
mV
0.5
VCC = 3.6V
mV
rms
1.5
Ext. VREF
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
32.3.7 Analog Comparator Characteristics
Table 32-68. Analog Comparator Characteristics
Symbol
Parameter
Voff
Input offset voltage
Ilk
Input leakage current
Condition
Min.
Input voltage range
Typ.
mV
<1
nA
AVCC
AC startup time
100
Vhys1
Hysteresis, none
0
Vhys2
Hysteresis, small
13
Vhys3
Hysteresis, large
30
tdelay
Propagation delay
64-Level voltage scaler
mode = HS
30
0.3
V
µs
mV
90
30
Integral non-linearity (INL)
Units
<±10
-0.1
VCC = 3.0V, T= 85°C
Max.
0.5
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ns
lsb
110
32.3.8 Bandgap and Internal 1.0V Reference Characteristics
Table 32-69. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
0.99
1.0
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
1.01
±1.5
V
%
32.3.9 Brownout Detection Characteristics
Table 32-70. Brownout Detection Characteristics
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
Units
V
µs
%
111
32.3.10 External Reset Characteristics
Table 32-71. External Reset Characteristics
Symbol
tEXT
Parameter
Condition
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Min.
Typ.
1000
95
VCC = 2.7 - 3.6V
0.60*VCC
VCC = 1.6 - 2.7V
0.60*VCC
Max.
ns
0.50*VCC
VCC = 2.7 - 3.6V
0.40*VCC
VCC = 1.6 - 2.7V
0.50*VCC
Reset pin pull-up resistor
Units
25
V
k
32.3.11 Power-on Reset Characteristics
Table 32-72. Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
Typ.
Max.
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
32.3.12 Flash and EEPROM Memory Characteristics
Table 32-73. Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
Units
Cycle
Year
Cycle
Year
112
Table 32-74. Programming Time
Symbol
Parameter
Chip erase
Flash
EEPROM
Notes:
1.
2.
Condition
Min.
Typ.(1)
64KB Flash, EEPROM(2) and SRAM erase
55
Page erase
4
Page write
4
Atomic Page Erase and write
8
Page erase
4
Page write
4
Atomic Page erase and write
8
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
32.3.13 Clock and Oscillator Characteristics
32.3.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 32-75.
Symbol
32.768kHz Internal Oscillator Characteristics
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
32.3.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics
Table 32-76.
Symbol
2MHz Internal Oscillator Characteristics
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
-1.5
1.5
-0.2
0.2
%
0.21
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
113
32.3.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 32-77. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
55
Units
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.22
32.3.13.4 32kHz Internal ULP Oscillator Characteristics
Table 32-78. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Typ.
32
T = 85C, VCC= 3.0V
Accuracy
kHz
-12
12
-30
30
%
32.3.13.5 Internal Phase Locked Loop (PLL) Characteristics
Table 32-79. Internal PLL Characteristics
Symbol
fIN
Input frequency
Output frequency(1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
114
32.3.13.6 External Clock Characteristics
Figure 32-17.External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 32-80. External Clock Used as System Clock without Prescaling
Symbol
Clock frequency(1)
1/tCK
tCK
Clock period
tCH
Clock high time
tCL
Clock low time
tCR
Rise time (for maximum frequency)
tCF
Fall time (for maximum frequency)
tCK
Note:
Parameter
Condition
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
Change in period from one clock cycle to the next
1.
Min.
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
115
Table 32-81. External Clock with Prescaler(1) for System Clock
Symbo
l
Parameter
Condition
Clock frequency(2)
1/tCK
tCK
Clock period
tCH
Clock high time
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Clock low time
tCR
Rise time (for maximum frequency)
1.5
tCF
Fall time (for maximum frequency)
1.5
Change in period from one clock cycle to the next
10
Notes:
1.
2.
MHz
ns
tCL
tCK
Units
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
32.3.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 32-82. External 16MHz Crystal Oscillator and XOSC Characteristics
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
<6
Units
ns
<0.5
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
116
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
RQ
Negative impedance(1)
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Start-up time
Min.
Typ.
Max.
Units

SF = safety factor
min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
k
ms
117
Symbol
Parameter
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Note:
1.
Condition
Min.
Typ.
Max.
Units
pF
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
32.3.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 32-83. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC
Condition
Parasitic capacitance
Recommended safety factor
Note:
1.
Min.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Normal mode
4.7
Low power mode
5.2
Capacitance load matched to
crystal specification
Units
k
pF
3
See Figure 32-18 on page 118 for definition.
Figure 32-18.TOSC Input Capacitance
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768KHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
118
32.3.14 SPI Characteristics
Figure 32-19.SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 32-20.SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
119
Table 32-84. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 17-4 in
XMEGA D Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8.0
tSOH
MISO hold after SCK
Slave
13.0
tSOSS
MISO setup after SS low
Slave
11.0
tSOSH
MISO hold after SS high
Slave
8.0
Units
ns
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
120
32.3.15 Two-Wire Interface Characteristics
Table 32-85 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA
Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 3221.
Figure 32-21.Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 32-85. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7*VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3*VCC
Vhys
Hysteresis of Schmitt Trigger Inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O pin
CI
Capacitance for each I/O pin
fSCL
SCL clock frequency
0.05*VCC(1)
3mA, sink current
10pF < Cb < 400pF(2)
0.1VCC < VI < 0.9VCC
fPER(3)>max(10fSCL, 250kHz)
Value of pull-up resistor
fSCL > 100kHz
V
0
0.4
20+0.1Cb(1)(2)
300
20+0.1Cb(1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
fSCL  100kHz
RP
Units
V CC – 0.4V
---------------------------3mA
100ns
--------------Cb
300ns
--------------Cb
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ns

121
Symbol
tHD;STA
Parameter
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
122
32.4
ATxmega128D4
32.4.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 32-86 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 32-86. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a Gnd pin
200
VPIN
Pin voltage with respect to Gnd
and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
mA
°C
150
32.4.2 General Operating Ratings
The device must operate within the ratings listed in Table 32-87 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 32-87. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 32-88. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
123
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-22 the Frequency vs. VCC curve is linear
between 1.8V < VCC < 2.7V.
Figure 32-22.Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
124
32.4.3 Current Consumption
Table 32-89. Current Consumption for Active Mode and Sleep Modes
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
55
VCC = 3.0V
135
VCC = 1.8V
255
VCC = 3.0V
535
VCC = 1.8V
460
600
1.0
1.4
9.5
12
VCC = 3.0V
3.9
VCC = 1.8V
62
VCC = 3.0V
118
VCC = 1.8V
125
225
240
350
3.8
5.5
0.1
1.0
1.5
4.5
T = 105°C
0.1
8.6
WDT and sampled BOD enabled,
T = 25°C
1.4
3.0
2.8
6.0
1.4
8.8
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.5
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2.0
VCC = 3.0V
0.7
2.0
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3.0
VCC = 3.0V
1.0
3.0
VCC = 3.0V
300
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.9
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
125
Table 32-90. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
ULP oscillator
1.0
32.768kHz int. oscillator
29
2MHz int. oscillator
32MHz int. oscillator
PLL
BOD
Max.
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
270
DFLL enabled with 32.768kHz int. osc. as reference
440
20x multiplication factor,
32MHz int. osc. DIV4 as reference
320
Watchdog Timer
ICC
Typ.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
260
Temperature sensor
250
3.0
ADC
AC
150ksps
VREF = Ext ref
CURRLIMIT = LOW
2.6
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
High Speed mode
330
Low power mode
130
Timer/Counter
USART
1.
µA
16
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
mA
2.5
4.0
8.0
mA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
126
32.4.4 Wake-up Time from Sleep Modes
Table 32-91. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
Condition
Min.
Typ.(1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-23. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 32-23.Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
127
32.4.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output
voltage limits reflect or exceed this specification.
Table 32-92. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL(2)
Parameter
Condition
Max.
Units
-20
20
mA
VCC = 2.7 - 3.6V
2.0
VCC+0.3
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.8*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.8
VCC = 2.0 - 2.7V
-0.3
0.3*VCC
VCC = 1.6 - 2.0V
-0.3
0.2*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VCC = 3.0 - 3.6V
VOH
High level output voltage
2.4
0.94*VCC
IOH = -1mA
2.0
0.96*VCC
IOH = -2mA
1.7
0.92*VCC
VCC = 3.3V
IOH = -8mA
2.6
2.9
VCC = 3.0V
IOH = -6mA
2.1
2.6
VCC = 1.8V
IOH = -2mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05
0.4
IOL = 1mA
0.03
0.4
IOL = 2mA
0.06
0.7
VCC = 3.3V
IOL = 15mA
0.4
0.76
VCC = 3.0V
IOL = 10mA
0.3
0.64
VCC = 1.8V
IOL = 5mA
0.2
0.46
<0.01
0.1
VCC = 2.3 - 2.7V
VOL
Low level output voltage
IIN
Input leakage current
RP
Pull/Buss keeper resistor
tr
Rise time
1.
2.
Typ.
IOH = -2mA
VCC = 2.3 - 2.7V
Notes:
Min.
T = 25°C
V
24
No load
4.0
slew rate limitation
7.0
µA
k
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC must not exceed 200mA.
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC must not exceed 200mA.
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
128
32.4.6 ADC Characteristics
Table 32-93. Power Supply, Reference and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Rin
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1.0
AVCC- 0.6
Units
V
Input resistance
Switched
4.0
k
Csample
Input capacitance
Switched
4.4
pF
RAREF
Reference input resistance
(leakage only)
>10
M
CAREF
Reference input capacitance
Static load
7.0
pF
VIN
∆V
Input range
Conversion range
Differential mode, Vinp - Vinn
Conversion range
Single ended unsigned mode, Vinp
-0.1
AVCC+0.1
-VREF
VREF
-V
VREF-V
Fixed offset voltage
190
V
lsb
Table 32-94. Clock and Timing
Symbol
ClkADC
fADC
Parameter
ADC clock frequency
Sample rate
Condition
Min.
Typ.
Maximum is 1/4 of Peripheral clock
frequency
100
1400
Measuring internal signals
100
125
Current limitation (CURRLIMIT) off
14
200
CURRLIMIT = LOW
14
150
CURRLIMIT = MEDIUM
14
100
CURRLIMIT = HIGH
Units
kHz
ksps
50
Sampling time
1/2 ClkADC cycle
Conversion time (latency)
(RES+2)/2+GAIN
RES = 8 or 12, GAIN = 0, 1, 2 or 3
Start-up time
ADC settling time
Max.
0.25
5
µs
7
10
ClkADC
cycles
ADC clock cycles
12
24
After changing reference or input mode
7
7
After ADC flush
1
1
5
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ClkADC
cycles
129
Table 32-95. Accuracy Characteristics
Symbol
Parameter
Condition(2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±2
All VREF
±1.5
±3
VCC-1.0V < VREF< VCC-0.6V
±1.0
±2
All VREF
±1.5
±3
guaranteed monotonic
<±0.8
<±1
50ksps
INL(1)
Integral non-linearity
200ksps
DNL
(1)
Differential non-linearity
Offset error
-1
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Differential
mode
Gain error
Noise
Notes:
1.
2.
lsb
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
200ksps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
130
Table 32-96. Gain Stage Characteristics
Symbol
Rin
Csample
INL(1)
Parameter
Condition
Min.
Units
Switched in normal mode
4.0
k
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
Integral non-linearity
Offset error,
input referred
0
Noise
VCC- 0.6
14
50ksps
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
8x gain, normal mode
V
ClkADC
cycles
1
1x gain, normal mode
200
kHz
±4
lsb
%
mV
0.5
VCC = 3.6V
Ext. VREF
mV
rms
1.5
64x gain, normal mode
1.
Max.
Input resistance
Gain error
Note:
Typ.
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
32.4.7 Analog Comparator Characteristics
Table 32-97. Analog Comparator Characteristics
Symbol
Parameter
Voff
Input offset voltage
Ilk
Input leakage current
Condition
Min.
Input voltage range
Typ.
Max.
Units
<±10
mV
<1
nA
-0.1
AVCC
V
AC startup time
100
µs
Vhys1
Hysteresis, none
0
mV
Vhys2
Hysteresis, small
Vhys3
Hysteresis, large
mode = High Speed (HS)
13
mode = Low Power (LP)
30
mode = HS
30
mode = LP
60
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
mV
mV
131
Symbol
tdelay
Parameter
Propagation delay
64-Level voltage scaler
Condition
VCC = 3.0V, T= 85°C
Min.
mode = HS
Typ.
Max.
30
90
30
Integral non-linearity (INL)
0.3
0.5
Units
ns
lsb
32.4.8 Bandgap and Internal 1.0V Reference Characteristics
Table 32-98. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
0.99
1.0
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
1.01
±1.5
V
%
32.4.9 Brownout Detection Characteristics
Table 32-99. Brownout Detection Characteristics
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
Units
V
µs
%
132
32.4.10 External Reset Characteristics
Table 32-100.External Reset Characteristics
Symbol
tEXT
Parameter
Condition
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Min.
Typ.
1000
95
VCC = 2.7 - 3.6V
0.60*VCC
VCC = 1.6 - 2.7V
0.60*VCC
Max.
ns
0.50*VCC
VCC = 2.7 - 3.6V
0.40*VCC
VCC = 1.6 - 2.7V
0.50*VCC
Reset pin pull-up resistor
Units
25
V
k
32.4.11 Power-on Reset Characteristics
Table 32-101.Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
Typ.
Max.
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
32.4.12 Flash and EEPROM Memory Characteristics
Table 32-102.Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
Units
Cycle
Year
Cycle
Year
133
Table 32-103.Programming Time
Symbol
Condition
Chip erase
128KB Flash, EEPROM(2) and SRAM erase
75
Application erase
Section erase
6
Page erase
4
Page write
4
Atomic Page Erase and write
8
Page erase
4
Page write
4
Atomic Page erase and write
8
Flash
EEPROM
Notes:
1.
2.
Min.
Typ.(1)
Parameter
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
32.4.13 Clock and Oscillator Characteristics
32.4.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 32-104. 32.768kHz Internal Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
32.4.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics
Table 32-105. 2MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
-1.5
1.5
-0.2
0.2
%
0.21
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
134
32.4.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 32-106. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
55
Units
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.22
32.4.13.4 32kHz Internal ULP Oscillator Characteristics
Table 32-107. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Typ.
32
T = 85C, VCC= 3.0V
Accuracy
kHz
-12
12
-30
30
%
32.4.13.5 Internal Phase Locked Loop (PLL) Characteristics
Table 32-108. Internal PLL Characteristics
Symbol
fIN
Input frequency
Output frequency(1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
135
32.4.13.6 External Clock Characteristics
Figure 32-24.External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 32-109. External Clock Used as System Clock without Prescaling
Symbol
Clock frequency(1)
1/tCK
tCK
Clock period
tCH
Clock high time
tCL
Clock low time
tCR
Rise time (for maximum frequency)
tCF
Fall time (for maximum frequency)
tCK
Note:
Parameter
Condition
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
Change in period from one clock cycle to the next
1.
Min.
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
136
Table 32-110. External Clock with Prescaler(1) for System Clock
Symbol
Parameter
Condition
Clock frequency(2)
1/tCK
tCK
Clock period
tCH
Clock high time
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Clock low time
tCR
Rise time (for maximum frequency)
1.5
tCF
Fall time (for maximum frequency)
1.5
Change in period from one clock cycle to the next
10
Notes:
1.
2.
MHz
ns
tCL
tCK
Units
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
32.4.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 32-111. External 16MHz Crystal Oscillator and XOSC Characteristics
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
<6
Units
ns
<0.5
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
137
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
RQ
Negative impedance(1)
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Start-up time
Min.
Typ.
Max.
Units

SF = safety factor
min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
k
ms
138
Symbol
Parameter
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Note:
1.
Condition
Min.
Typ.
Max.
Units
pF
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
32.4.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 32-112. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC
Condition
Parasitic capacitance
Recommended safety factor
Note:
1.
Min.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Normal mode
4.7
Low power mode
5.2
Capacitance load matched to
crystal specification
Units
k
pF
3
See Figure 32-25 for definition.
Figure 32-25.TOSC Input Capacitance
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768KHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
139
32.4.14 SPI Characteristics
Figure 32-26.SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 32-27.SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
140
Table 32-113. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 17-4 in
XMEGA D Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8.0
tSOH
MISO hold after SCK
Slave
13.0
tSOSS
MISO setup after SS low
Slave
11.0
tSOSH
MISO hold after SS high
Slave
8.0
Units
ns
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
141
32.4.15 Two-Wire Interface Characteristics
Table 32-114 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA
Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 3228.
Figure 32-28.Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 32-114. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7*VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3*VCC
Vhys
Hysteresis of Schmitt Trigger Inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O pin
CI
Capacitance for each I/O pin
fSCL
SCL clock frequency
0.05*VCC(1)
3mA, sink current
10pF < Cb < 400pF(2)
0.1VCC < VI < 0.9VCC
fPER(3)>max(10fSCL, 250kHz)
Value of pull-up resistor
fSCL > 100kHz
V
0
0.4
20+0.1Cb(1)(2)
300
20+0.1Cb(1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
fSCL  100kHz
RP
Units
V CC – 0.4V
---------------------------3mA
100ns
--------------Cb
300ns
--------------Cb
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ns

142
Symbol
tHD;STA
Parameter
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
143
33.
Typical Characteristics
33.1
ATxmega16D4
33.1.1 Current Consumption
33.1.1.1 Active Mode Supply Current
Figure 33-1. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C.
700
3.3V
600
3.0V
ICC [µA]
500
2.7V
400
2.2V
300
1.8V
200
100
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Frequency [MHz]
Figure 33-2. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C.
12
3.3V
10
3.0V
2.7V
ICC [mA]
8
6
2.2V
4
1.8V
2
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
144
Figure 33-3. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
180
160
-40°C
Icc [µA]
140
25°C
85°C
105°C
120
100
80
60
40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-4. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock.
600
-40°C
25°C
85°C
105°C
550
500
Icc [µA]
450
400
350
300
250
200
150
100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
145
Figure 33-5. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
1350
1200
-40°C
25 °C
85°C
105°C
1050
Icc [µA]
900
750
600
450
300
150
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-6. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
5.0
-40°C
25 °C
85°C
105°C
4.5
4.0
Icc [mA]
3.5
3.0
2.5
2.0
1.5
1.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
146
Figure 33-7. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
12.0
-40 °C
11.5
11.0
25 °C
10.5
85 °C
105°C
10.0
Icc [mA]
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
33.1.1.2 Idle Mode Supply Current
Figure 33-8. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
ICC [µA]
140
3.3V
120
3.0V
100
2.7V
80
2.2V
60
1.8V
40
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
147
Figure 33-9. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
4.5
3.3V
4.0
3.0V
3.5
2.7V
ICC [mA]
3.0
2.5
2.0
2.2V
1.5
1.0
1.8V
0.5
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
Figure 33-10. Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
35.50
105°C
34.75
34.00
33.25
32.50
Icc [µA]
31.75
85°C
31.00
-40°C
30.25
25 °C
29.50
28.75
28.00
27.25
26.50
25.75
25.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
148
Figure 33-11. Idle Mode Supply Current vs. VCC
fSYS = 1MHz external clock
130
105°C
85 °C
25 °C
-40°C
120
110
100
Icc [µA]
90
80
70
60
50
40
30
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-12. Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
330
-40°C
25°C
85 °C
105 °C
310
290
270
Icc [µA]
250
230
210
190
170
150
130
110
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
149
Figure 33-13. Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
1600
-40 °C
25 °C
85°C
105°C
1500
1400
1300
Icc [µA]
1200
1100
1000
900
800
700
600
500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-14. Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
4.25
-40°C
4.00
25 °C
85°C
105°C
3.75
Icc [mA]
3.50
3.25
3.00
2.75
2.50
2.25
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
150
33.1.1.3 Power-down Mode Supply Current
Figure 33-15. Power-down Mode Supply Current vs. VCC
All functions disabled
6.5
105°C
6.0
5.5
5.0
Icc [µA]
4.5
4.0
3.5
85°C
3.0
2.5
2.0
25°C
-40°C
1.5
1.0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-16. Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
5.5
105°C
5.0
4.5
4.0
Icc [µA]
3.5
3.0
2.5
2.0
85°C
1.5
1.0
0.5
25°C
-40°C
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
151
Figure 33-17. Power-down Mode Supply Current vs. Temperature
Watchdog and sampled BOD enabled and running from internal ULP oscillator
7.5
7.0
3.6V
6.5
3.0V
2.7V
2.2V
1.8V
6.0
5.5
Icc [µA]
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
33.1.1.4 Power-save Mode Supply Current
Figure 33-18. Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
152
33.1.1.5 Standby Mode Supply Current
Figure 33-19. Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.1
105°C
10.9
9.7
85°C
I CC [µA]
8.5
25°C
-40°C
7.3
6.1
4.9
3.7
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-20. Standby Supply Current vs. VCC
25°C, running from different crystal oscillators
480
16MHz
12MHz
440
400
ICC[µA]
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
153
33.1.2 I/O Pin Characteristics
33.1.2.1 Pull-up
Figure 33-21. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
72
64
56
IPIN [µA]
48
40
32
24
-40°C
25°C
85°C
105°C
16
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
VPIN [V]
Figure 33-22. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
108
96
IPIN [µA]
84
72
60
48
36
-40°C
25°C
85°C
105°C
24
12
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
VPIN [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
154
Figure 33-23. I/O pin pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
IPIN [µA]
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
VPIN [V]
33.1.2.2 Output Voltage vs. Sink/Source Current
Figure 33-24. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
2.0
1.8
1.6
VPIN [V]
1.4
1.2
1.0
0.8
0.6
0.4
85°C 105°C
25°C
-40°C
0.2
0
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
I PIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
155
Figure 33-25. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.15
2.80
2.45
VPIN [V]
2.10
1.75
1.40
1.05
25°C
-40°C
85°C
105°C
0.70
0.35
0
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 33-26. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.5
3.15
2.8
VPIN [V]
2.45
2.1
1.75
1.4
1.05
0.7
25°C
-40°C
85°C
105°C
0.35
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
156
Figure 33-27. I/O Pin Output Voltage vs. Source Current
3.6
3.6 V
3.3 V
3.3
3
2.7 V
VPIN [V]
2.7
2.4
2.2 V
2.1
1.8
1.8 V
1.5
1.2
0.9
0.6
0.3
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 33-28. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1
0.9
0.8
105°C
VPIN [V]
0.7
25°C
85°C
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
157
Figure 33-29. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.1
105°C
85°C
1.0
0.9
25°C
0.8
-40°C
VPIN [V]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
Figure 33-30. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
VPIN [V]
1
0.9
105°C
85°C
0.8
25°C
0.7
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
158
Figure 33-31. I/O Pin Output Voltage vs. Sink Current
1.5
1.8V
1.6V
1.35
2.7V
3.0V
3.3V
3.6V
1.2
1.05
VPIN [V]
0.9
0.75
0.6
0.45
0.3
0.15
0
0
2
4
6
8
10
12
14
16
18
20
IPIN [mA]
33.1.2.3 Thresholds and Hysteresis
Figure 33-32. I/O Pin Input Threshold Voltage vs. VCC
T = 25C
1.8
VIH
1.6
VIL
1.4
Vthreshold[V]
1.2
1.0
0.8
0.6
0.4
0.2
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
159
Figure 33-33. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
-40°C
25°C
85 °C
105 °C
1.8
1.7
Vthreshold [V]
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-34. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
1.75
-40°C
25°C
85 °C
105 °C
1.60
Vthreshold [V]
1.45
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
160
Figure 33-35. I/O Pin Input Hysteresis vs. VCC
0.42
0.39
-40°C
Vthreshold [V]
0.36
0.33
0.3
25°C
0.27
0.24
85°C
0.21
105°C
0.18
0.15
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.4
2.6
2.8
3.0
VCC [V]
33.1.3 ADC Characteristics
Figure 33-36. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.6
1.4
INL[LSB]
1.2
Single-ended unsigned mode
1.0
0.8
0.6
Differential mode
0.4
Single-ended signed mode
0.2
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
161
Figure 33-37. INL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.70
0.65
Single-ended unsigned mode
INL[LSB]
0.60
0.55
Differential mode
0.50
0.45
0.40
0.35
Single-ended signed mode
0.30
0.25
50
100
150
200
250
300
ADC sample rate [ksps]
Figure 33-38. INL Error vs. Input Code
1.25
1.00
0.75
INL[LSB]
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-1.25
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
162
Figure 33-39. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
0.70
0.65
DNL [LSB]
0.60
Single-ended unsigned mode
0.55
0.50
0.45
0.40
Differential mode
0.35
Single-ended signed mode
0.30
0.25
0.20
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 33-40. DNL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external.
0.60
0.55
Single-ended unsigned mode
DNL [LSB]
0.50
0.45
0.40
Differential mode
0.35
0.30
Single-ended signed mode
0.25
0.20
50
100
150
200
250
300
ADC sample rate [ksps]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
163
Figure 33-41. DNL Error vs. Input Code
1
DNL [LSB]
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 33-42. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 200ksps
-5
Gain error [mV]
-6
-7
Differential mode
-8
-9
Single-ended signed mode
-10
-11
-12
Single-ended unsigned mode
-13
-14
-15
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
164
Figure 33-43. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 200ksps
-2
Gain error [mV]
-3
-4
Differential mode
-5
Single-ended signed
mode
-6
Single-ended unsigned mode
-7
-8
-9
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-44. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 200ksps
9.4
9.2
Offset error [mV]
9.0
8.8
Differential mode
8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
165
Figure 33-45. Gain Error vs. Temperature
VCC = 3.0V, VREF = external 2.0V
0
-2
Gain error [mV]
Single-ended signed mode
-4
-6
Differential mode
-8
-10
Single-ended unsigned mode
-12
-14
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-46. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 200ksps
8.00
Offset error [mV]
7.00
6.00
5.00
Differential mode
4.00
3.00
2.00
1.00
0.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
166
33.1.4 Analog Comparator Characteristics
Figure 33-47. Analog Comparator Hysteresis vs. VCC
High speed, small hysteresis
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
-40°C
6
5
4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-48. Analog Comparator Hysteresis vs. VCC
High speed, large hysteresis
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
167
Figure 33-49. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-50. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
68
64
105°C
85°C
60
VHYST [mV]
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
168
Figure 33-51. Analog Comparator Current Source vs. Calibration Value
T = 25C
8
ICURRENTSOURCE [µA]
7.25
6.5
5.75
5
3.6V
4.25
3.0V
3.5
2.2V
2.75
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
Figure 33-52. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7.0
6.6
ICURRENTSOURCE [µA]
6.2
5.8
5.4
5.0
4.6
4.2
-40°C
25°C
85°C
105°C
3.8
3.4
3.0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
169
Figure 33-53. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.050
0.025
INL [LSB]
0
-0.025
-0.050
-0.075
-0.100
25°C
-0.125
-0.150
0
10
20
30
40
50
60
70
SCALEFAC
33.1.5 Internal 1.0V Reference Characteristics
Bandgap Voltage [V]
Figure 33-54. ADC Internal 1.0V Reference vs. Temperature
1.0088
1.008
1.0072
1.0064
1.0056
1.0048
1.004
1.0032
1.0024
1.0016
1.0008
1
0.9992
0.9984
0.9976
0.9968
1.8V
2.2V
2.7V
3.0V
3.6V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
170
33.1.6 BOD Characteristics
Figure 33-55. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.574
Rising Vcc
1.57
Falling Vcc
1.566
VBOT [V]
1.562
1.558
1.554
1.55
1.546
1.542
1.538
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
95
105
Temperature [°C]
Figure 33-56. BOD Thresholds vs. Temperature
BOD level = 3.0V
2.992
2.984
Rising Vcc
2.976
VBOT [V]
2.968
2.96
2.952
2.944
Falling Vcc
2.936
2.928
2.92
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
171
33.1.7 External Reset Characteristics
Figure 33-57. Minimum Reset Pin Pulse Width vs. VCC
145
140
135
130
TRST [ns]
125
120
115
110
105
105°C
85°C
100
95
25°C
-40°C
90
85
80
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-58. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
72
64
IRESET [µA]
56
48
40
32
24
16
-40°C
25°C
85°C
105°C
8
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VRESET [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
172
Figure 33-59. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VRESET [V]
Figure 33-60. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VRESET [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
173
Figure 33-61. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
-40°C
25°C
85°C
105°C
2.10
2.00
1.90
1.80
V threshold [V]
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-62. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.7
-40°C
25°C
85 °C
105 °C
1.6
1.5
Vthreshold [V]
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
174
33.1.8 Power-on Reset Characteristics
Figure 33-63. Power-on Reset Current Consumption vs. VCC
I CC [µA]
BOD level = 3.0V, enabled in continuous mode
700
-40°C
600
25°C
500
85°C
105°C
400
300
200
100
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
Figure 33-64. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
650
-40°C
585
520
25°C
85°C
105°C
I CC [µA]
455
390
325
260
195
130
65
0
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
175
33.1.9 Oscillator Characteristics
33.1.9.1 Ultra Low-Power Internal Oscillator
Frequency [kHz]
Figure 33-65. Ultra Low-Power Internal Oscillator Frequency vs. Temperature
35.4
35.1
34.8
34.5
34.2
33.9
33.6
33.3
33.0
32.7
32.4
32.1
31.8
31.5
31.2
30.9
3.6V
3.3V
3.0V
2.7V
2.0V
1.8V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
33.1.9.2 32.768kHz Internal Oscillator
Figure 33-66. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.9
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
Frequency [kHz]
32.8
32.75
32.7
32.65
32.6
32.55
32.5
32.45
32.4
32.35
32.3
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
176
Figure 33-67. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
55
51
3.0V
Frequency [kHz]
47
43
39
35
31
27
23
19
15
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240 256
RC32KCAL [7..0]
33.1.9.3 2MHz Internal Oscillator
Figure 33-68. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.16
2.14
Frequency [MHz]
2.12
2.10
2.08
2.06
2.04
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.02
2.00
1.98
1.96
1.94
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
177
Figure 33-69. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.012
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.008
Frequency [MHz]
2.004
2.00
1.996
1.992
1.988
1.984
1.98
1.976
1.972
1.968
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-70. 2MHz Internal Oscillator CALA Calibration Step Size
Step Size [%]
VCC = 3V
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
-40°C
25°C
85°C
105°C
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
178
33.1.9.4 32MHz Internal Oscillator
Figure 33-71. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
36.45
36
Frequency [MHz]
35.55
35.1
34.65
34.2
33.75
33.3
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
32.4
31.95
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-72. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
179
Figure 33-73. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.34
0.32
0.30
Step Size [%]
0.28
0.26
0.24
0.22
0.20
0.16
-40°C
105°C
85°C
0.14
25°C
0.18
0.12
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
33.1.9.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 33-74. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
55.3
54.6
53.9
Frequency [MHz]
53.2
52.5
51.8
51.1
50.4
49.7
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
49.0
48.3
47.6
46.9
46.2
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
180
Figure 33-75. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-76. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.29
0.27
Step Size [%]
0.25
0.23
0.21
0.19
-40°C
0.17
25°C
105°C
0.15
0.13
85°C
0.11
0.09
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
181
33.1.10 Two-Wire Interface Characteristics
Figure 33-77. SDA Hold Time vs. Temperature
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
Figure 33-78. SDA Hold Time vs. Supply Voltage
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
182
33.1.11 PDI Characteristics
Figure 33-79. Maximum PDI Frequency vs. VCC
22
21
-40°C
Frequency max [MHz]
20
19
25°C
18
85°C
105°C
17
16
15
14
13
12
11
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
183
33.2
ATxmega32D4
33.2.1 Current Consumption
33.2.1.1 Active Mode Supply Current
Figure 33-80. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
600
550
3.6V
500
ICC [µA]
450
400
3.0V
350
2.7V
300
250
2.2V
200
1.8V
150
100
50
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
Figure 33-81. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
11
10
3.6V
9
ICC [mA]
8
3.0V
7
2.7V
6
5
4
2.2V
3
2
1.8V
1
0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
184
Figure 33-82. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
180
160
-40°C
Icc [µA]
140
25°C
85°C
105°C
120
100
80
60
40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-83. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock
600
-40°C
25°C
85°C
105°C
550
500
Icc [µA]
450
400
350
300
250
200
150
100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
185
Figure 33-84. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
1350
1200
-40°C
25 °C
85°C
105°C
1050
Icc [µA]
900
750
600
450
300
150
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-85. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
5.0
-40°C
25 °C
85°C
105°C
4.5
4.0
Icc [mA]
3.5
3.0
2.5
2.0
1.5
1.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
186
Figure 33-86. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
12.0
-40 °C
11.5
11.0
25 °C
10.5
85 °C
105°C
10.0
Icc [mA]
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
33.2.1.2 Idle Mode Supply Current
Figure 33-87. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
120
3.6V
105
90
3.0V
ICC[uA]
75
2.7V
60
2.2V
45
1.8V
30
15
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
187
Figure 33-88. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
4.0
3.6
3.6V
3.2
Icc [mA]
2.8
3.0V
2.4
2.7V
2.0
1.6
1.2
2.2V
0.8
1.8V
0.4
0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Frenquecy [MHz]
Figure 33-89. Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
35.50
105°C
34.75
34.00
33.25
32.50
Icc [µA]
31.75
85°C
31.00
-40°C
30.25
25 °C
29.50
28.75
28.00
27.25
26.50
25.75
25.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
188
Figure 33-90. Idle Mode Supply Current vs. VCC
fSYS = 1MHz external clock
130
105°C
85 °C
25 °C
-40°C
120
110
100
Icc [µA]
90
80
70
60
50
40
30
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-91. Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
330
-40°C
25°C
85 °C
105 °C
310
290
270
Icc [µA]
250
230
210
190
170
150
130
110
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
189
Figure 33-92. Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
1600
-40 °C
25 °C
85°C
105°C
1500
1400
1300
Icc [µA]
1200
1100
1000
900
800
700
600
500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-93. Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
4.25
-40°C
4.00
25 °C
85°C
105°C
3.75
Icc [mA]
3.50
3.25
3.00
2.75
2.50
2.25
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
190
33.2.1.3 Power-down Mode Supply Current
Figure 33-94. Power-down Mode Supply Current vs. VCC
All functions disabled
6.5
105°C
6.0
5.5
5.0
Icc [µA]
4.5
4.0
3.5
85°C
3.0
2.5
2.0
25°C
-40°C
1.5
1.0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-95. Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
5.5
105°C
5.0
4.5
4.0
Icc [µA]
3.5
3.0
2.5
2.0
85°C
1.5
1.0
0.5
25°C
-40°C
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
191
Figure 33-96. Power-down Mode Supply Current vs. Temperature
Watchdog and sampled BOD enabled and running from internal ULP oscillator
7.5
7.0
3.6V
6.5
3.0V
2.7V
2.2V
1.8V
6.0
5.5
Icc [µA]
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
33.2.1.4 Power-save Mode Supply Current
Figure 33-97. Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
192
33.2.1.5 Standby Mode Supply Current
Figure 33-98. Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.1
105°C
10.9
9.7
85°C
I CC [µA]
8.5
25°C
-40°C
7.3
6.1
4.9
3.7
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-99. Standby Supply Current vs. VCC
25°C, running from different crystal oscillators
480
16MHz
12MHz
440
400
I CC [µA]
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
193
33.2.2 I/O Pin Characteristics
33.2.2.1 Pull-up
Figure 33-100. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
72
64
56
IPIN [µA]
48
40
32
24
-40°C
25°C
85°C
105°C
16
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
VPIN [V]
Figure 33-101. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
108
96
IPIN [µA]
84
72
60
48
36
-40°C
25°C
85°C
105°C
24
12
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
VPIN [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
194
Figure 33-102. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
IPIN [µA]
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
VPIN [V]
33.2.2.2 Output Voltage vs. Sink/Source Current
Figure 33-103. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
2.0
1.8
1.6
VPIN [V]
1.4
1.2
1.0
0.8
0.6
0.4
85°C 105°C
25°C
-40°C
0.2
0
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
I PIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
195
Figure 33-104. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.15
2.80
2.45
VPIN [V]
2.10
1.75
1.40
1.05
25°C
-40°C
85°C
105°C
0.70
0.35
0
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 33-105. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.5
3.15
2.8
VPIN [V]
2.45
2.1
1.75
1.4
1.05
0.7
25°C
-40°C
85°C
105°C
0.35
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
196
Figure 33-106. I/O Pin Output Voltage vs. Source Current
3.6
3.6 V
3.3 V
3.3
3
2.7 V
VPIN [V]
2.7
2.4
2.2 V
2.1
1.8
1.8 V
1.5
1.2
0.9
0.6
0.3
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
105°C
85°C
25°C
0
IPIN [mA]
Figure 33-107. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1
0.9
0.8
VPIN [V]
0.7
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
197
Figure 33-108. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.1
105°C
85°C
1.0
0.9
25°C
0.8
-40°C
VPIN [V]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
Figure 33-109. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
VPIN [V]
1
0.9
105°C
85°C
0.8
25°C
0.7
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
198
Figure 33-110. I/O Pin Output Voltage vs. Sink Current
1.5
1.8V
1.6V
1.35
2.7V
3.0V
3.3V
3.6V
1.2
VPIN [V]
1.05
0.9
0.75
0.6
0.45
0.3
0.15
0
0
2
4
6
8
10
12
14
16
18
20
IPIN [mA]
33.2.2.3 Thresholds and Hysteresis
Figure 33-111. I/O Pin Input Threshold Voltage vs. VCC
T = 25C
1.8
VIH
Vthreshold [V]
1.7
1.6
VIL
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
199
Figure 33-112. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
-40°C
25°C
85 °C
105 °C
1.8
1.7
Vthreshold [V]
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-113. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
1.75
-40°C
25°C
85 °C
105 °C
1.60
Vthreshold [V]
1.45
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
200
Figure 33-114. I/O Pin Input Hysteresis vs. VCC
0.42
0.39
-40°C
Vthreshold [V]
0.36
0.33
0.3
25°C
0.27
0.24
85°C
0.21
105°C
0.18
0.15
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.4
2.6
2.8
3.0
VCC [V]
33.2.3 ADC Characteristics
Figure 33-115. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.6
1.4
INL[LSB]
1.2
Single-ended unsigned mode
1.0
0.8
0.6
Differential mode
0.4
Single-ended signed mode
0.2
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
201
Figure 33-116. INL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.70
0.65
Single-ended unsigned mode
INL[LSB]
0.60
0.55
Differential mode
0.50
0.45
0.40
0.35
Single-ended signed mode
0.30
0.25
50
100
150
200
250
300
ADC sample rate [ksps]
Figure 33-117. INL Error vs. Input Code
1.25
1.00
0.75
INL[LSB]
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-1.25
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
202
Figure 33-118. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
0.70
0.65
0.60
Single-ended unsigned mode
DNL [LSB]
0.55
0.50
0.45
0.40
Differential mode
0.35
Single-ended signed mode
0.30
0.25
0.20
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 33-119. DNL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.60
0.55
Single-ended unsigned mode
DNL [LSB]
0.50
0.45
0.40
Differential mode
0.35
0.30
Single-ended signed mode
0.25
0.20
50
100
150
200
250
300
ADC sample rate [ksps]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
203
Figure 33-120. DNL Error vs. Input code
1
DNL [LSB]
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 33-121. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 200ksps
-5
Gain error [mV]
-6
-7
Differential mode
-8
-9
Single-ended signed mode
-10
-11
-12
Single-ended unsigned mode
-13
-14
-15
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
204
Figure 33-122. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 200ksps
-2
Gain error [mV]
-3
-4
Differential mode
-5
Single-ended signed
mode
-6
Single-ended unsigned mode
-7
-8
-9
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-123. Gain Error vs. Temperature
VCC = 3.0V, VREF = external 2.0V
0
-2
Gain error [mV]
Single-ended signed mode
-4
-6
Differential mode
-8
-10
Single-ended unsigned mode
-12
-14
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
205
Figure 33-124. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 200ksps
9.4
9.2
Offset error [mV]
9.0
8.8
Differential mode
8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 33-125. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 200ksps
8.00
Offset error [mV]
7.00
6.00
5.00
Differential mode
4.00
3.00
2.00
1.00
0.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
206
33.2.4 Analog Comparator Characteristics
Figure 33-126. Analog Comparator Hysteresis vs. VCC
High speed, small hysteresis
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
-40°C
6
5
4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-127. Analog Comparator Hysteresis vs. VCC
High speed, large hysteresis
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
207
Figure 33-128. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-129. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
68
64
105°C
85°C
60
VHYST [mV]
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
208
Figure 33-130. Analog Comparator Current Source vs. Calibration Value
T = 25C
8
ICURRENTSOURCE [µA]
7.25
6.5
5.75
5
3.6V
4.25
3.0V
3.5
2.2V
2.75
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
Figure 33-131. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7.0
6.6
ICURRENTSOURCE [µA]
6.2
5.8
5.4
5.0
4.6
4.2
-40°C
25°C
85°C
105°C
3.8
3.4
3.0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
209
Figure 33-132. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.050
0.025
INL [LSB]
0
-0.025
-0.050
-0.075
-0.100
25°C
-0.125
-0.150
0
10
20
30
40
50
60
70
SCALEFAC
33.2.5 Internal 1.0V reference Characteristics
Bandgap Voltage [V]
Figure 33-133. ADC Internal 1.0V Reference vs. Temperature
1.0088
1.008
1.0072
1.0064
1.0056
1.0048
1.004
1.0032
1.0024
1.0016
1.0008
1
0.9992
0.9984
0.9976
0.9968
1.8V
2.2V
2.7V
3.0V
3.6V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
210
33.2.6 BOD Characteristics
Figure 33-134. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.574
Rising Vcc
1.57
Falling Vcc
1.566
VBOT [V]
1.562
1.558
1.554
1.55
1.546
1.542
1.538
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
95
105
Temperature [°C]
Figure 33-135. BOD thresholds vs. Temperature
BOD level = 3.0V
2.992
2.984
Rising Vcc
2.976
VBOT [V]
2.968
2.96
2.952
2.944
Falling Vcc
2.936
2.928
2.92
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
211
33.2.7 External Reset Characteristics
Figure 33-136. Minimum Reset Pin Pulse Width vs. VCC
145
140
135
130
TRST [ns]
125
120
115
110
105
105°C
85°C
100
95
25°C
-40°C
90
85
80
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-137. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
72
64
IRESET [µA]
56
48
40
32
24
16
-40°C
25°C
85°C
105°C
8
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VRESET [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
212
Figure 33-138. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VRESET [V]
Figure 33-139. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VRESET [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
213
Figure 33-140. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
-40°C
25°C
85°C
105°C
2.10
2.00
1.90
1.80
V threshold [V]
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-141. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.7
-40°C
25°C
85 °C
105 °C
1.6
1.5
Vthreshold [V]
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
214
33.2.8 Power-on Reset Characteristics
Figure 33-142. Power-on Reset Current Consumption vs. VCC
I CC [µA]
BOD level = 3.0V, enabled in continuous mode
700
-40°C
600
25°C
500
85°C
105°C
400
300
200
100
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
Figure 33-143. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
650
-40°C
585
520
25°C
85°C
105°C
I CC [µA]
455
390
325
260
195
130
65
0
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
215
33.2.9 Oscillator Characteristics
33.2.9.1 Ultra Low-Power Internal Oscillator
Frequency [kHz]
Figure 33-144. Ultra Low-Power Internal Oscillator Frequency vs. Temperature
35.4
35.1
34.8
34.5
34.2
33.9
33.6
33.3
33.0
32.7
32.4
32.1
31.8
31.5
31.2
30.9
3.6V
3.3V
3.0V
2.7V
2.0V
1.8V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
33.2.9.2 32.768kHz Internal Oscillator
Figure 33-145. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.9
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
Frequency [kHz]
32.8
32.75
32.7
32.65
32.6
32.55
32.5
32.45
32.4
32.35
32.3
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
216
Figure 33-146. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
55
51
3.0V
Frequency [kHz]
47
43
39
35
31
27
23
19
15
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240 256
RC32KCAL [7..0]
33.2.9.3 2MHz Internal Oscillator
Figure 33-147. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.16
2.14
Frequency [MHz]
2.12
2.10
2.08
2.06
2.04
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.02
2.00
1.98
1.96
1.94
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
217
Figure 33-148. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.012
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.008
Frequency [MHz]
2.004
2.00
1.996
1.992
1.988
1.984
1.98
1.976
1.972
1.968
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-149. 2MHz Internal Oscillator CALA Calibration Step Size
Step Size [%]
VCC = 3V
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
-40°C
25°C
85°C
105°C
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
218
33.2.9.4 32MHz Internal Oscillator
Figure 33-150. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
36.45
36
Frequency [MHz]
35.55
35.1
34.65
34.2
33.75
33.3
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
32.4
31.95
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-151. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
219
Figure 33-152. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.34
0.32
0.30
Step Size [%]
0.28
0.26
0.24
0.22
0.20
0.16
-40°C
105°C
85°C
0.14
25°C
0.18
0.12
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
33.2.9.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 33-153. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
55.3
54.6
53.9
Frequency [MHz]
53.2
52.5
51.8
51.1
50.4
49.7
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
49.0
48.3
47.6
46.9
46.2
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
220
Figure 33-154. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-155. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.29
0.27
Step Size [%]
0.25
0.23
0.21
0.19
-40°C
0.17
25°C
105°C
0.15
0.13
85°C
0.11
0.09
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
221
33.2.10 Two-Wire Interface Characteristics
Figure 33-156. SDA Hold Time vs. Temperature
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
Figure 33-157. SDA Hold Time vs. Supply Voltage
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
222
33.2.11 PDI Characteristics
Figure 33-158. Maximum PDI Frequency vs. VCC
22
21
-40°C
Frequency max [MHz]
20
19
25°C
18
85°C
105°C
17
16
15
14
13
12
11
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
223
33.3
ATxmega64D4
33.3.1 Current Consumption
33.3.1.1 Active Mode Supply Current
Figure 33-159. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
700
3.6V
600
ICC [µA]
500
3.0V
400
2.7V
300
2.2V
200
1.8V
1.6V
100
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
Figure 33-160. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
12
3.6V
10
3.0V
ICC [mA]
8
2.7V
6
4
2.2V
2
1.8V
1.6V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
224
Figure 33-161. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
250
- 40°C
ICC [µA]
230
210
25°C
190
85°C
105°C
170
150
130
110
90
70
50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-162. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock
680
- 40°C
25°C
85°C
105°C
630
580
530
ICC [µA]
480
430
380
330
280
230
180
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
225
Figure 33-163. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
1300
- 40°C
25°C
85°C
105°C
1200
1100
ICC [µA]
1000
900
800
700
600
500
400
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-164. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
4.8
- 40°C
25°C
85°C
105°C
4.4
4.0
ICC [mA]
3.6
3.2
2.8
2.4
2.0
1.6
1.2
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
226
Figure 33-165. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
12.0
- 40°C
11.5
25°C
85°C
105°C
11.0
ICC [mA]
10.5
10.0
9.5
9.0
8.5
8.0
7.5
7.0
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
33.3.1.2 Idle Mode Supply Current
Figure 33-166. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
150
3.6 V
135
ICC [µA]
120
105
3.0 V
90
2.7 V
75
2.2 V
60
1.8 V
1.6 V
45
30
15
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
227
Figure 33-167. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
4.5
3.6 V
ICC [mA]
4.0
3.5
3.0 V
3.0
2.7 V
2.5
2.0
2.2 V
1.5
1.0
1.8 V
1.6 V
0.5
0.0
0
4
8
12
16
F
20
24
28
32
[MH ]
Figure 33-168. Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
34.75
105°C
- 40°C
34.00
33.25
85°C
25°C
ICC [µA]
32.50
31.75
31.00
30.25
29.50
28.75
28.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
228
Figure 33-169. Idle Mode Supply Current vs. VCC
fSYS = 1MHz external clock
153
105°C
85°C
25°C
- 40°C
141
129
ICC [µA]
117
105
93
81
69
57
45
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-170. Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
400
- 40°C
25°C
85°C
105°C
375
350
325
ICC [µA]
300
275
250
225
200
175
150
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
229
Figure 33-171. Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
1850
- 40°C
25°C
85°C
105°C
1700
1550
ICC [µA]
1400
1250
1100
950
800
650
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-172. Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
5.1
4.9
- 40°C
4.7
25°C
85°C
105°C
ICC [mA]
4.5
4.3
4.1
3.9
3.7
3.5
3.3
3.1
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
230
33.3.1.3 Power-down Mode Supply Current
Figure 33-173. Power-down Mode Supply Current vs. Temperature
All functions disabled
2.7
3.6 V
2.4
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
2.1
ICC [µA]
1.8
1.5
1.2
0.9
0.6
0.3
0.0
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
Figure 33-174. Power-down Mode Supply Current vs. VCC
All functions disabled
2.7
105°C
2.4
2.1
ICC [µA]
1.8
1.5
1.2
0.9
85°C
0.6
0.3
25°C
- 40°C
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
231
Figure 33-175. Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
4.10
105°C
3.80
3.50
3.20
ICC [µA]
2.90
2.60
2.30
85°C
2.00
1.70
25°C
- 40°C
1.40
1.10
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
33.3.1.4 Power-save Mode Supply Current
Figure 33-176. Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
V CC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
232
33.3.1.5 Standby Mode Supply Current
Figure 33-177. Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.5
105 °C
11.5
10.5
9.5
85 °C
ICC [uA]
8.5
25 °C
-40 °C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-178. Standby Supply Current vs. VCC
25°C, running from different crystal oscillators
480
16MHz
12MHz
440
ICC [µA]
400
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
233
33.3.2 I/O Pin Characteristics
33.3.2.1 Pull-up
Figure 33-179. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
70
60
IPIN [uA]
50
40
30
20
- 40°C
25°C
85°C
105°C
10
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
VPIN [V]
Figure 33-180. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
105
90
IPIN [µA]
75
60
45
30
- 40°C
25°C
85°C
105°C
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
VPIN [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
234
Figure 33-181. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
IPIN [µA]
90
75
60
45
- 40°C
25°C
85°C
105°C
30
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
VPIN [V]
33.3.2.2 Output Voltage vs. Sink/Source Current
Figure 33-182. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
1.9
1.7
VPIN [V]
1.5
1.3
- 40°C
1.1
25°C
0.9
105°C
85°C
0.7
0.5
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
235
Figure 33-183. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.2
2.8
2.4
VPIN [V]
2.0
1.6
- 40°C
1.2
25°C
0.8
85°C
105°C
0.4
0.0
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
-9
-6
-3
0
IPIN [mA]
Figure 33-184. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.6
3.2
2.8
VPIN [V]
2.4
- 40°C
2.0
1.6
25°C
1.2
105°C
0.8
85°C
0.4
0.0
-30
-27
-24
-21
-18
-15
-12
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
236
Figure 33-185. I/O Pin Output Voltage vs. Source Current
3.7
3.6 V
3.3 V
3.3
3.0 V
2.9
VPIN [V]
2.7 V
2.5
2.1
1.8 V
1.6 V
1.7
1.3
0.9
0.5
-24
-21
-18
-15
-12
-9
-6
-3
0
IPIN [mA]
Figure 33-186. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1.0
85°C
0.9
0.8
25°C
0.7
105°C
VPIN [V]
0.6
- 40°C
0.5
0.4
0.3
0.2
0.1
0.0
0
2
4
6
8
10
12
14
16
18
20
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
237
Figure 33-187. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.0
105°C
85°C
0.9
25°C
0.8
- 40°C
0.7
VPIN [V]
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
IPIN [mA]
Figure 33-188. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
1.0
105°C
85°C
0.9
0.8
25°C
- 40°C
0.7
VPIN [V]
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
IPIN [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
238
Figure 33-189. I/O Pin Output Voltage vs. Sink Current
1.50
1.6 V
1.35
1.8 V
1.20
VPIN [V]
1.05
2.7 V
3.0 V
3.3 V
3.6 V
0.90
0.75
0.60
0.45
0.30
0.15
0.00
0
3
6
9
12
15
18
21
24
27
30
IPIN [mA]
33.3.2.3 Thresholds and Hysteresis
Figure 33-190. I/O Pin Input Threshold Voltage vs. VCC
T = 25°C
1.8
VIH
1.6
VIL
Vthreshold [V]
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
239
Figure 33-191. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
1.8
-40 °C
25 °C
85 °C
105 °C
1.7
1.6
Vthreshold [V]
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-192. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
1.75
-40 °C
25 °C
85 °C
105 °C
1.60
1.45
Vthreshold [V]
1.30
1.15
1.00
0.85
0.70
0.55
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
240
Figure 33-193. I/O Pin Input Hysteresis vs. VCC
0.32
0.29
0.26
Vthreshold [V]
0.23
25 °C
0.20
0.17
-40 °C
85 °C
0.14
0.11
105 °C
0.08
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
33.3.3 ADC Characteristics
Figure 33-194. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
2.7
2.4
Single-ended unsigned mode
2.1
INL [LSB]
1.8
1.5
1.2
Dif f erential mode
0.9
0.6
0.3
Single-ended signed mode
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
241
Figure 33-195. INL Error vs. Sample Rate
T = 25C, VCC = 2.7V, VREF = 1.0V external
1.6
1.4
Single-ended signed mode
1.2
INL [LSB]
1.0
0.8
Dif f erential mode
0.6
Single-ended signed mode
0.4
0.2
0.0
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sample rate [kSps]
Figure 33-196. INL Error vs. Input Code
2.0
1.5
1.0
INL [LSB]
0.5
0.0
-0.5
-1.0
-1.5
-2.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
242
Figure 33-197. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.1
1.0
Single-ended unsigned mode
0.9
DNL [LSB]
0.8
0.7
0.6
Dif f erential mode
0.5
0.4
Single-ended signed mode
0.3
0.2
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
Figure 33-198. DNL Error vs. Sample rate
T = 25C, VCC = 2.7V, VREF = 1.0V external
0.43
0.41
Single-ended unsigned mode
0.38
DNL [LSB]
0.36
Dif f erential mode
0.33
0.31
0.28
0.26
Single-ended signed mode
0.23
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sample rate [kSps]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
243
Figure 33-199. DNL Error vs. Input Code
1.0
0.8
0.6
0.4
DNL [LSB]
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 33-200. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
12
Gain Error [mV]
10
Single-ended signed mode
8
Single-ended unsigned mode
6
4
2
Dif f erential mode
0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
244
Figure 33-201. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
7
6
Single-ended signed mode
Gain Error [mV]
5
4
Single-ended unsigned mode
3
2
Dif f erential mode
1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.6
2.8
3.0
Vcc [V]
Figure 33-202. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
-1.0
-1.1
-1.1
Offset Error [mV]
-1.2
-1.2
Dif f erential mode
-1.3
-1.3
-1.4
-1.4
-1.5
-1.5
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
Vref [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
245
Figure 33-203. Gain Error vs. Temperature
VCC = 2.7V, VREF = external 1.0V
8
7
Single-ended signed mode
Gain Error [mV]
6
5
4
Single-ended unsigned mode
3
2
Dif f erential mode
1
0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [oC]
Figure 33-204. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
-0.3
-0.4
Offset Error [mV]
-0.5
Dif f erential mode
-0.6
-0.7
-0.8
-0.9
-1.0
-1.1
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
246
Figure 33-205. Noise vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
0.9
Single-ended signed mode
0.8
Noise [mV RMS]
0.7
0.6
Single-ended unsigend mode
0.5
0.4
0.3
Dif f erential mode
0.2
0.1
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vref [V]
Figure 33-206. Noise vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
0.8
Single-ended signed mode
0.7
Noise [mV RMS]
0.6
0.5
Single-ended unsigned mode
0.4
0.3
Dif f erential mode
0.2
0.1
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
247
33.3.4 DAC Characteristics
Figure 33-207. DAC INL Error vs. VREF
VCC = 3.6V
2.4
2.1
DACINL [LSB]
1.8
1.5
- 40°C
25°C
85°C
105°C
1.2
0.9
0.6
0.3
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
Figure 33-208. DNL Error vs. VREF
VCC = 3.6V
1.8
1.6
1.4
DAC DNL [LSB]
1.2
1.0
0.8
- 40°C
0.6
25°C
85°C
105°C
0.4
0.2
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
248
Figure 33-209. DAC Noise vs. Temperature
VCC = 2.7V, VREF = 1.0V
0.178
0.176
0.174
Noise[mV RMS]
0.172
0.170
0.168
0.166
0.164
0.162
0.160
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [oC]
33.3.5 Analog Comparator Characteristics
Figure 33-210. Analog Comparator Hysteresis vs. VCC
High-speed, small hysteresis
25
24
105°C
23
85°C
VHYST [mV]
22
25°C
21
20
19
- 40°C
18
17
16
15
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
249
Figure 33-211. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
36
105°C
85°C
34
VHYST [mV]
32
30
25°C
28
- 40°C
26
24
22
20
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-212. Analog Comparator Hysteresis vs. VCC
High-speed mode, large hysteresis
47
105°C
85°C
45
43
25°C
VHYST [mV]
41
39
- 40°C
37
35
33
31
29
27
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
250
Figure 33-213. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
76
105°C
85°C
73
70
67
VHYST [mV]
64
25°C
61
58
55
- 40°C
52
49
46
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-214. Analog Comparator Current Source vs. Calibration Value
Temperature = 25°C
8
ICURRENTSOURCE [µA]
7
6
5
3.6V
3.0V
2.7V
2.2V
1.8V
1.6V
4
3
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CURRCALIBA[3..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
251
Figure 33-215. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7.2
6.8
ICURRENTSOURCE [uA]
6.4
6.0
5.6
5.2
4.8
4.4
- 40°C
25°C
85°C
105°C
4.0
3.6
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CURRCALIBA[3..0]
Figure 33-216. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.15
0.12
0.09
INL [LSB]
0.06
0.03
0.00
-0.03
-0.06
-0.09
-0.12
-0.15
0
8
16
24
32
40
48
56
64
SCALEFAC
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
252
33.3.6 Internal 1.0V Reference Characteristics
Figure 33-217. ADC/DAC Internal 1.0V Reference vs. Temperature
1.004
1.6 V
1.8 V
2.2 V
2.7 V
3.0 V
3.6 V
Bandgap Voltage [V]
1.002
1.000
0.998
0.996
0.994
0.992
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
33.3.7 BOD Characteristics
Figure 33-218. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.644
1.641
1.638
Rising Vcc
VBOT [V]
1.635
1.632
Falling Vcc
1.629
1.626
1.623
1.620
1.617
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
253
Figure 33-219. BOD Thresholds vs. Temperature
BOD level = 3.0V
3.08
3.07
Rising Vcc
3.06
VBOT [V]
3.05
3.04
3.03
Falling Vcc
3.02
3.01
3.00
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
33.3.8 External Reset Characteristics
Figure 33-220. Minimum Reset Pin Pulse Width vs. VCC
135
130
125
tRST [ns]
120
115
110
105
100
105°C
85°C
95
90
25°C
- 40°C
85
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
254
Figure 33-221. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
70
IRESET [µA]
60
50
40
30
- 40°C
25°C
85°C
105°C
20
10
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
VRESET [V]
Figure 33-222. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
120
105
IRESET [µA]
90
75
60
45
30
- 40°C
25°C
85°C
105°C
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
VRESET [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
255
Figure 33-223. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
IRESET [µA]
105
90
75
60
45
- 40°C
25°C
85°C
105°C
30
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
VRESET [V]
Figure 33-224. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
2.2
- 40°C
25°C
85°C
105°C
2.1
VTHRESHOLD [V]
1.9
1.8
1.6
1.5
1.3
1.2
1.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
256
Figure 33-225. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.75
- 40°C
25°C
85°C
105°C
1.60
VTHRESHOLD [V]
1.45
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
33.3.9 Power-on Reset Characteristics
Figure 33-226. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in continuous mode
300
105°C
85°C
25°C
- 40°C
250
I CC [µA]
200
150
100
50
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
257
Figure 33-227. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
300
105°C
250
I CC [µA]
200
85°C
25°C
- 40°C
150
100
50
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
33.3.10 Oscillator Characteristics
33.3.10.1 Ultra Low-Power Internal Oscillator
Figure 33-228. Ultra Low-Power Internal Oscillator Frequency vs. Temperature
34.0
33.7
Frequency [kHz]
33.4
33.1
32.8
32.5
32.2
31.9
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
31.6
31.3
31.0
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
258
33.3.10.2 32.768kHz Internal Oscillator
Figure 33-229. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.85
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
32.82
32.79
Frequency [kHz]
32.76
32.73
32.70
32.67
32.64
32.61
32.58
32.55
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
Figure 33-230. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
53
50
Frequency [kHz]
47
44
41
38
35
32
29
26
23
0
30
60
90
120
150
180
210
240
270
RC32KCAL[7..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
259
33.3.10.3 2MHz Internal Oscillator
Figure 33-231. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.12
2.10
Frequency [MHz]
2.08
2.06
2.04
2.02
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
2.00
1.98
1.96
1.94
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
Figure 33-232. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.010
3.6 V
1.8 V
2.2 V
3.0 V
1.6 V
2.7 V
2.008
2.006
Frequency [MHz]
2.004
2.002
2.000
1.998
1.996
1.994
1.992
1.990
1.988
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
260
Figure 33-233. 2MHz Internal Oscillator CALA Calibration Step Size
VCC = 3V
0.28 %
Frequency Step size [%]
0.26 %
0.24 %
0.22 %
0.20 %
- 40°C
25°C
105°C
85°C
0.18 %
0.16 %
0.14 %
0.12 %
0
16
32
48
64
80
96
112
128
CALA
33.3.10.4 32MHz Internal Oscillator
Figure 33-234. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
35.5
35.0
Frequency [MHz]
34.5
34.0
33.5
33.0
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
32.5
32.0
31.5
31.0
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
261
Figure 33-235. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.12
32.08
Frequency [MHz]
32.04
32.00
3.6 V
31.96
31.92
31.88
31.84
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
31.80
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
Figure 33-236. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.34 %
Frequency Step size[%]
0.31 %
0.28 %
- 40°C
0.25 %
0.22 %
0.19 %
0.16 %
85°C
105°C
0.13 %
25°C
0.10 %
0
15
30
45
60
75
90
105
120
135
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
262
Figure 33-237. 32MHz Internal Oscillator CALB Calibration Step Size
VCC = 3.0V
2.80 %
Frequency Step size [%]
2.60 %
2.40 %
2.20 %
2.00 %
1.80 %
1.60 %
1.40 %
- 40°C
25°C
85°C
105°C
1.20 %
1.00 %
0.80 %
0
8
16
24
32
40
48
56
64
CALB
33.3.10.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 33-238. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
53.4
52.6
Frequency[MHz]
51.8
51.0
50.2
49.4
48.6
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
47.8
47.0
46.2
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
263
Figure 33-239. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
48.15
3.6 V
48.10
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
48.05
Frequency[MHz]
48.00
47.95
47.90
47.85
47.80
47.75
47.70
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C]
Figure 33-240. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.30 %
Frequency Step size [%]
0.28 %
0.26 %
0.24 %
0.22 %
- 40°C
0.20 %
0.18 %
105°C
25°C
85°C
0.16 %
0.14 %
0.12 %
0.10 %
0
16
32
48
64
80
96
112
128
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
264
33.3.11 Two-Wire Interface Characteristics
Figure 33-241. SDA Hold Time vs. Supply Voltage
300
295
290
Holdtime [ns]
285
105°C
280
85°C
275
270
25°C
265
- 40°C
260
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
Vcc [V]
33.3.12 PDI Characteristics
Figure 33-242. Maximum PDI Frequency vs. VCC
30
-
Maximum Frequency [MHz]
28
26
24
- 40°C
22
85°C
25°C
20
105°C
18
16
14
12
10
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
265
33.4
ATxmega128D4
33.4.1 Current Consumption
33.4.1.1 Active Mode Supply Current
Figure 33-243. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
800
3.6V
700
600
Icc [µA]
3.0V
500
2.7V
400
2.2V
300
1.8V
1.6V
200
100
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
Figure 33-244. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
13.5
12.0
3.6V
Icc [mA]
10.5
3.0V
9.0
2.7V
7.5
6.0
4.5
2.2V
3.0
1.8V
1.5
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
266
Figure 33-245. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
IccVcc [uA]
270
240
- 40 °C
210
25 °C
180
85 °C
105 °C
150
120
90
60
30
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-246. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock
800
-40 °C
25 °C
85 °C
105 °C
700
600
Icc [uA]
500
400
300
200
100
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
267
Figure 33-247. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
-40 °C
25 °C
85 °C
105 °C
1400
1225
1050
Icc [uA]
875
700
525
350
175
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vcc [V]
Figure 33-248. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
5800
-40 °C
25 °C
85 °C
105 °C
5200
4600
Icc [uA]
4000
3400
2800
2200
1600
1000
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
268
Figure 33-249. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
13.4
12.6
-40 °C
25 °C
85 °C
105 °C
11.8
Icc [mA]
11.0
10.2
9.4
8.6
7.8
7.0
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
33.4.1.2 Idle Mode Supply Current
Figure 33-250. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
160
3.6 V
Icc [µA]
140
120
3.0 V
100
2.7 V
80
2.2 V
60
1.8 V
1.6 V
40
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
269
Figure 33-251. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
5.4
3.6V
4.8
4.2
3.0V
Icc [mA]
3.6
2.7V
3.0
2.4
1.8
2.2V
1.2
1.8V
0.6
0
0
4
8
12
16
20
24
28
32
Frenquecy [MHz]
Figure 33-252. Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
38
105 °C
37
36
35
-40 °C
Icc [uA]
34
85 °C
33
25 °C
32
31
30
29
28
27
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
270
Figure 33-253. Idle Mode Supply Current vs. VCC
fSYS = 1MHz external clock
160
105 °C
85 °C
25 °C
-40 °C
150
140
130
Icc[uA]
120
110
100
90
80
70
60
50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-254. Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
105 °C
85 °C
25 °C
-40 °C
330
310
290
270
Icc [uA]
250
230
210
190
170
150
130
110
90
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
271
Figure 33-255. Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
2000
-40 °C
25 °C
85 °C
105 °C
1800
Icc [uA]
1600
1400
1200
1000
800
600
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
Figure 33-256. Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
5000
-40 °C
25 °C
85 °C
105 °C
4750
4500
Icc [uA]
4250
4000
3750
3500
3250
3000
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
272
33.4.1.3 Power-down Mode Supply Current
Figure 33-257. Power-down Mode Supply Current vs. Temperature
All functions disabled
5.0
3.6 V
4.5
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
4.0
3.5
Icc [uA]
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 33-258. Power-down Mode Supply Current vs. VCC
All functions disabled
5.0
105 °C
4.5
4.0
3.5
Icc [uA]
3.0
2.5
2.0
85 °C
1.5
1.0
0.5
25 °C
-40 °C
0.0
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
273
Figure 33-259. Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
7.3
105 °C
6.8
6.3
5.8
5.3
Icc [uA]
4.8
4.3
3.8
3.3
85 °C
2.8
2.3
1.8
1.3
25 °C
-40 °C
0.8
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
33.4.1.4 Power-save Mode Supply Current
Figure 33-260. Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
V CC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
274
33.4.1.5 Standby Mode Supply Current
Figure 33-261. Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.5
105 °C
11.5
10.5
9.5
85 °C
ICC [uA]
8.5
25 °C
-40 °C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-262. Standby Supply Current vs. VCC
T = 25°C, running from different crystal oscillators
480
16MHz
12MHz
440
ICC [µA]
400
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC[V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
275
33.4.2 I/O Pin Characteristics
33.4.2.1 Pull-up
Figure 33-263. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
72
64
56
I [uA]
48
40
32
24
16
-40 °C
25 °C
85 °C
105 °C
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
Vpin [V]
Figure 33-264. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
105
90
I [uA]
75
60
45
30
-40 °C
25 °C
85 °C
105 °C
15
0
0.1
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vpin [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
276
Figure 33-265. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
I [uA]
90
75
60
45
30
-40 °C
25 °C
85 °C
105 °C
15
0
0.1
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
3.1
3.4
Vpin [V]
33.4.2.2 Output Voltage vs. Sink/Source Current
Figure 33-266. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
1.9
1.8
1.7
1.6
1.5
Vpin [V]
1.4
1.3
1.2
1.1
1.0
-40 °C
0.9
105 °C
85 °C
25 °C
0.8
0.7
0.6
0.5
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Ipin [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
277
Figure 33-267. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.30
2.95
2.60
Vpin [V]
2.25
1.90
1.55
-40 °C
25 °C
85 °C
-24
-21
105 °C
1.20
0.85
0.50
-30
-27
-18
-15
-12
-9
-6
-3
0
-12
-9
-6
-3
0
Ipin [mA]
Figure 33-268. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.5
3.2
2.9
Vpin [V]
2.6
2.3
2.0
1.7
-40 °C
1.4
25 °C
1.1
85 °C
0.8
105 °C
0.5
-30
-27
-24
-21
-18
-15
Ipin [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
278
Figure 33-269. I/O Pin Output Voltage vs. Source Current
3.65
3.6 V
3.30
3.3 V
2.95
3.0 V
2.7 V
Vpin [V]
2.60
2.25
1.90
1.8 V
1.6 V
1.55
1.20
0.85
0.50
-24
-21
-18
-15
-12
-9
-6
-3
0
Ipin [mA]
Figure 33-270. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1.0
0.9
105 °C
0.8
85 °C
Vpin [V]
0.7
25 °C
-40 °C
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
2
4
6
8
10
12
14
16
18
20
Ipin [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
279
Figure 33-271. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.1
105 °C
85 °C
1.0
0.9
25 °C
-40 °C
0.8
Vpin [V]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
Ipin [mA]
Figure 33-272. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
105 °C
85 °C
1.0
Vpin [V]
0.9
0.8
25 °C
0.7
-40 °C
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
Ipin [mA]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
280
Figure 33-273. I/O Pin Output Voltage vs. Sink Current
1.50
1.35
1.20
1.8 V
1.05
2.7 V
3.0 V
3.3 V
3.6 V
Vpin [V]
1.6 V
0.90
0.75
0.60
0.45
0.30
0.15
0.00
0
3
6
9
12
15
18
21
24
27
30
Ipin [mA]
33.4.2.3 Thresholds and Hysteresis
Figure 33-274. I/O Pin Input Threshold Voltage vs. VCC
T = 25°C
1.8
VIH
1.6
VIL
Vthreshold [V]
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
281
Figure 33-275. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
105 °C
85 °C
25 °C
-40 °C
1.8
1.7
1.6
Vthreshold [V]
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
Figure 33-276. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
1.75
105 °C
85 °C
25 °C
-40 °C
1.60
1.45
Vthreshold [V]
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
282
Figure 33-277. I/O Pin Input Hysteresis vs. VCC
0.41
0.39
0.37
0.35
Vthreshold [V]
0.33
-40 °C
0.31
25 °C
0.29
0.27
0.25
85 °C
0.23
0.21
0.19
105 °C
0.17
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
33.4.3 ADC Characteristics
Figure 33-278. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.8
1.7
1.6
Differential Signed
INL [LSB]
1.5
Single-ended Unsigned
1.4
1.3
1.2
1.1
1
0.9
Single-ended Signed
0.8
0.7
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
283
Figure 33-279. INL Error vs. Sample rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
1.4
1.35
1.3
Differential Mode
INL [LSB]
1.25
1.2
Single-ended Unsigned
1.15
1.1
1.05
Single-ended Signed
1
0.95
0.9
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC Sample Rate [kSPS]
Figure 33-280. INL Error vs. Input code
2.0
1.5
INL [LSB]
1.0
0.5
0
-0.5
-1.0
-1.5
-2.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
284
Figure 33-281. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
0.9
0.88
0.86
DNL [LSB]
Differential Mode
0.84
Single-ended Signed
0.82
0.8
0.78
Single-ended Unsigned
0.76
0.74
0.72
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
Figure 33-282. DNL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.9
0.89
Differential Signed
0.88
DNL [LSB]
0.87
0.86
0.85
Single-ended Signed
0.84
0.83
0.82
0.81
Single-ended Unsigned
0.8
0.79
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC Sample Rate [kSPS]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
285
Figure 33-283. DNL Error vs. Input Code
0.8
0.6
DNL [LSB]
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
3072
3584
4096
ADC Input Code
Figure 33-284. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
3
Single-ended Signed
Gain Error [mV]
2
1
Differential Mode
0
-1
Single-ended Unsigned
-2
-3
-4
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
286
Figure 33-285. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
2.2
1.9
Single-ended Signed
Gain Error [mV]
1.6
1.3
Differential Mode
1
0.7
0.4
Single-ended Unsigned
0.1
-0.2
-0.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 33-286. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
-1
Offset Error [mV]
-1.1
-1.2
-1.3
-1.4
-1.5
Differential Mode
-1.6
-1.7
-1.8
-1.9
-2
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
287
Figure 33-287. Gain Error vs. Temperature
VCC = 3.0V, VREF = external 2.0V
3
2
Gain Error [mV]
Single-ended Signed
1
Differential Signed
0
-1
Single-ended Unsigned
-2
-3
-4
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [ºC]
Figure 33-288. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
-0.3
-0.4
Offset Error [mV]
-0.5
-0.6
-0.7
Differential Signed
-0.8
-0.9
-1
-1.1
-1.2
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
288
Figure 33-289. Noise vs. VREF
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps
1.3
Single-ended Signed
Noise [mV RMS]
1.15
Single-ended Unsigned
1
0.85
0.7
0.55
Differential Signed
0.4
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
Figure 33-290. Noise vs. VCC
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps
1.3
1.2
Single-ended Signed
Noise [mV RMS]
1.1
1
0.9
0.8
Single-ended Unsigned
0.7
0.6
0.5
Differential Signed
0.4
0.3
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
289
33.4.4 DAC Characteristics
Figure 33-291. DAC INL Error vs. VREF
VCC = 3.6V
1.9
1.8
INL [LSB]
1.7
1.6
1.5
1.4
1.3
1.2
25°C
1.1
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 33-292. DNL Error vs. VREF
T = 25C, VCC = 3.6V
0.9
DNL [LSB]
0.85
0.8
0.75
0.7
0.65
25ºC
0.6
1.6
1.8
2
2.2
2.4
2.6
2.8
3
VREF [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
290
Figure 33-293. DAC Noise vs. Temperature
VCC = 3.0V, VREF = 2.4V
0.185
0.180
Noise [mV RMS]
0.175
0.170
0.165
0.160
0.155
0.150
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [ºC]
33.4.5 Analog Comparator Characteristics
Figure 33-294. Analog Comparator Hysteresis vs. VCC
High-speed, small hysteresis
14
13
105°C
12
85°C
VHYST [mV]
11
10
25°C
9
8
7
-40°
6
5
4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
291
Figure 33-295. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
30
28
105°C
85°C
26
24
VHYST [mV]
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-296. Analog Comparator Hysteresis vs. VCC
High-speed mode, large hysteresis
32
105°C
85°C
30
28
VHYST [mV]
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
292
Figure 33-297. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
68
64
105°C
85°C
60
VHYST [mV]
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 33-298. Analog Comparator Current Source vs. Calibration Value
Temperature = 25°C
8
7.5
ICURRENTSOURCE [µA]
7
6.5
6
5.5
5
4.5
3.6V
4
3.0V
3.5
3
2.2V
1.8V
2.5
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CURRCALIBA[3..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
293
Figure 33-299. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7
ICURRENTSOURCE [µA]
6.5
6
5.5
5
4.5
-40°C
25°C
85°C
4
3.5
3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CURRCALIBA[3..0]
Figure 33-300. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.050
0.025
INL [LSB]
0
-0.025
-0.050
-0.075
-0.100
25°C
-0.125
-0.150
0
10
20
30
40
50
60
70
SCALEFAC
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
294
33.4.6 Internal 1.0V Reference Characteristics
Figure 33-301. ADC/DAC Internal 1.0V Reference vs. Temperature
1.0024
1.0020
1.6V
1.8V
Bandgap Voltage [V]
1.0016
1.0012
1.0008
1.0004
1.0000
2.7V
3.0V
0.9996
0.9992
3.6V
0.9988
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
33.4.7 BOD Characteristics
Figure 33-302. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.596
Rising Vcc
1.593
Vbot [V]
1.590
1.587
1.584
Falling Vcc
1.581
1.578
1.575
1.572
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
295
Figure 33-303. BOD Thresholds vs. Temperature
BOD level = 3.0V
3.03
3.02
Rising Vcc
3.01
Vbot [V]
3.00
2.99
2.98
Falling Vcc
2.97
2.96
2.95
2.94
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
33.4.8 External Reset Characteristics
Figure 33-304. Minimum Reset Pin Pulse Width vs. VCC
135
130
125
120
Trst [ns]
115
110
105
100
105 °C
85 °C
95
90
25 °C
-40 °C
85
80
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
296
Figure 33-305. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
72
64
Ireset [uA]
56
48
40
32
24
16
-40 °C
25 °C
85 °C
105 °C
8
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
Vreset [V]
Figure 33-306. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
135
120
105
Ireset [uA]
90
75
60
45
30
-40 °C
25 °C
85 °C
105 °C
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
Vreset [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
297
Figure 33-307. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
Ireset [uA]
105
90
75
60
45
30
-40 °C
25 °C
85 °C
105 °C
15
0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
Vreset [V]
Figure 33-308. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
2.20
-40 °C
25 °C
85 °C
105 °C
2.05
Vthreshold [V]
1.90
1.75
1.60
1.45
1.30
1.15
1.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
298
Figure 33-309. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.8
105 °C
85 °C
25 °C
-40 °C
1.6
VTHRESHOLD [V]
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
33.4.9 Power-on Reset Characteristics
Figure 33-310. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in continuous mode
ICC [µA]
700
-40 °C
600
25 °C
500
85 °C
105 °C
400
300
200
100
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
299
Figure 33-311. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
650
-40 °C
585
520
25 °C
ICC [µA]
455
85
° °C
105°°C
390
325
260
195
130
65
0
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
33.4.10 Oscillator Characteristics
33.4.10.1 Ultra Low-Power Internal Oscillator
Figure 33-312. Ultra Low-Power Internal Oscillator Frequency vs. Temperature
33.75
33.50
33.25
Frequency [kHz]
33.00
32.75
32.50
32.25
32.00
3.6 V
3.3 V
3.0 V
2.7 V
1.8 V
1.6 V
31.75
31.50
31.25
31.00
30.75
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
300
33.4.10.2 32.768kHz Internal Oscillator
Figure 33-313. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.82
3.6 V
3.3 V
3.0 V
2.7 V
2.2 V
1.8 V
32.79
32.76
Frequency [kHz]
32.73
32.70
32.67
32.64
32.61
32.58
32.55
32.52
32.49
32.46
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
Figure 33-314. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
52
3.0 V
49
46
Frequency [kHz]
43
40
37
34
31
28
25
22
0
24
48
72
96
120
144
168
192
216
240
264
RC32KCA L[7..0]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
301
33.4.10.3 2MHz Internal Oscillator
Figure 33-315. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.16
2.14
2.12
Frequency [MHz]
2.10
2.08
2.06
2.04
3.6 V
3.3 V
3.0 V
2.7 V
2.2 V
1.8 V
2.02
2.00
1.98
1.96
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
Figure 33-316. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.006
3.6 V
3.3 V
3.0 V
2.7 V
2.2 V
1.8 V
2.004
2.002
Frequency [MHz]
2.000
1.998
1.996
1.994
1.992
1.990
1.988
1.986
1.984
1.982
1.980
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
302
Figure 33-317. 2MHz Internal Oscillator CALA Calibration Step Size
VCC = 3V
0.30
0.28
Step Size [%]
0.26
0.24
0.22
0.20
-40 °C
0.18
25 °C
0.16
85 °C
105 °C
0.14
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
33.4.10.4 32MHz Internal Oscillator
Figure 33-318. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
36.00
35.55
35.10
Frequency [MHz]
34.65
34.20
33.75
33.30
32.85
3.6 V
3.3 V
3.0 V
2.7 V
2.2 V
1.8 V
32.40
31.95
31.50
31.05
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
303
Figure 33-319. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.05
1.8 V
2.2 V
2.7 V
3.0 V
3.3 V
3.6 V
32.02
31.99
Frequency [MHz]
31.96
31.93
31.90
31.87
31.84
31.81
31.78
31.75
31.72
31.69
31.66
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
Figure 33-320. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.32
0.29
Step Size [%]
0.26
0.23
-40 °C
0.20
105 °C
85 °C
25 °C
0.17
0.14
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
304
33.4.10.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 33-321. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
53.9
53.2
52.5
Frequency [MHz]
51.8
51.1
50.4
49.7
49.0
3.6 V
3.3 V
3.0 V
48.3
47.6
2.7 V
2.2 V
1.8 V
46.9
46.2
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
Figure 33-322. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
48.3
1.8 V
2.2 V
2.7 V
3.0 V
3.3 V
3.6 V
48.2
Frequency [MHz]
48.1
48.0
47.9
47.8
47.7
47.6
47.5
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
Temperature [°C]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
305
Figure 33-323. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3V
0.28
0.26
Step Size [%]
0.24
0.22
0.2
-40 °C
0.18
105 °C
85 °C
25 °C
0.16
0.14
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
33.4.11 Two-Wire Interface Characteristics
Figure 33-324. SDA Hold Time vs. Supply Voltage
300
295
290
Holdtime [ns]
285
105°C
280
85°C
275
270
25°C
265
- 40°C
260
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
306
33.4.12 PDI Characteristics
Figure 33-325. Maximum PDI Frequency vs. VCC
-40 °C
25 °C
85 °C
105 °C
31
Frequency max [MHz]
28
25
22
19
16
13
10
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
307
34.
Errata
34.1
ATxmega16D4 / ATxmega32D4
34.1.1 Rev. I
 Temperature sensor not calibrated
1. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
34.1.2 Rev. F/G/H
Not sampled.
34.1.3 Rev. E
 ADC propagation delay is not correct when gain is used
 CRC fails for Range CRC when end address is the last word address of a flash section
 AWeX fault protection restore is not done correct in Pattern Generation Mode
 Erroneous interrupt when using Timer/Counter with QDEC
 AC system status flags are only valid if AC-system is enabled
 Temperature sensor not calibrated
1. ADC propagation delay is not correct when gain is used
The propagation delay will increase by only one ADC clock cycle for all gain setting.
Problem fix/Workaround
None.
2. CRC fails for Range CRC when end address is the last word address of a flash section
If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If application
table read lock is enabled, the range CRC cannot end on the last address before the application table.
Problem fix/Workaround
Ensure that the end address used in Range CRC does not end at the last address before a section with read lock
enabled. Instead, use the dedicated CRC commands for complete applications sections.
3. AWeX fault protection restore is not done correct in Pattern Generation Mode
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN is
restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode (CWCM),
this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation Mode (PGM),
OUTOVEN should instead have been restored according to the DTILSBUF register.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
308
Problem fix/Workaround
For CWCM no workaround is required.
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set correct
OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable the correct
outputs again.
For PGM in cycle-by-cycle mode there is no workaround.
4. Erroneous interrupt when using Timer/Counter with QDEC
When the Timer/Counter is set in Dual Slope mode with QDEC enabled, an additional underflow interrupt (and
event) will be given when the counter counts from BOTTOM to one.
Problem fix/Workaround
When receiving underflow interrupt check direction and value of counter. If direction is UP and counter value is
zero, change the counter value to one. This will also remove the additional event. If the counter value is above
zero, clear the interrupt flag.
5. AC system status flags are only valid if AC-system is enabled
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not
possible to clear the AC interrupt flags without enabling either of the Analog comparators.
Problem fix/Workaround
Software should clear the AC system flags once, after enabling the AC system before using the AC system status
flags.
6. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
34.1.4 Rev. C/D
Not sampled.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
309
34.1.5 Rev. A/B
 Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously
 VCC voltage scaler for AC is non-linear
 ADC gain stage cannot be used for single conversion
 ADC has increased INL error for some operating conditions
 ADC gain stage output range is limited to 2.4 V
 ADC Event on compare match non-functional
 ADC propagation delay is not correct when 8x -64x gain is used
 Bandgap measurement with the ADC is non-functional when VCC is below 2.7V
 Accuracy lost on first three samples after switching input to ADC gain stage
 Configuration of PGM and CWCM not as described in XMEGA A Manual
 PWM is not restarted properly after a fault in cycle-by-cycle mode
 BOD: BOD will be enabled at any reset
 Sampled BOD in Active mode will cause noise when bandgap is used as reference
 EEPROM page buffer always written when NVM DATA0 is written
 Pending full asynchronous pin change interrupts will not wake the device
 Pin configuration does not affect Analog Comparator Output
 NMI Flag for Crystal Oscillator Failure automatically cleared
 Flash Power Reduction Mode can not be enabled when entering sleep
 Crystal start-up time required after power-save even if crystal is source for RTC
 RTC Counter value not correctly read after sleep
 Pending asynchronous RTC-interrupts will not wake up device
 TWI Transmit collision flag not cleared on repeated start
 Clearing TWI Stop Interrupt Flag may lock the bus
 TWI START condition at bus timeout will cause transaction to be dropped
 TWI Data Interrupt Flag (DIF) erroneously read as set
 WDR instruction inside closed window will not issue reset
 Inverted I/O enable does not affect Analog Comparator Output
 TWIE is not available
 CRC generator module is not available
 ADC 1/x gain setting and VCC/2 reference setting is not available
 TOSC alternate pin locations is not available
 TWI SDAHOLD time configuration is not available
 Timer/Counter 2 is not available
 HIRES+ option is not available
 Alternate pin locations for digital peripherals are not available
 XOSCPWR high drive option for external crystal is not available
 PLL divide by two option is not available
 Real Time Counter non-prescaled 32kHZ clock options are not available
 PLL lock detection failure function is not available
 Non available functions and options
 Temperature sensor not calibrated
 Disabling the USART transmitter does not automatically set the TxD pin direction to output.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
310
1. Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input
for another AC, the first comparator will be affected for up to 1 ìs and could potentially give a wrong comparison
result.
Problem fix/Workaround
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling
any of them.
2. VCC voltage scaler for AC is non-linear
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.
Figure 34-1. Analog Comparator Voltage Scaler vs. Scalefac
T = 25°C
3.5
3.3V
3
2.7V
VSCALE [V]
2.5
2
1.8V
1.5
1
0.5
0
0
5
10
15
20
25
30
35
40
45
50
55
60
65
SCALEFAC
Problem fix/Workaround
Use external voltage input for the analog comparator if accurate voltage levels are needed.
3. ADC has increased INL error for some operating conditions
Some ADC configurations or operating condition will result in increased INL error.
In signed mode INL is increased to:

6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.

6LSB for reference voltage below 1.1V when VCC is above 3.0V.

20LSB for ambient temperature below 0 degree C and reference voltage below 1.3V.
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.
Problem fix/Workaround
None. Avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC in
signed mode also for single ended measurements.
4. ADC gain stage output range is limited to 2.4V
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range of:
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
311
1x gain:
2.4V
2x gain:
1.2V
4x gain:
0.6v
8x gain:
300mV
16x gain:
150mV
32x gain:
75mV
64x gain:
38mV
Problem fix/Workaround
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or keep
ADC voltage reference below 2.4V.
5. ADC Event on compare match non-functional
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to
BELOW or ABOVE.
Problem fix/Workaround
Enable and use interrupt on compare match when using the compare function.
6. ADC propagation delay is not correct when 8x -64x gain is used
The propagation delay will increase by only one ADC clock cycle for 8x and 16x gain setting, and 32x and 64x gain
settings.
Problem fix/Workaround
None.
7. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.
Problem fix/Workaround
None.
8. Accuracy lost on first three samples after switching input to ADC gain stage
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be disregarded to achieve 12-bit accuracy.
Problem fix/Workaround
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.
9. Configuration of PGM and CWCM not as described in XMEGA A Manual
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common Waveform Channel Mode.
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable both
Pattern Generation Mode and Common Waveform Channel Mode.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
312
Problem fix/Workaround
Table 34-1. Configure PWM and CWCM According to this Table
PGM
CWCM
Description
0
0
PGM and CWCM disabled
0
1
PGM enabled
1
0
PGM and CWCM enabled
1
1
PGM enabled
10 PWM is not restarted properly after a fault in cycle-by-cycle mode
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal operation
at first update after fault condition is no longer present.
Problem fix/Workaround
Do a write to any AWeX I/O register to re-enable the output.
11. BOD will be enabled after any reset
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is below
the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the programmed BOD level even if the BOD is disabled.
Problem fix/Workaround
Do not set the BOD level higher than VCC even if the BOD is not used.
12. Sampled BOD in Active mode will cause noise when bandgap is used as reference
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap
reference for ADC and Analog Comparator.
Problem fix/Workaround
If the bandgap is used as reference for either the ADC or the Analog Comparator, the BOD must not be set in sampled mode.
13. EEPROM page buffer always written when NVM DATA0 is written
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.
Problem fix/Workaround
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if EEPROM
page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.
14. Pending full asynchronous pin change interrupts will not wake the device
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction is
executed, will be ignored until the device is woken from another source or the source triggers again. This applies
when entering all sleep modes where the System Clock is stopped.
Problem fix/Workaround
None.
15. Pin configuration does not affect Analog Comparator output
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
313
Problem fix/Workaround
None for Output/Pull configuration.
For inverted I/O, configure the Analog Comparator to give an inverted result (i.e. connect positive input to the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator output.
16. NMI Flag for Crystal Oscillator Failure automatically cleared
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI interrupt
handler
Problem fix/Workaround
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not required
17. Flash Power Reduction Mode can not be enabled when entering sleep
If Flash Power Reduction Mode is enabled when entering Power-save or Extended Standby sleep mode, the
device will only wake up on every fourth wake-up request. If Flash Power Reduction Mode is enabled when entering Idle sleep mode, the wake-up time will vary with up to 16 CPU clock cycles.
Problem fix/Workaround
Disable Flash Power Reduction mode before entering sleep mode.
18. Crystal start-up time required after power-save even if crystal is source for RTC
Even if 32.768 kHz crystal is used for RTC during sleep, the clock from the crystal will not be ready for the system
before the specified start-up time. See "XOSCSEL[3:0]: Crystal Oscillator Selection " in XMEGA A Manual. If BOD
is used in active mode, the BOD will be on during this period (0.5s).
Problem fix/Workaround
If faster start-up is required, go to sleep with internal oscillator as system clock
19. RTC Counter value not correctly read after sleep
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC PER as
the device is entering sleep, the value in the RTC count register can not be read correctly within the first prescaled
RTC clock cycle after wakeup. The value read will be the same as the value in the register when entering sleep.
The same applies if RTC Compare Match is used as wake-up source.
Problem fix/Workaround
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.
20. Pending asynchronous RTC-interrupts will not wake up device
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed, will
be ignored until the device is woken from another source or the source triggers again.
Problem fix/Workaround
None.
21. TWI Transmit collision flag not cleared on repeated start
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only cleared on
start.
Problem fix/Workaround
Clear the flag in software after address interrupt.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
314
22. Clearing TWI Stop Interrupt Flag may lock the bus
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets this
flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will lock the
bus.
Problem fix/Workaround
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for the
SCL pin to be low before clearing APIF.
Code:
/* Only clear the interrupt flag if within a "safe zone". */
while ( /* Bus not IDLE: */
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=
TWI_MASTER_BUSSTATE_IDLE_gc)) &&
/* SCL not held by slave: */
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)
)
{
/* Ensure that the SCL line is low */
if ( !(COMMS_PORT.IN & PIN1_bm) )
if ( !(COMMS_PORT.IN & PIN1_bm) )
break;
}
/* Check for an pending address match interrupt */
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )
{
/* Safely clear interrupt flag */
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;
}
23. TWI START condition at bus timeout will cause transaction to be dropped
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected, the
transaction will be dropped.
Problem fix/Workaround
None.
24. TWI Data Interrupt Flag erroneously read as set
When issuing the TWI slave response command CMD=0b11, it takes 1 Peripheral Clock cycle to clear the data
interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.
Problem fix/Workaround
Add one NOP instruction before checking DIF.
25. WDR instruction inside closed window will not issue reset
When a WDR instruction is execute within one ULP clock cycle after updating the window control register, the
counter can be cleared without giving a system reset.
Problem fix/Workaround
Wait at least one ULP clock cycle before executing a WDR instruction.
26. Inverted I/O enable does not affect Analog Comparator Output
The inverted I/O pin function does not affect the Analog Comparator output function.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
315
Problem fix/Workaround
Configure the analog comparator setup to give an inverted result, or use an external inverter to change polarity of
Analog Comparator Output.
27. Non available functions and options
The below function and options are not available. Writing to any registers or fuse to try and enable or configure
these functions or options will have no effect, and will be as writing to a reserved address location.
●
TWIE, the TWI module on PORTE.
●
TWI SDAHOLD option in the TWI CTRL register is one bit.
●
CRC generator module.
●
ADC 1/2x gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register.
●
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL register.
●
ADC option to use internal Gnd as negative input in differential measurements and this configuration option in the
MUXNEG bits in the ADC Channel MUXCTRL register.
●
ADC channel scan and the ADC SCAN register
●
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register
●
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register.
●
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0 CTRLE
register.
●
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers.
●
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0 and SPI,
and the PORT REMAP register.
●
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register.
●
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in the
PORT CLKEVOUT register.
●
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2
●
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the Clock
RTCTRL register.
●
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register.
●
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register.
●
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register.
●
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control memory.
Problem fix/Workaround
None.
28. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
29. Disabling of USART transmitter does not automatically set the TxD pin direction to input
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD
pin direction to input.
Problem fix/Workaround
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register
to input will be immediate. Ongoing transmissions will be truncated.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
316
34.2
ATxmega64D4
34.2.1 Rev. D
 Temperature sensor not calibrated
1. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
34.2.2 Rev. B/C
Not sampled.
34.2.3 Rev. A
 ADC may have missing codes in SE unsigned mode at low temp and low VCC
 Temperature sensor not calibrated
1. ADC may have missing codes in SE unsigned mode at low temp and low VCC
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.
Problem fix/Workaround
Use the ADC in SE signed mode.
2. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
34.3
ATxmega128D4
34.3.1 Rev. A
 Temperature sensor not calibrated
1. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
317
35.
Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The referring revision in this
section are referring to the document revision.
35.1
35.2
35.3
8135R – 02/2015
1.
Updated Figure 25-1 on page 45
2.
Updated the “Packaging information” on page 61. Replaced “44M1” on page 62 by a correct package.
3.
Updated tables Table 32-8 on page 70and Table 32-36 on page 89 with information on fixed voltage offset.
4.
Updated use of capitals in heading, table headings and figure titles.
8135Q – 09/2014
1.
Updated the “Ordering Information” on page 2. Added ordering information for ATxmega16D4/32D4/64D4/128D4 @
105C.
2.
Updated the Application table section from 4K/4K/4K/4K to 8K/4K/4K/4K in the Figure 7-1 on page 13
3.
Updated Table 32-4 on page 66, Table 32-33 on page 86, Table 32-60 on page 104 and Table 32-89 on page 125.
Added Icc Power-down power consumption for T=105C for all functions disabled and for WDT and sampled BOD
enabled
4.
Updated Table 32-17 on page 74, Table 32-45 on page 93, Table 32-73 on page 112 and Table 32-102 on page 133.
Updated all tables to include values for T=85C and T=105C. Removed T=55C
5.
Changed Vcc to AVcc in Figure 25-1 on page 45 and in the text in Section 25. “ADC – 12-bit Analog to Digital
Converter” on page 44 and in Section 26. “AC – Analog Comparator” on page 46
6.
Changed unit parameter for tSU;DAT to ns in Table 32-28 on page 82, Table 32-56 on page 101, Table 32-85 on page
121 and Table 32-114 on page 142.
7.
Added ERRATA information on disabling of USART transmitter to Section 34.1 “ATxmega16D4 / ATxmega32D4” on
page 308.
8.
Updated the typical characteristics of “ATxmega64D4” and “ATxmega128D4” with characterizations @105C
8135P – 01/2014
1.
35.4
Updated the typical characteristics of “ATxmega16D4” and “ATxmega32D4” with characterizations @ 105C
8135O – 08/2013
1.
Updated “Errata” :
● ATxmega16D4/32D4: Added Temperature sensor not calibrated to “Rev. I” , “Rev. E” and “Rev. A/B”
●
●
ATxmega64D4: Added Temperature sensor not calibrated to “Rev. D” and “Rev. A”
ATxmega128D4: Added Temperature sensor not calibrated to “Rev. A”
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
318
35.5
8135N – 04/2013
1.
Updated description in “ADC – 12-bit Analog to Digital Converter” on page 44.
2.
Updated “Errata” :
● ATxmega16D4/32D4: Added revision F, G, H, I
●
●
35.6
35.7
35.8
ATxmega64D4: Added revision A, B, C
ATxmega128D4: Added revision A
8135M – 02/2013
1.
Updated the datasheet with the Atmel new datasheet template.
2.
Updated Figure 2-1 on page 4. PE2/PE3 are now half gray.
3.
Updated Figure 2-1 on page 4. Pin 19 is VCC and not VDD.
4.
Updated Table 7-2 on page 16. FWORD column updated: Z[X,0] replaced by Z[X,1]. FPAGE column updated to Z[Y,8]
5.
Updated “I/O Ports” on page 29. Removed “Optional slew rate control”. The feature doesn't exist in XMEGA C and
XMEGA D devices.
6.
Updated “Analog Comparator Overview” on page 47, Figure 26-1.
7.
Updated Table 32-25 on page 77, Table 32-53 on page 96 and Table 32-82 on page 116. Added ESR parameter.
8.
Updated TWI specification. VIL Min is -0.5V and not 0.5V.
9.
Added new “Electrical Characteristics” for “ATxmega16D4” on page 64 and “ATxmega32D4” on page 83.
10.
Added new “Typical Characteristics” for “ATxmega16D4” on page 144 and “ATxmega32D4” on page 184.
11.
Updated “Errata” on page 308. AC system status flags are only valid if AC-system is enabled.
8135L – 08/2012
1.
Editing updates.
2.
Updated all tables in the “Electrical Characteristics” on page 64.
3.
Added new “Typical Characteristics” on page 144.
4.
Added new Errata “Rev. E” on page 308.
5.
Added new ERRATA on “Rev. A/B” on page 310: Non available functions and options
8135K – 06/2012
1.
ATxmega64D4-CU is added in “Ordering Information” on page 2
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
319
35.9
8135J – 12/10
1.
Datasheet status changed to complete: Preliminary removed from the front page.
2.
Updated all tables in the “Electrical Characteristics” on page 64.
3.
Replaced Table 31-11 on page 64.
4.
Replaced Table 31-17 on page 65 and added the figure ”TOSC input capacitance” on page 66.
5.
Updated ERRATA ADC (ADC has increased INL for some operating conditions).
6.
Updated ERRATA ”rev. A/B” on page 90 with TWIE (TWIE is not available).
7.
Updated the last page with Atmel new Brand Style Guide.
35.10 8135I – 10/10
1.
Updated Table 31-1 on page 58.
35.11 8135H – 09/10
1.
Updated ”Errata” on page 90.
35.12 8135G – 08/10
1.
Updated the Footnote 3 of ”Ordering Information” on page 2.
2.
All references to CRC removed. Updated Figure 3-1 on page 7.
3.
Updated ”Features” on page 26. Event Channel 0 output on port pin 7.
4.
Updated ”DC Characteristics” on page 58 by adding Icc for Flash/EEPROM Programming.
5.
Added AVCC in ”ADC Characteristics” on page 62.
6.
Updated Start up time in ”ADC Characteristics” on page 62.
7.
Updated and fixed typo in “Errata” section.
35.13 8135F – 02/10
1.
Added ”PDI Speed” on page 89.
35.14 8135E – 02/10
1.
Updated the device pin-out Figure 2-1 on page 3. PDI_CLK and PDI_DATA renamed only PDI.
2.
Updated Table 7-3 on page 18. No of Pages for ATxmega32D4: 32
3.
Updated ”Alternate Port Functions” on page 29.
4.
Updated ”ADC - 12-bit Analog to Digital Converter” on page 39.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
320
5.
Updated Figure 25-1 on page 50.
6.
Updated ”Alternate Pin Functions” on page 48.
7.
Updated ”Timer/Counter and AWEX functions” on page 46.
8.
Added Table 31-17 on page 65.
9.
Added Table 31-18 on page 66.
10.
Changed Internal Oscillator Speed to ”Oscillators and Wake-up Time” on page 85.
11.
Updated ”Errata” on page 90.
35.15 8135D – 12/09
1.
Added ATxmega128D4 device and updated the datasheet accordingly.
2.
Updated ”Electrical Characteristics” on page 58 with Max/Min numbers.
3.
Added ”Flash and EEPROM Memory Characteristics” on page 61.
4.
Updated Table 31-10 on page 64, Input hysteresis is in V and not in mV.
5.
Added ”Errata” on page 90.
35.16 8135C – 10/09
1.
Updated ”Features” on page 1 with Two Two-Wire Interfaces.
2.
Updated ”Block Diagram and QFN/TQFP pinout” on page 3.
3.
Updated ”Overview” on page 5.
4.
Updated ”XMEGA D4 Block Diagram” on page 7.
5.
Updated Table 13-1 on page 24.
6.
Updated ”Overview” on page 35.
7.
Updated Table 27-5 on page 49.
8.
Updated ”Peripheral Module Address Map” on page 50.
35.17 8135B – 09/09
1.
Added ”Electrical Characteristics” on page 58.
2.
Added ”Typical Characteristics” on page 67.
35.18 8135A – 03/09
1.
Initial revision.
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
321
Table of Contents
Features1
1
Ordering Information ............................................................................... 2
2
Pinout/Block diagram .............................................................................. 4
3
Overview ................................................................................................... 6
3.1Block Diagram ........................................................................................................... 7
4
Resources ................................................................................................. 8
4.1Recommended Reading ............................................................................................ 8
5
Capacitive Touch Sensing ....................................................................... 8
6
AVR CPU ................................................................................................... 9
6.1Features .................................................................................................................... 9
6.2Overview.................................................................................................................... 9
6.3Architectural Overview............................................................................................... 9
6.4ALU - Arithmetic Logic Unit ..................................................................................... 10
6.5Program Flow .......................................................................................................... 11
6.6Status Register ........................................................................................................ 11
6.7Stack and Stack Pointer .......................................................................................... 11
6.8Register File ............................................................................................................ 11
7
Memories ................................................................................................. 12
7.1Features .................................................................................................................. 12
7.2Overview.................................................................................................................. 12
7.3Flash Program Memory ........................................................................................... 13
7.4Fuses and Lock Bits ................................................................................................ 14
7.5Data Memory ........................................................................................................... 14
7.6EEPROM ................................................................................................................. 15
7.7I/O Memory.............................................................................................................. 15
7.8Data Memory and Bus Arbitration ........................................................................... 16
7.9Memory Timing ........................................................................................................ 16
7.10Device ID and Revision ......................................................................................... 16
7.11I/O Memory Protection........................................................................................... 16
7.12Flash and EEPROM Page Size ............................................................................. 16
8
Event System .......................................................................................... 18
8.1Features .................................................................................................................. 18
8.2Overview.................................................................................................................. 18
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
i
9
System Clock and Clock Options ......................................................... 19
9.1Features .................................................................................................................. 19
9.2Overview.................................................................................................................. 19
9.3Clock Sources ......................................................................................................... 20
10 Power Management and Sleep Modes ................................................. 22
10.1Features ................................................................................................................ 22
10.2Overview................................................................................................................ 22
10.3Sleep Modes.......................................................................................................... 22
11 System Control and Reset ..................................................................... 24
11.1Features ................................................................................................................ 24
11.2Overview................................................................................................................ 24
11.3Reset Sequence .................................................................................................... 24
11.4Reset Sources ....................................................................................................... 25
12 WDT – Watchdog Timer ......................................................................... 26
12.1Features ................................................................................................................ 26
12.2Overview................................................................................................................ 26
13 Interrupts and Programmable Multilevel Interrupt Controller ............ 27
13.1Features ................................................................................................................ 27
13.2Overview................................................................................................................ 27
13.3Interrupt Vectors .................................................................................................... 27
14 I/O Ports .................................................................................................. 29
14.1Features ................................................................................................................ 29
14.2Overview................................................................................................................ 29
14.3Output Driver ......................................................................................................... 30
14.4Input Sensing......................................................................................................... 31
14.5Alternate Port Functions ........................................................................................ 32
15 TC0/1 – 16-bit Timer/Counter Type 0 and 1 .......................................... 33
15.1Features ................................................................................................................ 33
15.2Overview................................................................................................................ 33
16 TC2 Timer/Counter Type 2 ..................................................................... 35
16.1Features ................................................................................................................ 35
16.2Overview................................................................................................................ 35
17 AWeX – Advanced Waveform Extension ............................................. 36
17.1Features ................................................................................................................ 36
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
ii
17.2Overview................................................................................................................ 36
18 Hi-Res – High Resolution Extension .................................................... 37
18.1Features ................................................................................................................ 37
18.2Overview................................................................................................................ 37
19 RTC – 16-bit Real-Time Counter ........................................................... 38
19.1Features ................................................................................................................ 38
19.2Overview................................................................................................................ 38
20 TWI – Two-Wire Interface ....................................................................... 39
20.1Features ................................................................................................................ 39
20.2Overview................................................................................................................ 39
21 SPI – Serial Peripheral Interface ........................................................... 40
21.1Features ................................................................................................................ 40
21.2Overview................................................................................................................ 40
22 USART ..................................................................................................... 41
22.1Features ................................................................................................................ 41
22.2Overview................................................................................................................ 41
23 IRCOM – IR Communication Module .................................................... 42
23.1Features ................................................................................................................ 42
23.2Overview................................................................................................................ 42
24 CRC – Cyclic Redundancy Check Generator ...................................... 43
24.1Features ................................................................................................................ 43
24.2Overview................................................................................................................ 43
25 ADC – 12-bit Analog to Digital Converter ............................................ 44
25.1Features ................................................................................................................ 44
25.2Overview................................................................................................................ 44
26 AC – Analog Comparator ....................................................................... 46
26.1Features ................................................................................................................ 46
26.2Overview................................................................................................................ 46
27 Programming and Debugging ............................................................... 48
27.1Features ................................................................................................................ 48
27.2Overview................................................................................................................ 48
28 Pinout and Pin Functions ...................................................................... 49
28.1Alternate Pin Function Description ........................................................................ 49
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
iii
28.2Alternate Pin Functions ......................................................................................... 51
29 Peripheral Module Address Map ........................................................... 54
30 Instruction Set Summary ....................................................................... 56
31 Packaging information ........................................................................... 61
31.144A ........................................................................................................................ 61
31.244M1...................................................................................................................... 62
31.349C2 ...................................................................................................................... 63
32 Electrical Characteristics ...................................................................... 64
32.1ATxmega16D4....................................................................................................... 64
32.2ATxmega32D4....................................................................................................... 83
32.3ATxmega64D4..................................................................................................... 102
32.4ATxmega128D4................................................................................................... 123
33 Typical Characteristics ........................................................................ 144
33.1ATxmega16D4..................................................................................................... 144
33.2ATxmega32D4..................................................................................................... 184
33.3ATxmega64D4..................................................................................................... 224
33.4ATxmega128D4................................................................................................... 266
34 Errata ..................................................................................................... 308
34.1ATxmega16D4 / ATxmega32D4.......................................................................... 308
34.2ATxmega64D4..................................................................................................... 317
34.3ATxmega128D4................................................................................................... 317
35 Datasheet Revision History ................................................................. 318
35.18135R – 02/2015 ................................................................................................. 318
35.28135Q – 09/2014................................................................................................. 318
35.38135P – 01/2014 ................................................................................................. 318
35.48135O – 08/2013................................................................................................. 318
35.58135N – 04/2013 ................................................................................................. 319
35.68135M – 02/2013................................................................................................. 319
35.78135L – 08/2012.................................................................................................. 319
35.88135K – 06/2012 ................................................................................................. 319
35.98135J – 12/10...................................................................................................... 320
35.108135I – 10/10..................................................................................................... 320
35.118135H – 09/10 ................................................................................................... 320
35.128135G – 08/10................................................................................................... 320
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
iv
35.138135F – 02/10 ................................................................................................... 320
35.148135E – 02/10 ................................................................................................... 320
35.158135D – 12/09 ................................................................................................... 321
35.168135C – 10/09 ................................................................................................... 321
35.178135B – 09/09 ................................................................................................... 321
35.188135A – 03/09 ................................................................................................... 321
Table of Contentsi
XMEGA D4 [DATASHEET]
Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet–02/2015
v
XXXXXX
Atmel Corporation
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
© 2015 Atmel Corporation. / Rev.: Atmel-8135R-AVR-ATxmega16D4-32D4-64D4-128D4-Datasheet_02/2015.
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. Other terms and product names may be trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.