ATxmegaC4 - Preliminary

8/16-bit Atmel XMEGA C4 Microcontroller
ATxmega32C4
ATxmega16C4
DATASHEET
Feature
 High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller
 Nonvolatile program and data memories
16K - 32KB of In-System Self-Programmable Flash
4KB Boot Code Section with Independent Lock Bits
1KB EEPROM
2K - 4KB Internal SRAM
Peripheral features
 Four-channel event system
 Four 16-bit timer/counters
 Three timer/counters with four output compare or input capture channels
 One timer/counter with two output compare or input capture channels
 High resolution extension on two timer/counters
 Advanced waveform extension (AWeX) on one timer/counter
 One USB device interface
 USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant
 32 endpoints with full configuration flexibility
 Three USARTs with IrDA support for one USART
 Two two-wire interfaces with dual address match (I2C and SMBus compatible)
 Two serial peripheral interfaces (SPIs)
 CRC-16 (CRC-CCITT) and CRC-32 (IEEE®802.3) generator
 16-bit real time counter (RTC) with separate oscillator
 One sixteen-channel, 12-bit, 300ksps Analog to Digital Converter
 Two Analog Comparators with window compare function, and current sources
 External interrupts on all general purpose I/O pins
 Programmable watchdog timer with separate on-chip ultra low power oscillator
 QTouch® library support
 Capacitive touch buttons, sliders and wheels
Special microcontroller features
 Power-on reset and programmable brown-out detection
 Internal and external clock options with PLL and prescaler
 Programmable multilevel interrupt controller
 Five sleep modes
 Programming and debug interface
 PDI (program and debug interface)
I/O and packages
 34 programmable I/O pins
 44-lead TQFP
 44-pad QFN
 49-ball VFBGA
Operating voltage
 1.6 – 3.6V
Operating frequency
 0 – 12MHz from 1.6V
 0 – 32MHz from 2.7V









Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
1.
Ordering Information
Flash
[bytes]
EEPROM
[bytes]
SRAM
[bytes]
ATxmega32C4-AU
32K + 4K
1K
4K
ATxmega32C4-AUR(4)
32K + 4K
1K
4K
ATxmega16C4-AU
16K + 4K
1K
2K
ATxmega16C4-AUR(4)
16K + 4K
1K
2K
ATxmega32C4-MH
32K + 4K
1K
4K
ATxmega32C4-MHR(4)
32K + 4K
1K
4K
ATxmega16C4-MH
16K + 4K
1K
2K
ATxmega16C4-MHR(4)
16K + 4K
1K
2K
ATxmega32C4-CU
32K + 4K
1K
4K
ATxmega32C4-CUR(4)
32K + 4K
1K
4K
ATxmega16C4-CU
16K + 4K
1K
2K
ATxmega16C4-CUR(4)
16K + 4K
1K
2K
ATxmega32C4-AN
32K + 4K
1K
4K
ATxmega32C4-ANR(4)
32K + 4K
1K
4K
ATxmega16C4-AN
16K + 4K
1K
2K
ATxmega16C4-ANR(4)
16K + 4K
1K
2K
ATxmega32C4-M7
32K + 4K
1K
4K
ATxmega32C4-M7R(4)
32K + 4K
1K
4K
ATxmega16C4-M7
16K + 4K
1K
2K
ATxmega16C4-M7R(4)
16K + 4K
1K
2K
Ordering code
Speed
[MHz]
Power supply
[V]
Temp.
[°C]
Package (1)(2)(3)
44A
PW
32
1.6 - 3.6
-40 - 85
7P
44A
-40 - 105
PW
Notes:
1.
2.
3.
4.
This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information.
Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
For packaging information, see “Packaging Information” on page 62.
Tape and Reel.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
2
Package Type
44A
44-lead, 10x10mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
PW
44-lead, 0.50mm pitch, 7x7x1.0mm body size, very thin quad flat package (punched) (VQFN)
7P
49-ball (7 x 7 Array), 0.65mm pitch, 5x5x1.0mm, very thin, fine-pitch ball grid array package (VFBGA)
Typical Applications
Industrial control
Climate control
Low power battery applications
®
Factory automation
RF and ZigBee
Building control
USB connectivity
Power tools
HVAC
Board control
Sensor control
Utility metering
White goods
Optical
Medical applications
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
3
2.
Pinout/Block Diagram
PA4
PA3
PA2
PA1
PA0
AVCC
GND
PR1
PR0
RESET_PDI
PDI
44
43
42
41
40
39
38
37
36
35
34
Figure 2-1. Block Diagram and Pinout
Programming, debug, test
Power
Ground
External clock /Crystal pins
General Purpose I /O
Digital function
Analog function /Oscillators
Port R
PC1
11
Internal
references
SRAM
FLASH
1.
2.
EEPROM
DATA BUS
EVENT ROUTING NETWORK
Port C
Notes:
33
PE3
32
PE2
31
VCC
30
GND
29
PE1
28
PE0
27
PD7
26
PD6
25
PD5
24
PD4
23
PD3
CPU
12
13
14
15
16
17
18
19
PC3
PC4
PC5
PC6
PC7
GND
VCC
Port E
PC2
Port D
22
10
AREF
BUS
matrix
PD2
PC0
Interrupt
Controller
21
9
Prog/Debug
Interface
PD1
VCC
OCD
TWI
8
CRC
TC0
GND
Event System
Controller
AC0:1
20
7
Reset
Controller
PD0
PB3
Watchdog
Timer
USB
6
Real Time
Counter
ADC
SPI
PB2
Sleep
Controller
AREF
USART0
5
Power
Supervision
TC0
PB1
Watchdog
TWI
4
Internal
oscillators
SPI
PB0
3
OSC/CLK
Control
USART0:1
PA7
TOSC
DATA BUS
TC0:1
2
IRCOM
PA6
XOSC
Port A
1
Port B
PA5
For full details on pinout and alternate pin functions refer to “Pinout and Pin Functions” on page 51.
The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good mechanical stability.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
4
Figure 2-2. VFBGA Pinout
Top view
1
2
3
4
5
Bottom view
6
7
7
6
5
4
3
2
1
A
A
B
B
C
C
D
D
E
E
F
F
G
G
1
2
3
4
5
6
7
A
PA3
AVCC
GND
PR1
PR0
PDI
PE3
B
PA4
PA1
PA0
GND
RESET/PDI_CLK
PE2
VCC
C
PA5
PA2
PA6
PA7
GND
PE1
GND
D
PB1
PB2
PB3
PB0
GND
PD7
PE0
E
GND
GND
PC3
GND
PD4
PD5
PD6
F
VCC
PC0
PC4
PC6
PD0
PD1
PD3
G
PC1
PC2
PC5
PC7
GND
VCC
PD2
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
5
3.
Overview
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices
achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system
designer to optimize power consumption versus processing speed.
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times
faster than conventional single-accumulator or CISC based microcontrollers.
The XMEGA C4 devices provide the following features: in-system programmable flash with read-while-write capabilities;
internal EEPROM and SRAM; four-channel event system and programmable multilevel interrupt controller, 34 general
purpose I/O lines, 16-bit real-time counter (RTC); four, 16-bit timer/counters with compare and PWM channels; three
USARTs; two two-wire serial interfaces (TWIs); one full speed USB 2.0 interface; two serial peripheral interfaces (SPIs);
one sixteen-channel, 12-bit ADC with programmable gain; two analog comparators (ACs) with window mode;
programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and prescaler; and
programmable brown-out detection.
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.
The XMEGA C4 devices have five software selectable power saving modes. The idle mode stops the CPU while allowing
the SRAM, event system, interrupt controller, and all peripherals to continue functioning. The power-down mode saves
the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI, USB resume, or
pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run, allowing the
application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external crystal
oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external crystal,
combined with low power consumption. In extended standby mode, both the main oscillator and the asynchronous timer
continue to run. To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be
stopped in active mode and idle sleep mode.
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR
microcontrollers.
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can
be reprogrammed in-system through the PDI. A boot loader running in the device can use any interface to download the
application program to the flash memory. The boot loader software in the boot flash section will continue to run while the
application flash section is updated, providing true read-while-write operation. By combining an 8/16-bit RISC CPU with
in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that provides a highly flexible
and cost effective solution for many embedded applications.
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including: C
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
6
3.1
Block Diagram
Figure 3-1. XMEGA C4 Block Diagram
PR[0..1]
XTAL1/
TOSC1
Programming, debug, test
Power
Ground
Digital function
Analog function /Oscillators
External clock /Crystal pins
General Purpose I /O
XTAL2/
TOSC2
Oscillator
Circuits/
Clock
Generation
PORT R (2)
Real Time
Counter
Watchdog
Oscillator
DATA BUS
Watchdog
Timer
ACA
Event System
Controller
PA[0..7]
Sleep
Controller
Oscillator
Control
Power
Supervision
POR/BOD &
RESET
PORT A (8)
ADCA
SRAM
GND
BUS Matrix
AREFA
Prog/Debug
Controller
Interrupt
Controller
VCC/10
VCC
PDI
RESET/
PDI_CLK
PDI_DATA
Int. Refs.
Tempref
CPU
CRC
OCD
AREFB
NVM Controller
PORT B (4)
EEPROM
Flash
DATA BUS
PORT D (8)
TCE0
TWIE
USB
SPID
TCD0
USARTD0
SPIC
PORT C (8)
TWIC
TCC0:1
USARTC0:1
EVENT ROUTING NETWORK
IRCOM
PB[0..3]
To Clock
Generator
PORT E (4)
TOSC1
TOSC2
PC[0..7]
PD[0..7]
PE[0..3]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
7
4.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.
4.1
Recommended Reading

Atmel AVR XMEGA C manual

XMEGA application notes
This device data sheet only contains part specific information with a short description of each peripheral and module. The
XMEGA C manual describes the modules and peripherals in depth. The XMEGA application notes contain example code
and show applied use of the modules and peripherals.
All documentation are available from www.atmel.com/avr.
5.
Capacitive Touch Sensing
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced
reporting of touch keys and includes Adjacent Key Suppression™ (AKS™) technology for unambiguous detection of key
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the
touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch library is FREE and downloadable from the Atmel website at the following location:
http://www.atmel.com/tools/qtouchlibrary For implementation details and other information, refer to the QTouch library
user guide - also available for download from the Atmel website.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
8
6.
AVR CPU
6.1
Features
 8/16-bit, high-performance Atmel AVR RISC CPU


142 instructions
Hardware multiplier
 32x8-bit registers directly connected to the ALU
 Stack in RAM
 Stack pointer accessible in I/O memory space
 Direct addressing of up to 16MB of program memory and 16MB of data memory
 True 16/24-bit access to 16/24-bit I/O registers
 Efficient support for 8-, 16-, and 32-bit arithmetic
 Configuration change protection of system-critical features
6.2
Overview
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the
program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable
Multilevel Interrupt Controller” on page 27.
6.3
Architectural Overview
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.
Figure 6-1. Block Diagram of the AVR CPU Architecture
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
9
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is
updated to reflect information about the result of the operation.
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data
space addressing, enabling efficient address calculations.
The memory spaces are linear. The data memory space and the program memory space are two different memory
spaces.
The data memory space is divided into I/O registers; SRAM, and external RAM. In addition, the EEPROM can be
memory mapped in the data memory.
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.
The program memory is divided in two sections, the application program section and the boot program section. Both
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for selfprogramming of the application flash memory must reside in the boot program section. The application section contains
an application table section with separate lock bits for write and read/write protection. The application table section can
be used for safe storing of nonvolatile data in the program memory.
6.4
ALU - Arithmetic Logic Unit
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the
status register is updated to reflect information about the result of the operation.
ALU operations are divided into three main categories; arithmetic, logical, and bit functions. Both 8- and 16-bit arithmetic
is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware multiplier
supports signed and unsigned multiplication and fractional format.
6.4.1
Hardware Multiplier
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different
variations of signed and unsigned integer and fractional numbers:

Multiplication of unsigned integers

Multiplication of signed integers

Multiplication of a signed integer with an unsigned integer

Multiplication of unsigned fractional numbers

Multiplication of signed fractional numbers

Multiplication of a signed fractional number with an unsigned one
A multiplication takes two CPU clock cycles.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
10
6.5
Program Flow
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program
counter (PC) addresses the next instruction to be fetched.
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be
accessed through the five different addressing modes supported in the AVR CPU.
6.6
Status Register
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an
interrupt. This must be handled by software.
The status register is accessible in the I/O memory space.
6.7
Stack and Stack Pointer
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices
with more than 128KB of program memory, the return address is three bytes, and hence the SP is
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the
RETI instruction, and from subroutine calls using the RET instruction.
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one
when data is popped off the stack using the POP instruction.
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts
for up to four instructions or until the next I/O memory write.
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on page 16.
6.8
Register File
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register
file supports the following input/output schemes:

One 8-bit output operand and one 8-bit result input

Two 8-bit output operands and one 8-bit result input

Two 8-bit output operands and one 16-bit result input

One 16-bit output operand and one 16-bit result input
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
11
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash
program memory.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
12
7.
Memories
7.1
Features
 Flash program memory








One linear address space
In-system programmable
Self-programming and boot loader support
Application section for application code
Application table section for application code or data storage
Boot section for application code or boot loader code
Separate read/write protection lock bits for all sections
Built in fast CRC check of a selectable flash program memory section
 Data memory






One linear address space
Single-cycle access from CPU
SRAM
EEPROM
 Byte and page accessible
 Optional memory mapping for direct load and store
I/O memory
 Configuration and status registers for all peripherals and modules
 Four bit-accessible general purpose registers for global variables or flags
Separate buses for SRAM, EEPROM and I/O memory
 Simultaneous bus access for CPU
 Production signature row memory for factory programmed data
ID for each microcontroller device type
Serial number for each device
 Calibration bytes for factory calibrated peripherals


 User signature row
One flash page in size
Can be read and written from software
 Content is kept after chip erase


7.2
Overview
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write
operations. This prevents unrestricted access to the application software.
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can
only be written by an external programmer.
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has a
Flash memory signature row for calibration data, device identification, serial number etc.
7.3
Flash Program Memory
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The
flash memory can be accessed for read and write from an external programmer through the PDI or from application
software running in the device.
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
13
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate
when executed from the boot loader section.
The application section contains an application table section with separate lock settings. This enables safe storage of
nonvolatile data in the program memory.
Figure 7-1. Flash Program Memory (hexadecimal address)
Word address
ATxmega32C4
ATxmega16C4
0
0
Application Section (32K/16K)
...
7.3.1
37FF
/
17FF
3800
/
1800
3FFF
/
1FFF
4000
/
2000
47FF
/
27FF
Application Table Section (4K/4K)
Boot Section (4K/4K)
Application Section
The Application section is the section of the flash that is used for storing the executable application code. The protection
level for the application section can be selected by the boot lock bits for this section. The application section can not store
any boot loader code since the SPM instruction cannot be executed from the application section.
7.3.2
Application Table Section
The application table section is a part of the application section of the flash memory that can be used for storing data.
The size is identical to the boot loader section. The protection level for the application table section can be selected by
the boot lock bits for this section. The possibilities for different protection levels on the application section and the
application table section enable safe parameter storage in the program memory. If this section is not used for data,
application code can reside here.
7.3.3
Boot Loader Section
While the application section is used for storing the application code, the boot loader software must be located in the boot
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code
can be stored here.
7.3.4
Production Signature Row
The production signature row is a separate memory section for factory programmed data. It contains calibration data for
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical
Characteristics” on page 65.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
14
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer
coordinates for the device. The device ID for the available devices is shown in Table 7-1.
The production signature row cannot be written or erased, but it can be read from application software and external
programmers.
Table 7-1.
Device ID Bytes
Device
7.3.5
Device ID bytes
Byte 2
Byte 1
Byte 0
ATxmega16C4
43
94
1E
ATxmega32C4
44
95
1E
User Signature Row
The user signature row is a separate memory section that is fully accessible (read and write) from application software
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during
multiple program/erase operations and on-chip debug sessions.
7.4
Fuses and Lock bits
The fuses are used to configure important system functions, and can only be written from an external programmer. The
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and
watchdog, and startup configuration.
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should be
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the
lock bits are erased after the rest of the flash memory has been erased.
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.
Both fuses and lock bits are reprogrammable like the flash program memory.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
15
7.5
Data Memory
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory
if available. The data memory is organized as one continuous memory section, see Figure 7-2. To simplify development,
I/O Memory, EEPROM, and SRAM will always have the same start addresses for all Atmel AVR XMEGA devices.
Figure 7-2. Data Memory Map (hexadecimal address)
Byte Address
ATxmega32C4
0
FFF
I/O Registers (4K)
1000
EEPROM (1K)
13FF
Byte Address
ATxmega16C4
0
FFF
1000
13FF
RESERVED
2000
2FFF
7.6
Internal SRAM (4K)
I/O Registers (4K)
EEPROM (1K)
RESERVED
2000
27FF
Internal SRAM (2K)
EEPROM
All devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default) or
memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory
mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is
accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address
0x1000.
7.7
I/O Memory
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,
single-cycle instructions for manipulation and checking of individual bits are available.
The I/O memory address for all peripherals and modules is shown in the “Peripheral Module Address Map” on page 55.
7.7.1
General Purpose I/O Registers
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
7.8
Memory Timing
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from
SRAM takes two cycles. EEPROM page load (write) takes one cycle, and three cycles are required for read. For burst
read, new data are available every second cycle. Refer to the instruction summary for more details on instructions and
instruction timing.
7.9
Device ID and Revision
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A
separate register contains the revision number of the device.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
16
7.10
I/O Memory Protection
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers
themselves are protected by the configuration change protection mechanism.
7.11
Flash and EEPROM Page Size
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the
flash and byte accessible for the EEPROM.
Table 7-2 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and erase
operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash access the
Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page number and the
least significant address bits (FWORD) give the word in the page.
Table 7-2.
Number of Words and Pages in the Flash
Devices
PC size
Flash size
Page size
FWORD
bits
bytes
words
ATxmega16C4
17
16K + 4K
128
Z[6:0]
ATxmega32C4
18
32K + 4K
128
Z[6:0]
FPAGE
Application
Boot
Size
No. of pages
Size
No. of pages
Z[13:7]
16K
64
4K
16
Z[14:7]
32K
128
4K
16
Table 7-3 shows EEPROM memory organization. EEEPROM write and erase operations can be performed one page or
one byte at a time, while reading the EEPROM is done one byte at a time. For EEPROM access the NVM address
register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give the page number
and the least significant address bits (E2BYTE) give the byte in the page.
Table 7-3.
Number of Bytes and Pages in the EEPROM
Devices
EEPROM
Page size
E2BYTE
E2PAGE
No. of pages
Size
bytes
ATxmega16C4
1K
32
ADDR[4:0]
ADDR[10:5]
32
ATxmega32C4
1K
32
ADDR[4:0]
ADDR[10:5]
32
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
17
8.
Event System
8.1
Features
 System for direct peripheral-to-peripheral communication and signaling
 Peripherals can directly send, receive, and react to peripheral events
CPU independent operation
100% predictable signal timing
 Short and guaranteed response time


 Four event channels for up to four different and parallel signal routing configurations
 Events can be sent and/or used by most peripherals, clock system, and software
 Additional functions include


Quadrature decoders
Digital filtering of I/O pin state
 Works in active mode and idle sleep mode
8.2
Overview
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction
without the use of interrupts, and CPU, and is thus a powerful tool for reducing the complexity, size and execution time of
application code. It also allows for synchronized timing of actions in several peripheral modules.
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing
network. How events are routed and used by the peripherals is configured in software.
Figure 8-1 shows a basic diagram of all connected peripherals. The event system can directly connect together analog to
digital converter, analog comparators, I/O port pins, the real-time counter, timer/counters, IR communication module
(IRCOM), and USB interface. Events can also be generated from software and the peripheral clock.
Figure 8-1. Event System Overview and Connected Peripherals
CPU /
Software
Event Routing Network
clkPER
Prescaler
Real Time
Counter
ADC
Event
System
Controller
Timer /
Counters
AC
USB
Port pins
IRCOM
The event routing network consists of four software-configurable multiplexers that control how events are routed and
used. These are called event channels, and allow for up to four parallel event routing configurations. The maximum
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
18
9.
System Clock and Clock Options
9.1
Features
 Fast start-up time
 Safe run-time clock switching
 Internal oscillators:
32MHz run-time calibrated and tuneable oscillator
2MHz run-time calibrated oscillator
 32.768kHz calibrated oscillator
 32kHz ultra low power (ULP) oscillator with 1kHz output


 External clock options
0.4MHz - 16MHz crystal oscillator
32.768kHz crystal oscillator
 External clock


 PLL with 20MHz - 128MHz output frequency


Internal and external clock options and 1x to 31x multiplication
Lock detector
 Clock prescalers with 1x to 2048x division
 Fast peripheral clocks running at two and four times the CPU clock
 Automatic run-time calibration of internal oscillators
 External oscillator and PLL lock failure detection with optional non-maskable interrupt
9.2
Overview
Atmel AVR XMEGA C4 devices have a flexible clock system supporting a large number of clock sources. It incorporates
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL)
is available, and can be used for automatic run-time calibration of the internal oscillators to remove frequency drift over
voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt and switch to the
internal oscillator if the external oscillator or PLL fails.
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and
prescalers can be changed from software at any time.
Figure 9-1 on page 20 presents the principal clock system. Not all of the clocks need to be active at a given time. The
clocks for the CPU and peripherals can be stopped using sleep modes and power reduction registers, as described in
“Power Management and Sleep Modes” on page 22.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
19
Figure 9-1. The Clock System, Clock Sources, and Clock Distribution
Real Time
Counter
Peripherals
RAM
AVR CPU
Non-Volatile
Memory
clkPER
clkPER2
clkCPU
clkPER4
USB
clkUSB
System Clock Prescalers
Brown-out
Detector
Prescaler
Watchdog
Timer
clkSYS
clkRTC
System Clock Multiplexer
(SCLKSEL)
RTCSRC
USBSRC
DIV32
DIV32
DIV32
PLL
PLLSRC
DIV4
XOSCSEL
32kHz
Int. ULP
32.768kHz
Int. OSC
32.768kHz
TOSC
32MHz
Int. Osc
2MHz
Int. Osc
XTAL2
XTAL1
TOSC2
TOSC1
9.3
0.4 – 16MHz
XTAL
Clock Sources
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other
clock sources (DFLLs and PLL) are turned off by default.
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the
internal oscillators, refer to the device datasheet.
9.3.1
32kHz Ultra Low Power Internal Oscillator
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.
This oscillator can be selected as the clock source for the RTC.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
20
9.3.2
32.768kHz Calibrated Internal Oscillator
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz
output.
9.3.3
32.768kHz Crystal Oscillator
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.
9.3.4
0.4 - 16MHz Crystal Oscillator
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.
9.3.5
2MHz Run-time Calibrated Internal Oscillator
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time
calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.
9.3.6
32MHz Run-time Calibrated Internal Oscillator
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30 and 55MHz. The production
signature row contains 48MHz calibration values intended used when the oscillator is used a full-speed USB clock
source.
9.3.7
External Clock Sources
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.
XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a
32.768kHz crystal oscillator.
9.3.8
PLL with 1x-31x Multiplication Factor
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a userselectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output
frequencies from all clock sources.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
21
10.
Power Management and Sleep Modes
10.1
Features
 Power management for adjusting power consumption and functions
 Five sleep modes:
Idle
Power down
 Power save
 Standby
 Extended standby


 Power reduction register to disable clock and turn off unused peripherals in active and idle modes
10.2
Overview
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals
and all enabled reset sources can restore the microcontroller from sleep to active mode.
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power
management than sleep modes alone.
10.3
Sleep Modes
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA
microcontrollers have five different sleep modes tuned to match the typical functional stages during application
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution
starts.
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will
reset, start up, and execute from the reset vector.
10.3.1 Idle Mode
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but
all peripherals, including the interrupt controller, and event system are kept running. Any enabled interrupt will wake the
device.
10.3.2 Power-down Mode
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the twowire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
22
10.3.3 Power-save Mode
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.
10.3.4 Standby Mode
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.
10.3.5 Extended Standby Mode
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
23
11.
System Control and Reset
11.1
Features
 Reset the microcontroller and set it to initial state when a reset source goes active
 Multiple reset sources that cover different situations






Power-on reset
External reset
Watchdog reset
Brownout reset
PDI reset
Software reset
 Asynchronous operation

No running system clock in the device is required for reset
 Reset status register for reading the reset source from the application code
11.2
Overview
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of
the accessed location can not be guaranteed.
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to
move the reset vector to the lowest address in the boot section.
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software
reset feature makes it possible to issue a controlled system reset from the user software.
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows
which sources have issued a reset since the last power-on.
11.3
Reset Sequence
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is
active. When all reset requests are released, the device will go through three stages before the device starts running
again:

Reset counter delay

Oscillator startup

Oscillator calibration
If another reset requests occurs during this process, the reset sequence will start over again.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
24
11.4
Reset Sources
11.4.1 Power-on Reset
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.
11.4.2 Brownout Detection
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip
erase and when the PDI is enabled.
11.4.3 External Reset
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.
11.4.4 Watchdog Reset
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one
to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 26.
11.4.5 Software Reset
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset
control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any
instruction from when a software reset is requested until it is issued.
11.4.6 Program and Debug Interface Reset
The program and debug interface reset contains a separate reset source that is used to reset the device during external
programming and debugging. This reset source is accessible only from external debuggers and programmers.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
25
12.
WDT – Watchdog Timer
12.1
Features
 Issues a device reset if the timer is not reset before its timeout period
 Asynchronous operation from dedicated oscillator
 1kHz output of the 32kHz ultra low power oscillator
 11 selectable timeout periods, from 8ms to 8s
 Two operation modes:


Normal mode
Window mode
 Configuration lock to prevent unwanted changes
12.2
Overview
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application
code.
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock
source, and will continue to operate to issue a system reset even if the main clocks fail.
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For
increased safety, a fuse for locking the WDT settings is also available.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
26
13.
Interrupts and Programmable Multilevel Interrupt Controller
13.1
Features
 Short and predictable interrupt response time
 Separate interrupt configuration and vector address for each interrupt
 Programmable multilevel interrupt controller
Interrupt prioritizing according to level and vector address
Three selectable interrupt levels for all interrupts: low, medium, and high
 Selectable, round-robin priority scheme within low-level interrupts
 Non-maskable interrupts for critical functions


 Interrupt vectors optionally placed in the application section or the boot loader section
13.2
Overview
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are
serviced within a certain amount of time.
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.
13.3
Interrupt Vectors
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in
each peripheral. The base addresses for the Atmel AVR XMEGA C4 devices are shown in Table 13-1 on page 28. Offset
addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA C manual. For
peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 13-1 on page 28. The program
address is the word address.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
27
Table 13-1. Reset and Interrupt Vectors
Program address
(base address)
Source
0x000
RESET
0x002
OSCF_INT_vect
Crystal oscillator failure interrupt vector (NMI)
0x004
PORTC_INT_base
Port C interrupt base
0x008
PORTR_INT_base
Port R interrupt base
0x014
RTC_INT_base
Real Time Counter Interrupt base
0x018
TWIC_INT_base
Two-Wire Interface on Port C Interrupt base
0x01C
TCC0_INT_base
Timer/Counter 0 on port C Interrupt base
0x028
TCC1_INT_base
Timer/Counter 1 on port C Interrupt base
0x030
SPIC_INT_vect
SPI on port C Interrupt vector
0x032
USARTC0_INT_base
USART 0 on port C Interrupt base
0x038
USARTC1_INT_base
USART 1 on port C Interrupt base
0x040
NVM_INT_base
Non-Volatile Memory Interrupt base
0x044
PORTB_INT_base
Port B Interrupt base
0x056
PORTE_INT_base
Port E INT base
0x05A
TWIE_INT_base
Two-Wire Interface on Port E Interrupt base
0x05E
TCE0_INT_base
Timer/Counter 0 on port E Interrupt base
0x080
PORTD_INT_base
Port D Interrupt base
0x084
PORTA_INT_base
Port A Interrupt base
0x088
ACA_INT_base
Analog Comparator on Port A Interrupt base
0x08E
ADCA_INT_base
Analog to Digital Converter on Port A Interrupt base
0x09A
TCD0_INT_base
Timer/Counter 0 on port D Interrupt base
0x0AE
SPID_INT_vector
SPI D Interrupt vector
0x0B0
USARTD0_INT_base
USART 0 on port D Interrupt base
0x0FA
USB_INT_base
USB on port D Interrupt base
Interrupt description
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
28
14.
I/O Ports
14.1
Features
 34 general purpose input and output pins with individual configuration
 Output driver with configurable driver and pull settings:
Totem-pole
Wired-AND
 Wired-OR
 Bus-keeper
 Inverted I/O


 Input with synchronous and/or asynchronous sensing with interrupts and events
Sense both edges
Sense rising edges
 Sense falling edges
 Sense low level


 Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations
 Asynchronous pin change sensing that can wake the device from all sleep modes
 Two port interrupts with pin masking per I/O port
 Efficient and safe access to port pins
Hardware read-modify-write through dedicated toggle/clear/set registers
Configuration of multiple pins in a single operation
 Mapping of port registers into bit-accessible I/O memory space


 Peripheral clocks output on port pin
 Real-time counter clock output to port pin
 Event channels can be output on port pin
 Remapping of digital peripheral pin functions

14.2
Selectable USART, SPI, and timer/counter input/output pin locations
Overview
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from
all sleep modes, included the modes where no clocks are running.
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other
pin.
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus
application needs.
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, and PORTR.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
29
14.3
Output Driver
All port pins (Pxn) have programmable output configuration.
14.3.1 Push-pull
Figure 14-1. I/O Configuration - Totem-pole
DIRxn
OUTxn
Pxn
INxn
14.3.2 Pull-down
Figure 14-2. I/O Configuration - Totem-pole with Pull-down (on input)
DIRxn
OUTxn
Pxn
INxn
14.3.3 Pull-up
Figure 14-3. I/O Configuration - Totem-pole with Pull-up (on input)
DIRxn
OUTxn
Pxn
INxn
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
30
14.3.4 Bus-keeper
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level
was ‘1’, and pull-down if the last level was ‘0’.
Figure 14-4. I/O Configuration - Totem-pole with Bus-keeper
DIRxn
OUTxn
Pxn
INxn
14.3.5 Others
Figure 14-5. Output Configuration - Wired-OR with Optional Pull-down
OUTxn
Pxn
INxn
Figure 14-6. I/O Configuration - Wired-AND with Optional Pull-up
INxn
Pxn
OUTxn
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
31
14.4
Input Sensing
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is
shown in Figure 14-7.
Figure 14-7. Input Sensing System Overview
Asynchronous sensing
EDGE
DETECT
Interrupt
Control
IRQ
Synchronous sensing
Pxn
Synchronizer
INn
D
Q D
R
Q
EDGE
DETECT
Synchronous
Events
R
INVERTED I/O
Asynchronous
Events
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.
14.5
Alternate Port Functions
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for
that peripheral. “Pinout and Pin Functions” on page 51 shows which modules on peripherals that enable alternate
functions on a pin, and which alternate functions that are available on a pin.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
32
15.
TC0/1 – 16-bit Timer/Counter Type 0 and 1
15.1
Features
 Four 16-bit timer/counters
Three timer/counters of type 0
One timer/counter of type 1
 Split-mode enabling two 8-bit timer/counter from each timer/counter type 0


 32-bit timer/counter support by cascading two timer/counters
 Up to four compare or capture (CC) channels


Four CC channels for timer/counters of type 0
Two CC channels for timer/counters of type 1
 Double buffered timer period setting
 Double buffered capture or compare channels
 Waveform generation:
Frequency generation
Single-slope pulse width modulation
 Dual-slope pulse width modulation


 Input capture:
Input capture with noise cancelling
Frequency capture
 Pulse width capture
 32-bit input capture


 Timer overflow and error interrupts/events
 One compare match or input capture interrupt/event per CC channel
 Can be used with event system for:
Quadrature decoding
Count and direction control
 Capture


 High-resolution extension

Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
 Advanced waveform extension:

Low- and high-side output with programmable dead-time insertion (DTI)
 Event controlled fault protection for safe disabling of drivers
15.2
Overview
Atmel AVR XMEGA C4 devices have a set of four flexible 16-bit timer/counters (TC). Their capabilities include accurate
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC
channels can be used together with the base counter to do compare match control, frequency generation, and pulse
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either
capture or compare functions, but cannot perform both at the same time.
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.
The event system can also be used for direction control and capture trigger or to synchronize operations.
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
33
Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels
each.
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and highside output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can
also generate a synchronized bit pattern across the port pins.
The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter.
This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on page 36 for more details.
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High Resolution
Extension” on page 37 for more details.
Figure 15-1. Overview of a Timer/Counter and Closely Related Peripherals
Timer/Counter
Base Counter
Prescaler
clkPER
Timer Period
Control Logic
Counter
Event
System
clkPER4
Buffer
Capture
Control
Waveform
Generation
Dead-Time
Insertion
Pattern
Generation
Fault
Protection
PORT
Comparator
AWeX
Hi-Res
Compare/Capture Channel D
Compare/Capture Channel C
Compare/Capture Channel B
Compare/Capture Channel A
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD, and PORTE each has one timer/counter 0. Notation
of these are TCC0 (time/counter C0), TCC1, TCD0, and TCE0 respectively.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
34
16.
TC2 – Timer/Counter Type 2
16.1
Features
 Four eight-bit timer/counters


Two Low-byte timer/counter
Two High-byte timer/counter
 Up to eight compare channels in each timer/counter 2


Four compare channels for the low-byte timer/counter
Four compare channels for the high-byte timer/counter
 Waveform generation

Single slope pulse width modulation
 Timer underflow interrupts/events
 One compare match interrupt/event per compare channel for the low-byte timer/counter
 Can be used with the event system for count control
16.2
Overview
There are four Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a system of
two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width modulation
(PWM) channels with individually controlled duty cycles, and is intended for applications that require a high number of
PWM channels.
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter,
respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare
match interrupts and events. The two eight-bit timer/counters have a shared clock source and separate period and
compare settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or from the event
system. The counters are always counting down.
PORTC and PORTD each has one Timer/Counter 2. Notation of these are TCC2 (Time/Counter C2) and TCD2
respectively.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
35
17.
AWeX – Advanced Waveform Extension
17.1
Features
 Waveform output with complementary output from each compare channel
 Four dead-time insertion (DTI) units
8-bit resolution
Separate high and low side dead-time setting
 Double buffered dead time
 Optionally halts timer during dead-time insertion


 Pattern generation unit creating synchronised bit pattern across the port pins


Double buffered pattern generation
Optional distribution of one compare channel output across the port pins
 Event controlled fault protection for instant and predictable fault triggering
17.2
Overview
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)
modes. It is primarily intended for use with different types of motor control and other power control applications. It
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external
drivers. It can also generate a synchronized bit pattern across the port pins.
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any
AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the noninverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS
switching. The DTI output will override the normal port value according to the port override setting.
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator
unit is enabled, the DTI unit is bypassed.
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable
the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of
fault triggers.
The AWeX is available for TCC0. The notation of this is AWEXC.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
36
18.
Hi-Res – High Resolution Extension
18.1
Features
 Increases waveform generator resolution up to 8x (three bits)
 Supports frequency, single-slope PWM, and dual-slope PWM generation
 Supports the AWeX when this is used for the same timer/counter
18.2
Overview
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a
timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM
generation. It can also be used with the AWeX if this is used for the same timer/counter.
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension
is enabled.
There is one hi-res extensions that can be enabled for timer/counters pair on PORTC. The notation of this is HIRESC.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
37
19.
RTC – 16-bit Real-Time Counter
19.1
Features
 16-bit resolution
 Selectable clock source
32.768kHz external crystal
External clock
 32.768kHz internal oscillator
 32kHz internal ULP oscillator


 Programmable 10-bit clock prescaling
 One compare register
 One period register
 Clear counter on period overflow
 Optional interrupt/event on overflow and compare match
19.2
Overview
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal
oscillator or the 32kHz internal ULP oscillator.
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period
register value.
Figure 19-1. Real-time Counter Overview
External Clock
TOSC1
TOSC2
32.768kHz Crystal Osc
32.768kHz Int. Osc
DIV32
DIV32
32kHz int ULP (DIV32)
PER
RTCSRC
clkRTC
10-bit
prescaler
=
TOP/
Overflow
=
”match”/
Compare
CNT
COMP
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
38
20.
USB – Universal Serial Bus Interface
20.1
Features
 One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface
 Integrated on-chip USB transceiver, no external components needed
 16 endpoint addresses with full endpoint flexibility for up to 31 endpoints


One input endpoint per endpoint address
One output endpoint per endpoint address
 Endpoint address transfer type selectable to
Control transfers
Interrupt transfers
 Bulk transfers
 Isochronous transfers


 Configurable data payload size per endpoint, up to 1023 bytes
 Endpoint configuration and data buffers located in internal SRAM


Configurable location for endpoint configuration data
Configurable location for each endpoint's data buffer
 Built-in direct memory access (DMA) to internal SRAM for:


Endpoint configurations
Reading and writing endpoint data
 Ping-pong operation for higher throughput and double buffered operation


Input and output endpoint data buffers used in a single direction
CPU can update data buffer during transfer
 Multipacket transfer for reduced interrupt load and software intervention


Data payload exceeding maximum packet size is transferred in one continuous transfer
No interrupts or software interaction on packet transaction level
 Transaction complete FIFO for workflow management when using multiple endpoints

Tracks all completed transactions in a first-come, first-served work queue
 Clock selection independent of system clock source and selection
 Minimum 1.5MHz CPU clock required for low speed USB operation
 Minimum 12MHz CPU clock required for full speed operation
 Connection to event system
 On chip debug possibilities during USB transactions
20.2
Overview
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface.
The USB supports 16 endpoint addresses. All endpoint addresses have one input and one output endpoint, for a total of
31 configurable endpoints and one control endpoint. Each endpoint address is fully configurable and can be configured
for any of the four transfer types; control, interrupt, bulk, or isochronous. The data payload size is also selectable, and it
supports data payloads up to 1023 bytes.
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to keep the configuration for
each endpoint address and the data buffer for each endpoint. The memory locations used for endpoint configurations
and data buffers are fully configurable. The amount of memory allocated is fully dynamic, according to the number of
endpoints in use and the configuration of these. The USB module has built-in direct memory access (DMA), and will
read/write data from/to the SRAM when a USB transaction takes place.
To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input and
output endpoints are both used in the same direction. The CPU can then read/write one data buffer while the USB
module writes/reads the others, and vice versa. This gives double buffered communication.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
39
Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint to be transferred as
multiple packets without software intervention. This reduces the CPU intervention and the interrupts needed for USB
transfers.
For low-power operation, the USB module can put the microcontroller into any sleep mode when the USB bus is idle and
a suspend condition is given. Upon bus resumes, the USB module can wake up the microcontroller from any sleep
mode.
PORTD has one USB. Notation of this is USB.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
40
21.
TWI – Two-Wire Interface
21.1
Features
 Two Identical two-wire interface peripherals
 Bidirectional, two-wire communication interface
Phillips I2C compatible
 System Management Bus (SMBus) compatible

 Bus master and slave operation supported
Slave operation
Single bus master operation
 Bus master in multi-master bus environment
 Multi-master arbitration


 Flexible slave address match functions
7-bit and general call address recognition in hardware
10-bit addressing supported
 Address mask register for dual address match or address range masking
 Optional software address recognition for unlimited number of addresses


 Slave can operate in all sleep modes, including power-down
 Slave address match can wake device from all sleep modes
 100kHz and 400kHz bus frequency support
 Slew-rate limited output drivers
 Input filter for bus noise and spike suppression
 Support arbitration between start/repeated start and data bit (SMBus)
 Slave arbitration allows support for address resolve protocol (ARP) (SMBus)
21.2
Overview
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.
The TWI module supports master and slave functionality. The master and slave functionality are separated from each
other, and can be enabled and configured separately. The master module supports multi-master bus operation and
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command
and smart mode can be enabled to auto-trigger operations and reduce software complexity.
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is
also supported. A dedicated address mask register can act as a second address match register or as a register for
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address
matching to let this be handled in software instead.
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave
modes.
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by
the TWI bus.
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
41
22.
SPI – Serial Peripheral Interface
22.1
Features
 Two Identical SPI peripherals
 Full-duplex, three-wire synchronous data transfer
 Master or slave operation
 Lsb first or msb first data transfer
 Eight programmable bit rates
 Interrupt flag at the end of transmission
 Write collision flag to indicate data collision
 Wake up from idle sleep mode
 Double speed master mode
22.2
Overview
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several
microcontrollers. The SPI supports full-duplex communication.
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID, respectively.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
42
23.
USART
23.1
Features
 Three identical USART peripherals
 Full-duplex operation
 Asynchronous or synchronous operation


Synchronous clock rates up to 1/2 of the device clock frequency
Asynchronous clock rates up to 1/8 of the device clock frequency
 Supports serial frames with 5, 6, 7, 8, or 9 data bits, and 1 or 2 stop bits
 Fractional baud rate generator


Can generate desired baud rate from any system clock frequency
No need for external oscillator with certain frequencies
 Built-in error detection and correction schemes
Odd or even parity generation and parity check
Data overrun and framing error detection
 Noise filtering includes false start bit detection and digital low-pass filter


 Separate interrupts for
Transmit complete
Transmit data register empty
 Receive complete


 Multiprocessor communication mode


Addressing scheme to address a specific devices on a multidevice bus
Enable unaddressed devices to automatically ignore all frames
 Master SPI mode


Double buffered operation
Operation up to 1/2 of the peripheral clock frequency
 IRCOM module for IrDA compliant pulse modulation/demodulation
23.2
Overview
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.
The USART can be configured to operate in SPI master mode and used for SPI communication.
Communication is frame based, and the frame format can be customized to support a wide range of standards. The
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can
also be enabled.
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.
The registers are used in both modes, but their functionality differs for some control settings.
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and
demodulation for baud rates up to 115.2kbps.
PORTC has two USARTs and PORTD has one USART. Notation of these peripherals are USARTC0, USARTC1, and
USARTD0 respectively.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
43
24.
IRCOM – IR Communication Module
24.1
Features
 Pulse modulation/demodulation for infrared communication
 IrDA compatible for baud rates up to 115.2Kbps
 Selectable pulse modulation scheme
3/16 of the baud rate period
Fixed pulse period, 8-bit programmable
 Pulse modulation disabled


 Built-in filtering
 Can be connected to and used by any USART
24.2
Overview
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates
up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
44
25.
CRC – Cyclic Redundancy Check Generator
25.1
Features
 Cyclic redundancy check (CRC) generation and checking for
Communication data
Program or data in flash memory
 Data in SRAM and I/O memory space


 Integrated with flash memory, and CPU


Automatic CRC of the complete or a selectable range of the flash memory
CPU can load data to the CRC generator through the I/O interface
 CRC polynomial software selectable to


CRC-16 (CRC-CCITT)
CRC-32 (IEEE 802.3)
 Zero remainder detection
25.2
Overview
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and
it is commonly used to determine the correctness of a data transmission, and data present in the data and program
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be
appended to the data and used as a checksum. When the same data are later received or read, the device or application
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or
simply not using the incorrect data.
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error
bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRCCCITT) and CRC-32 (IEEE 802.3).

CRC-16:
Polynomial:
Hex value:

x16+x12+x5+1
0x1021
CRC-32:
Polynomial:
Hex value:
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
0x04C11DB7
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
45
26.
ADC – 12-bit Analog to Digital Converter
26.1
Features
 One Analog to Digital Converter (ADC)
 12-bit resolution
 Up to 300 thousand samples per second


Down to 2.3µs conversion time with 8-bit resolution
Down to 3.35µs conversion time with 12-bit resolution
 Differential and single-ended input
12 single-ended inputs
12x4 differential inputs without gain
 8x4 differential input with gain


 Built-in differential gain stage
 1/2x,
1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options
 Single, continuous and scan conversion options
 Three internal inputs
Internal temperature sensor
AVCC voltage divided by 10
 1.1V bandgap voltage


 Internal and external reference options
 Compare function for accurate monitoring of user defined thresholds
 Optional event triggered conversion for accurate timing
 Optional interrupt/event on compare result
26.2
Overview
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300
thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.
The ADC measurements can either be started by application software or an incoming event from another peripheral in
the device. The ADC measurements can be started with predictable timing, and without software intervention.
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the
ADC. The AVCC/10 and the bandgap voltage can also be measured by the ADC.
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention
required.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
46
Figure 26-1. ADC Overview
ADC0
•
•
•
ADC11
Compare
Register
ADC
Internal
signals
ADC0
•
•
•
ADC7
<
>
VINP
Threshold
(Int Req)
CH0 Result
VINN
Internal 1.00V
Internal AVCC/1.6V
Internal AVCC/2
AREFA
AREFB
Reference
Voltage
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from
3.35µs for 12-bit to 2.3µs for 8-bit result.
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when
the result is represented as a signed integer (signed 16-bit number).
PORTA has one ADC. Notation of this peripheral is ADCA.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
47
27.
AC – Analog Comparator
27.1
Features
 Two Analog Comparators (AC)
 Selectable hysteresis
No
Small
 Large


 Analog comparator output available on pin
 Flexible input selection
All pins on the port
Bandgap reference voltage
 A 64-level programmable voltage scaler of the internal AVCC voltage


 Interrupt and event generation on:
Rising edge
Falling edge
 Toggle


 Window function interrupt and event generation on:
Signal above window
Signal inside window
 Signal below window


 Constant current source with configurable output pin selection
27.2
Overview
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several
different combinations of input change.
The analog comparator hysteresis can be adjusted in order to achieve the optimal operation for each application.
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The
analog comparator output state can also be output on a pin for use by external devices.
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,
external resistors used to charge capacitors in capacitive touch sensing applications.
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in
window mode to compare a signal to a voltage range instead of a voltage level.
PORTA has one AC pair. Notation is ACA.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
48
Figure 27-1. Analog Comparator Overview
Pin Input
+
AC0OUT
Pin Input
Hysteresis
Enable
Voltage
Scaler
ACnMUXCTRL
ACnCTRL
Interrupt
Mode
WINCTRL
Enable
Bandgap
Interrupt
Sensititivity
Control
&
Window
Function
Interrupts
Events
Hysteresis
+
Pin Input
AC1OUT
Pin Input
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in
Figure 27-2.
Figure 27-2. Analog Comparator Window Function
+
AC0
Upper limit of window
Interrupt
sensitivity
control
Input signal
Interrupts
Events
+
AC1
Lower limit of window
-
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
49
28.
Programming and Debugging
28.1
Features
 Programming
External programming through PDI interface
 Minimal protocol overhead for fast operation
 Built-in error detection and handling for reliable operation
 Boot loader support for programming through any communication interface

 Debugging






Nonintrusive, real-time, on-chip debug system
No software or hardware resources required from device except pin connection
Program flow control
 Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor
Unlimited number of user program breakpoints
Unlimited number of user data breakpoints, break on:
 Data location read, write, or both read and write
 Data location content equal or not equal to a value
 Data location content is greater or smaller than a value
 Data location content is within or outside a range
No limitation on device clock frequency
 Program and Debug Interface (PDI)
Two-pin interface for external programming and debugging
Uses the Reset pin and a dedicated pin
 No I/O pins required during programming or debugging


28.2
Overview
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip
debugging of a device.
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user
signature row.
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler
level.
Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the Reset
pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any external
programmer or on-chip debugger/emulator can be directly connected to this interface.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
50
29.
Pinout and Pin Functions
The device pinout is shown in “Pinout/Block Diagram” on page 4. In addition to general purpose I/O functionality, each
pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin.
Only one of the pin functions can be used at time.
29.1
Alternate Pin Function Description
The tables below show the notation for all pin functions available and describe its function.
29.1.1 Operation/Power Supply
VCC
Digital supply voltage
AVCC
Analog supply voltage
GND
Ground
29.1.2 Port Interrupt Functions
SYNC
Port pin with full synchronous and limited asynchronous interrupt function
ASYNC
Port pin with full synchronous and full asynchronous interrupt function
29.1.3 Analog Functions
ACn
Analog Comparator input pin n
ACnOUT
Analog Comparator n output
ADCn
Analog to Digital Converter input pin n
AREF
Analog Reference input pin
29.1.4 Timer/Counter and AWEX Functions
OCnxLS
Output Compare Channel x Low Side for Timer/Counter n
OCnxHS
Output Compare Channel x High Side for Timer/Counter n
29.1.5 Communication Functions
SCL
Serial Clock for TWI
SDA
Serial Data for TWI
XCKn
Transfer Clock for USART n
RXDn
Receiver Data for USART n
TXDn
Transmitter Data for USART n
SS
Slave Select for SPI
MOSI
Master Out Slave In for SPI
MISO
Master In Slave Out for SPI
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
51
SCK
Serial Clock for SPI
D-
Data- for USB
D+
Data+ for USB
29.1.6 Oscillators, Clock, and Event
TOSCn
Timer Oscillator pin n
XTALn
Input/Output for Oscillator pin n
CLKOUT
Peripheral Clock Output
EVOUT
Event Channel Output
RTCOUT
RTC Clock Source Output
29.1.7 Debug/System Functions
RESET
Reset pin
PDI_CLK
Program and Debug Interface Clock pin
PDI_DATA
Program and Debug Interface Data pin
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
52
29.2
Alternate Pin Functions
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that
enable and use the alternate pin functions.
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the
first table where this apply.
Table 29-1. Port A - Alternate Functions
PORT A
PIN #
INTERRUPT
ADCA POS/
GAIN POS
ADCA NEG
ADCA
GAINNEG
ACA POS
ACA NEG
GND
38
AVCC
39
PA0
40
SYNC
ADC0
ADC0
AC0
AC0
PA1
41
SYNC
ADC1
ADC1
AC1
AC1
PA2
42
SYNC/ASYNC
ADC2
ADC2
AC2
PA3
43
SYNC
ADC3
ADC3
AC3
PA4
44
SYNC
ADC4
ADC4
AC4
PA5
1
SYNC
ADC5
ADC5
AC5
PA6
2
SYNC
ADC6
ADC6
AC6
PA7
3
SYNC
ADC7
ADC7
ACA OUT
REFA
AREFA
AC3
AC5
AC1OUT
AC7
AC0OUT
Table 29-2. Port B - Alternate Functions
PORT B
PIN #
INTERRUPT
ADCA POS
REFB
PB0
4
SYNC
ADC8
AREFB
PB1
5
SYNC
ADC9
PB2
6
SYNC/ASYNC
ADC10
PB3
7
SYNC
ADC11
Table 29-3. Port C - Alternate Functions
PORT C
PIN#
INTERRUPT
TCC0(1)(2)
AWEXC
TCC1
USART
C0(3)
GND
8
VCC
9
PC0
10
SYNC
OC0A
OC0ALS
PC1
11
SYNC
OC0B
OC0AHS
XCK0
PC2
12
SYNC/ASYNC
OC0C
OC0BLS
RXD0
PC3
13
SYNC
OC0D
OC0BHS
TXD0
PC4
14
SYNC
OC0CLS
USART
C1
SPIC(4)
TWIC
CLOCKO
UT(5)
EVENT
OUT(6)
SDA
OC1A
SCL
SS
RTCOUT
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
53
PORT C
PIN#
INTERRUPT
PC5
15
PC6
PC7
Notes:
1.
2.
3.
4.
5.
6.
TCC0(1)(2)
USART
C1
SPIC(4)
XCK1
MOSI
OC0DLS
RXD1
MISO
clkRTC
OC0DHS
TXD1
SCK
clkPER
AWEXC
TCC1
SYNC
OC0CHS
OC1B
16
SYNC
17
SYNC
USART
C0(3)
TWIC
CLOCKO
UT(5)
EVENT
OUT(6)
EVOUT
Pin mapping of all TC0 can optionally be moved to high nibble of port.
If TC0 is configured as TC2 all eight pins can be used for PWM output.
Pin mapping of all USART0 can optionally be moved to high nibble of port.
Pins MOSI and SCK for all SPI can optionally be swapped.
CLKOUT can optionally be moved between port C, D, and E and between pin 4 and 7.
EVOUT can optionally be moved between port C, D, and E and between pin 4 and 7.
Table 29-4. Port D - Alternate Functions
PORT D
PIN #
INTERRUPT
TCD0
USARTD0
SPID
USB
GND
18
VCC
19
PD0
20
SYNC
OC0A
PD1
21
SYNC
OC0B
XCK0
PD2
22
SYNC/ASYNC
OC0C
RXD0
PD3
23
SYNC
OC0D
TXD0
PD4
24
SYNC
SS
PD5
25
SYNC
MOSI
PD6
26
SYNC
MISO
D-
PD7
27
SYNC
SCK
D+
CLOCKOUT
EVENTOUT
ClkPER
EVOUT
Table 29-5. Port E - Alternate Functions
PORT E
PIN #
INTERRUPT
TCE0
TOSC
TWIE
PE0
28
SYNC
OC0A
SDA
PE1
29
SYNC
OC0B
SCL
GND
30
VCC
31
PE2
32
SYNC/ASYNC
OC0C
TOSC2
PE3
33
SYNC
OC0D
TOSC1
CLOCKOUT
EVENTOUT
Table 29-6. Port R - Alternate Function
PORT R
PIN #
INTERRUPT
PDI
TOSC
XTAL
PDI
34
PDI_DATA
RESET
35
PDI_CLOCK
PRO
36
SYNC
TOSC2
XTAL2
PR1
37
SYNC
TOSC1
XTAL1
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
54
30.
Peripheral Module Address Map
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA C4. For complete
register description and summary for each peripheral module, refer to the XMEGA C manual.
Table 30-1. Peripheral Module Address Map
Base address
Name
Description
0x0000
GPIO
General purpose IO registers
0x0010
VPORT0
Virtual Port 0
0x0014
VPORT1
Virtual Port 1
0x0018
VPORT2
Virtual Port 2
0x001C
VPORT3
Virtual Port 2
0x0030
CPU
CPU
0x0040
CLK
Clock control
0x0048
SLEEP
Sleep controller
0x0050
OSC
Oscillator control
0x0060
DFLLRC32M
DFLL for the 32 MHz internal RC oscillator
0x0068
DFLLRC2M
DFLL for the 2 MHz RC oscillator
0x0070
PR
Power reduction
0x0078
RST
Reset controller
0x0080
WDT
Watch-dog timer
0x0090
MCU
MCU control
0x00A0
PMIC
Programmable multilevel interrupt controller
0x00B0
PORTCFG
0x0180
EVSYS
Event system
0x00D0
CRC
CRC module
0x01C0
NVM
Nonvolatile memory (NVM) controller
0x0200
ADCA
Analog to digital converter on port A
0x0380
ACA
Analog comparator pair on port A
0x0400
RTC
Real time counter
0x0480
TWIC
Two wire interface on port C
0x04C0
USB
Universal serial Bus interface
0x04A0
TWIE
Two wire interface on port E
0x0600
PORTA
Port A
0x0620
PORTB
Port B
0x0640
PORTC
Port C
Port configuration
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
55
Base address
Name
Description
0x0660
PORTD
Port D
0x0680
PORTE
Port E
0x07E0
PORTR
Port R
0x0800
TCC0
Timer/counter 0 on port C
0x0840
TCC1
Timer/counter 1 on port C
0x0880
AWEXC
Advanced waveform extension on port C
0x0890
HIRESC
High resolution extension on port C
0x08A0
USARTC0
USART 0 on port C
0x08B0
USARTC1
USART 1 on port C
0x08C0
SPIC
0x08F8
IRCOM
0x0900
TCD0
0x09A0
USARTD0
0x09C0
SPID
Serial peripheral interface on port D
0x0A00
TCE0
Timer/counter 0 on port E
Serial peripheral interface on port C
Infrared communication module
Timer/counter 0 on port D
USART 0 on port D
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
56
31.
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
Arithmetic and Logic Instructions
ADD
Rd, Rr
Add without Carry
Rd

Rd + Rr
Z,C,N,V,S,H
1
ADC
Rd, Rr
Add with Carry
Rd

Rd + Rr + C
Z,C,N,V,S,H
1
ADIW
Rd, K
Add Immediate to Word
Rd

Rd + 1:Rd + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract without Carry
Rd

Rd - Rr
Z,C,N,V,S,H
1
SUBI
Rd, K
Subtract Immediate
Rd

Rd - K
Z,C,N,V,S,H
1
SBC
Rd, Rr
Subtract with Carry
Rd

Rd - Rr - C
Z,C,N,V,S,H
1
SBCI
Rd, K
Subtract Immediate with Carry
Rd

Rd - K - C
Z,C,N,V,S,H
1
SBIW
Rd, K
Subtract Immediate from Word
Rd + 1:Rd

Rd + 1:Rd - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND
Rd

Rd  Rr
Z,N,V,S
1
ANDI
Rd, K
Logical AND with Immediate
Rd

Rd  K
Z,N,V,S
1
OR
Rd, Rr
Logical OR
Rd

Rd v Rr
Z,N,V,S
1
ORI
Rd, K
Logical OR with Immediate
Rd

Rd v K
Z,N,V,S
1
EOR
Rd, Rr
Exclusive OR
Rd

Rd  Rr
Z,N,V,S
1
COM
Rd
One’s Complement
Rd

$FF - Rd
Z,C,N,V,S
1
NEG
Rd
Two’s Complement
Rd

$00 - Rd
Z,C,N,V,S,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd

Rd v K
Z,N,V,S
1
CBR
Rd,K
Clear Bit(s) in Register
Rd

Rd  ($FFh - K)
Z,N,V,S
1
INC
Rd
Increment
Rd

Rd + 1
Z,N,V,S
1
DEC
Rd
Decrement
Rd

Rd - 1
Z,N,V,S
1
TST
Rd
Test for Zero or Minus
Rd

Rd  Rd
Z,N,V,S
1
CLR
Rd
Clear Register
Rd

Rd  Rd
Z,N,V,S
1
SER
Rd
Set Register
Rd

$FF
None
1
MUL
Rd,Rr
Multiply Unsigned
R1:R0

Rd x Rr (UU)
Z,C
2
MULS
Rd,Rr
Multiply Signed
R1:R0

Rd x Rr (SS)
Z,C
2
MULSU
Rd,Rr
Multiply Signed with Unsigned
R1:R0

Rd x Rr (SU)
Z,C
2
FMUL
Rd,Rr
Fractional Multiply Unsigned
R1:R0

Rd x Rr<<1 (UU)
Z,C
2
FMULS
Rd,Rr
Fractional Multiply Signed
R1:R0

Rd x Rr<<1 (SS)
Z,C
2
FMULSU
Rd,Rr
Fractional Multiply Signed with Unsigned
R1:R0

Rd x Rr<<1 (SU)
Z,C
2
DES
K
Data Encryption
if (H = 0) then R15:R0
else if (H = 1) then R15:R0


Encrypt(R15:R0, K)
Decrypt(R15:R0, K)
PC

PC + k + 1
None
2
1/2
Branch instructions
RJMP
k
Relative Jump
IJMP
Indirect Jump to (Z)
PC(15:0)
PC(21:16)


Z,
0
None
2
EIJMP
Extended Indirect Jump to (Z)
PC(15:0)
PC(21:16)


Z,
EIND
None
2
JMP
k
Jump
PC

k
None
3
RCALL
k
Relative Call Subroutine
PC

PC + k + 1
None
2 / 3(1)
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
57
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ICALL
Indirect Call to (Z)
PC(15:0)
PC(21:16)


Z,
0
None
2 / 3(1)
EICALL
Extended Indirect Call to (Z)
PC(15:0)
PC(21:16)


Z,
EIND
None
3(1)
call Subroutine
PC

k
None
3 / 4(1)
RET
Subroutine Return
PC

STACK
None
4 / 5(1)
RETI
Interrupt Return
PC

STACK
I
4 / 5(1)
if (Rd = Rr) PC

PC + 2 or 3
None
1/2/3
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
CP
Rd,Rr
Compare
CPC
Rd,Rr
Compare with Carry
CPI
Rd,K
Compare with Immediate
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b) = 0) PC

PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register Set
if (Rr(b) = 1) PC

PC + 2 or 3
None
1/2/3
SBIC
A, b
Skip if Bit in I/O Register Cleared
if (I/O(A,b) = 0) PC

PC + 2 or 3
None
2/3/4
SBIS
A, b
Skip if Bit in I/O Register Set
If (I/O(A,b) =1) PC

PC + 2 or 3
None
2/3/4
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC

PC + k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC

PC + k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC

PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC

PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC

PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC

PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC

PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC

PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC

PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC

PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N  V= 0) then PC

PC + k + 1
None
1/2
BRLT
k
Branch if Less Than, Signed
if (N  V= 1) then PC

PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC

PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC

PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC

PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC

PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC

PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC

PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if (I = 1) then PC

PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if (I = 0) then PC

PC + k + 1
None
1/2
Rd

Rr
None
1
Rd+1:Rd

Rr+1:Rr
None
1
Rd

K
None
1
Rd - Rr
Z,C,N,V,S,H
1
Rd - Rr - C
Z,C,N,V,S,H
1
Rd - K
Z,C,N,V,S,H
1
Data transfer instructions
MOV
Rd, Rr
Copy Register
MOVW
Rd, Rr
Copy Register Pair
LDI
Rd, K
Load Immediate
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
58
Mnemonics
Operands
Description
LDS
Rd, k
Load Direct from data space
Rd

(k)
None
2(1)(2)
LD
Rd, X
Load Indirect
Rd

(X)
None
1(1)(2)
LD
Rd, X+
Load Indirect and Post-Increment
Rd
X


(X)
X+1
None
1(1)(2)
LD
Rd, -X
Load Indirect and Pre-Decrement
X  X - 1,
Rd  (X)


X-1
(X)
None
2(1)(2)
LD
Rd, Y
Load Indirect
Rd  (Y)

(Y)
None
1(1)(2)
LD
Rd, Y+
Load Indirect and Post-Increment
Rd
Y


(Y)
Y+1
None
1(1)(2)
LD
Rd, -Y
Load Indirect and Pre-Decrement
Y
Rd


Y-1
(Y)
None
2(1)(2)
LDD
Rd, Y+q
Load Indirect with Displacement
Rd

(Y + q)
None
2(1)(2)
LD
Rd, Z
Load Indirect
Rd

(Z)
None
1(1)(2)
LD
Rd, Z+
Load Indirect and Post-Increment
Rd
Z


(Z),
Z+1
None
1(1)(2)
LD
Rd, -Z
Load Indirect and Pre-Decrement
Z
Rd


Z - 1,
(Z)
None
2(1)(2)
LDD
Rd, Z+q
Load Indirect with Displacement
Rd

(Z + q)
None
2(1)(2)
STS
k, Rr
Store Direct to Data Space
(k)

Rd
None
2(1)
ST
X, Rr
Store Indirect
(X)

Rr
None
1(1)
ST
X+, Rr
Store Indirect and Post-Increment
(X)
X


Rr,
X+1
None
1(1)
ST
-X, Rr
Store Indirect and Pre-Decrement
X
(X)


X - 1,
Rr
None
2(1)
ST
Y, Rr
Store Indirect
(Y)

Rr
None
1(1)
ST
Y+, Rr
Store Indirect and Post-Increment
(Y)
Y


Rr,
Y+1
None
1(1)
ST
-Y, Rr
Store Indirect and Pre-Decrement
Y
(Y)


Y - 1,
Rr
None
2(1)
STD
Y+q, Rr
Store Indirect with Displacement
(Y + q)

Rr
None
2(1)
ST
Z, Rr
Store Indirect
(Z)

Rr
None
1(1)
ST
Z+, Rr
Store Indirect and Post-Increment
(Z)
Z


Rr
Z+1
None
1(1)
ST
-Z, Rr
Store Indirect and Pre-Decrement
Z

Z-1
None
2(1)
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q)

Rr
None
2(1)
Load Program Memory
R0

(Z)
None
3
LPM
Operation
Flags
#Clocks
LPM
Rd, Z
Load Program Memory
Rd

(Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Increment
Rd
Z


(Z),
Z+1
None
3
Extended Load Program Memory
R0

(RAMPZ:Z)
None
3
ELPM
ELPM
Rd, Z
Extended Load Program Memory
Rd

(RAMPZ:Z)
None
3
ELPM
Rd, Z+
Extended Load Program Memory and PostIncrement
Rd
Z


(RAMPZ:Z),
Z+1
None
3
(RAMPZ:Z)

R1:R0
None
-
SPM
Store Program Memory
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
59
Mnemonics
Operands
Description
Operation
SPM
Z+
Store Program Memory and Post-Increment by 2
IN
Rd, A
In From I/O Location
OUT
A, Rr
Out To I/O Location
PUSH
Rr
Push Register on Stack
POP
Rd
XCH
Flags
#Clocks
(RAMPZ:Z)
Z


R1:R0,
Z+2
None
-
Rd

I/O(A)
None
1
I/O(A)

Rr
None
1
STACK

Rr
None
1(1)
Pop Register from Stack
Rd

STACK
None
2(1)
Z, Rd
Exchange RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp
None
2
LAS
Z, Rd
Load and Set RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp v (Z)
None
2
LAC
Z, Rd
Load and Clear RAM location
Temp
Rd
(Z)



Rd,
(Z),
($FFh – Rd)  (Z)
None
2
LAT
Z, Rd
Load and Toggle RAM location
Temp
Rd
(Z)



Rd,
(Z),
Temp  (Z)
None
2
Rd(n+1)
Rd(0)
C



Rd(n),
0,
Rd(7)
Z,C,N,V,H
1
Rd(n)
Rd(7)
C



Rd(n+1),
0,
Rd(0)
Z,C,N,V
1
Rd(0)
Rd(n+1)
C



C,
Rd(n),
Rd(7)
Z,C,N,V,H
1
Bit and bit-test instructions
LSL
Rd
Logical Shift Left
LSR
Rd
Logical Shift Right
ROL
Rd
Rotate Left Through Carry
ROR
Rd
Rotate Right Through Carry
Rd(7)
Rd(n)
C



C,
Rd(n+1),
Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n)

Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)

Rd(7..4)
None
1
BSET
s
Flag Set
SREG(s)

1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s)

0
SREG(s)
1
SBI
A, b
Set Bit in I/O Register
I/O(A, b)

1
None
1
CBI
A, b
Clear Bit in I/O Register
I/O(A, b)

0
None
1
BST
Rr, b
Bit Store from Register to T
T

Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b)

T
None
1
SEC
Set Carry
C

1
C
1
CLC
Clear Carry
C

0
C
1
SEN
Set Negative Flag
N

1
N
1
CLN
Clear Negative Flag
N

0
N
1
SEZ
Set Zero Flag
Z

1
Z
1
CLZ
Clear Zero Flag
Z

0
Z
1
SEI
Global Interrupt Enable
I

1
I
1
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
60
Mnemonics
Operands
Description
Operation
Flags
#Clocks
I

0
I
1
Set Signed Test Flag
S

1
S
1
CLS
Clear Signed Test Flag
S

0
S
1
SEV
Set Two’s Complement Overflow
V

1
V
1
CLV
Clear Two’s Complement Overflow
V

0
V
1
SET
Set T in SREG
T

1
T
1
CLT
Clear T in SREG
T

0
T
1
SEH
Set Half Carry Flag in SREG
H

1
H
1
CLH
Clear Half Carry Flag in SREG
H

0
H
1
None
1
None
1
CLI
Global Interrupt Disable
SES
MCU control instructions
BREAK
Break
NOP
No Operation
SLEEP
Sleep
(see specific descr. for Sleep)
None
1
WDR
Watchdog Reset
(see specific descr. for WDR)
None
1
Notes:
1.
2.
(See specific descr. for BREAK)
Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.
One extra cycle must be added when accessing internal SRAM.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
61
32.
Packaging Information
32.1
44A
PIN 1 IDENTIFIER
PIN 1
e
B
E1
E
A1
A2
D1
D
C
0°~7°
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
11.75
12.00
12.25
D1
9.90
10.00
10.10
E
11.75
12.00
12.25
E1
9.90
10.00
10.10
B
0.30
0.37
0.45
C
0.09
(0.17)
0.20
L
0.45
0.60
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
06/02/2014
44A, 44-lead, 10 x 10mm body size, 1.0mm body thickness,
0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)
44A
C
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
62
32.2
PW
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
63
32.3
7P
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
64
33.
Electrical Characteristics
All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum
values are valid across operating temperature and voltage unless other conditions are given.
33.1
Atmel ATxmega16C4
33.1.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 33-1 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 33-1. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a GND pin
200
VPIN
Pin voltage with respect to GND
and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
mA
°C
150
33.1.2 General Operating Ratings
The device must operate within the ratings listed in Table 33-2 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 33-2. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 33-3. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
65
The maximum CPU clock frequency depends on VCC. As shown in Figure 33-1 the Frequency vs. VCC curve is linear
between 1.8V < VCC < 2.7V.
Figure 33-1. Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
66
33.1.3 Current Consumption
Table 33-4. Current Consumption for Active Mode and Sleep Modes
Symbo
l
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
40
VCC = 3.0V
80
VCC = 1.8V
200
VCC = 3.0V
410
VCC = 1.8V
350
600
0.75
1.4
7.5
12
VCC = 3.0V
2.8
VCC = 1.8V
42
VCC = 3.0V
85
VCC = 1.8V
85
225
170
350
2.7
5.5
0.1
1.0
2.0
4.5
T = 105°C
0.1
7.0
WDT and sampled BOD enabled,
T = 25°C
1.4
3.0
3.0
6.0
1.4
10
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock,
WDT and sampled BOD enabled,
T = 25°C
VCC = 1.8V
1.5
VCC = 3.0V
1.5
RTC from 1.024kHz low power
32.768kHz TOSC,T = 25°C
VCC = 1.8V
0.6
2.0
VCC = 3.0V
0.7
2.0
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3.0
VCC = 3.0V
1.0
3.0
VCC = 3.0V
300
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.0
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
67
Table 33-5. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
ULP oscillator
0.8
32.768kHz int. oscillator
29
2MHz int. oscillator
32MHz int. oscillator
PLL
BOD
Max.
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
245
DFLL enabled with 32.768kHz int. osc. as reference
410
20x multiplication factor,
32MHz int. osc. DIV4 as reference
290
Watchdog timer
ICC
Typ.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
175
Temperature sensor
170
1.2
16ksps
VREF = Ext ref
ADC
75ksps
VREF = Ext ref
USART
1.
1.0
CURRLIMIT = MEDIUM
0.9
CURRLIMIT = HIGH
0.8
CURRLIMIT = LOW
1.7
mA
300ksps
VREF = Ext ref
3.1
Rx and Tx enabled, 9600 BAUD
11
µA
4
mA
Flash memory and EEPROM programming
Note:
CURRLIMIT = LOW
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
68
33.1.4 Wake-up Time from Sleep Fodes
Table 33-6. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from idle,
standby, and extended standby
mode
twakeup
Wake-up time from power-save
and power-down mode
Note:
1.
Condition
Min.
Typ. (1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
5.0
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 33-2. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 33-2. Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
69
33.1.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output
voltage limits reflect or exceed this specification.
Table 33-7. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL (2)
Parameter
Max.
Units
-20
20
mA
VCC = 2.4 - 3.6V
0.7*Vcc
VCC+0.5
VCC = 1.6 - 2.4V
0.8*VCC
VCC+0.5
VCC = 2.4- 3.6V
-0.5
0.3*VCC
VCC = 1.6 - 2.4V
-0.5
0.2*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
IIN
Input leakage current I/O pin
RP
Pull/buss keeper resistor
Notes:
Condition
1.
2.
Min.
Typ.
VCC = 3.3V
IOH = -4mA
2.6
2.9
VCC = 3.0V
IOH = -3mA
2.1
2.7
VCC = 1.8V
IOH = -1mA
1.4
1.6
VCC = 3.3V
IOL = 8mA
0.4
0.76
VCC = 3.0V
IOL = 5mA
0.3
0.64
VCC = 1.8V
IOL = 3mA
0.2
0.46
<0.01
1
T = 25°C
V
25
µA
k
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
70
33.1.6 ADC Characteristics
Table 33-8. Power Supply, Reference, and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1
AVCC- 0.6
Units
V
Rin
Input resistance
Switched
4.5
k
Cin
Input capacitance
Switched
5
pF
RAREF
Reference input resistance
(leakage only)
CAREF
Reference input capacitance
Static load
Vin
Input range
Conversion range
Differential mode, Vinp - Vinn
Conversion range
Single ended unsigned mode, Vinp
>10
M
7
pF
0
VREF
-VREF
VREF
-V
VREF-V
V
Table 33-9. Clock and Timing
Symbol
ClkADC
Parameter
ADC clock frequency
Condition
Min.
Maximum is 1/4 of peripheral clock
frequency
100
Measuring internal signals
fClkADC
Typ.
1800
Sample rate
Sample rate
Units
kHz
125
300
Current limitation (CURRLIMIT) off
fADC
Max.
300
CURRLIMIT = LOW
16
250
CURRLIMIT = MEDIUM
150
CURRLIMIT = HIGH
50
Sampling time
Configurable in steps of 1/2 ClkADC cycles
up to 32 ClkADC cycles
0.28
320
Conversion time (latency)
(RES+1)/2 + GAIN
RES (Resolution) = 8 or 12, GAIN=0 to 3
4.5
10
Start-up time
ADC clock cycles
12
24
ADC settling time
After changing reference or input mode
7
7
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
ksps
µs
ClkADC
cycles
71
Table 33-10. Accuracy Characteristics
Symbol
RES
Condition(2)
Parameter
Resolution
12-bit resolution
Differential mode
INL(1)
Integral non-linearity
Differential mode
Differential non-linearity
Single ended
unsigned mode
Offset Error
Gain Error
Gain Error
Typ.
Max.
Differential
8
12
12
Single ended signed
7
11
11
Single ended unsigned
8
12
12
16ksps, VREF = 3V
0.5
1
16ksps, all VREF
0.8
2
300ksps, VREF = 3V
0.6
1
1
2
16ksps, VREF = 3.0V
0.5
1
16ksps, all VREF
1.3
2
16ksps, VREF = 3V
0.3
1
16ksps, all VREF
0.5
1
300ksps, VREF = 3V
0.35
1
300ksps, all VREF
0.5
1
16ksps, VREF = 3.0V
0.6
1
16ksps, all VREF
0.6
1
300ksps, all VREF
Single ended
unsigned mode
DNL(1)
Min.
Differential mode
Differential mode
Single ended
unsigned mode
1.
2.
Bits
lsb
8
mV
Temperature drift
0.01
mV/K
Operating voltage drift
0.25
mV/V
External reference
-5
AVCC/1.6
-5
AVCC/2.0
-6
Bandgap
±10
Temperature drift
0.02
mV/K
Operating voltage drift
2
mV/V
External reference
-8
AVCC/1.6
-8
AVCC/2.0
-8
Bandgap
±10
Temperature drift
0.03
mV/K
2
mV/V
Operating voltage drift
Notes:
Units
mV
mV
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
72
Table 33-11. Gain Stage Characteristics
Rin
Csample
Input resistance
Switched in normal mode
4.0
k
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
1/2
Clock rate
Same as ADC
100
0
1
0.5x gain, normal mode
-1
1x gain, normal mode
-1
8x gain, normal mode
-1
64x gain, normal mode
10
0.5x gain, normal mode
10
Offset Error,
1x gain, normal mode
5
input referred
8x gain, normal mode
-20
64x gain, normal mode
-150
Gain Error
AVCC- 0.6
V
3
ClkADC
cycles
1800
kHz
%
mV
33.1.7 Analog Comparator Characteristics
Table 33-12. Analog Comparator Characteristics
Symbol
Voff
Ilk
Parameter
Condition
Min.
Typ.
Max.
Units
Input offset voltage
VCC=1.6V - 3.6V
<±10
mV
Input leakage current
VCC=1.6V - 3.6V
<1
nA
Input voltage range
-0.1
AC startup time
AVCC
100
Vhys1
Hysteresis, none
VCC=1.6V - 3.6V
0
Vhys2
Hysteresis, small
VCC=1.6V - 3.6V
11
Vhys3
Hysteresis, large
VCC=1.6V - 3.6V
26
tdelay
Propagation delay
VCC = 3.0V, T= 85°C
16
VCC=1.6V - 3.6V
16
Integral non-linearity (INL)
0.3
64-level voltage scaler
V
µs
mV
90
0.5
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
ns
lsb
73
33.1.8 Bandgap and Internal 1.0V Reference Characteristics
Table 33-13. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.5
Bandgap voltage
INT1V
Typ.
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.98
Variation over voltage and temperature
Calibrated at T= 85°C, VCC = 3.0V
1
1.02
±1.0
Units
µs
V
%
33.1.9 Brownout Detection Characteristics
Table 33-14. Brownout Detection Characteristics(1)
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
Note:
Typ.
Max.
1.50
1.62
1.75
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
VHYST
Min.
Continuous mode
µs
1000
Hysteresis
1.
V
0.4
Sampled mode
Units
1.2
%
BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.
33.1.10 External Reset Characteristics
Table 33-15. External Reset Characteristics
Symbol
tEXT
Parameter
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Condition
Reset pin pull-up resistor
Min.
Typ.
1000
90
VCC = 2.7 - 3.6V
0.6*VCC
VCC = 1.6 - 2.7V
0.6*VCC
Max.
Units
ns
VCC = 2.7 - 3.6V
0.5*VCC
VCC = 1.6 - 2.7V
0.4*VCC
25
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
V
k
74
33.1.11 Power-on Reset Characteristics
Table 33-16. Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
1.3
Max.
Units
V
1.59
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
33.1.12 Flash and EEPROM Memory Characteristics
Table 33-17. Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
Typ.
Max.
Units
Cycle
Year
Cycle
Year
Table 33-18. Programming Time
Symbol
Parameter
(2)
Chip erase
Flash
EEPROM
Notes:
1.
2.
Condition
Min.
Typ.(1)
16KB Flash, EEPROM
45
Page erase
4
Page write
4
Atomic page erase and write
8
Page erase
4
Page write
4
Atomic page erase and write
8
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
75
33.1.13 Clock and Oscillator Characteristics
33.1.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 33-19. 32.768kHz Internal Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
33.1.13.2Calibrated 2MHz RC Internal Oscillator Characteristics
Table 33-20. 2MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Units
DFLL calibration stepsize
0.18
33.1.13.3Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 33-21. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
Typ.
Max.
DFLL can tune to this frequency over
voltage and temperature
30
32
55
Factory calibrated frequency
Factory calibration accuracy
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.19
33.1.13.432kHz Internal ULP Oscillator Characteristics
Table 33-22. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Accuracy
Typ.
32
T = 85C, VCC= 3.0V
kHz
-12
12
-30
30
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
%
76
33.1.13.5Internal Phase Locked Loop (PLL) Characteristics
Table 33-23. Internal PLL Characteristics
Symbol
fIN
Input frequency
Output frequency (1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
33.1.13.6External Clock Characteristics
Figure 33-3. External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 33-24. External Clock used as System Clock without Prescaling
Symbol
Clock frequency(1)
1/tCK
tCK
Clock period
tCH
Clock high time
tCL
Clock low time
tCR
Rise time (for maximum frequency)
tCF
Fall time (for maximum frequency)
tCK
Note:
Parameter
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
77
Table 33-25. External Clock with Prescaler (1) for System Clock
Symbol
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
tCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
33.1.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 33-26. External 16MHz Crystal Oscillator and XOSC Characteristics
.
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=0
XOSCPWR=1
Units
ns
0
FRQRANGE=0
0.03
FRQRANGE=1
0.03
FRQRANGE=2 or 3
0.03
XOSCPWR=1
Duty cycle
Max.
0
XOSCPWR=1
Frequency error
Typ.
0.003
FRQRANGE=0
50
FRQRANGE=1
50
FRQRANGE=2 or 3
50
%
50
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
78
Symbol
Parameter
Condition
44k
1MHz crystal, CL=20pF
67k
2MHz crystal, CL=20pF
67k
2MHz crystal
82k
8MHz crystal
1500
9MHz crystal
1500
8MHz crystal
2700
9MHz crystal
2700
12MHz crystal
1000
9MHz crystal
3600
12MHz crystal
1300
16MHz crystal
590
9MHz crystal
390
12MHz crystal
50
16MHz crystal
10
9MHz crystal
1500
12MHz crystal
650
16MHz crystal
270
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
1000
16MHz crystal
440
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
1300
16MHz crystal
590
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
Negative impedance
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
RQ
Negative impedance
ESR
Start-up time
Typ.
0.4MHz resonator,
CL=100pF
XOSCPWR=0,
FRQRANGE=0
RQ
Min.
SF = safety factor
Max.


min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
Units
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
k
ms
79
Symbol
Parameter
Condition
Min.
Typ.
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Max.
Units
pF
33.1.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 33-27. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
Condition
ESR/R1
Recommended crystal
equivalent series
resistance (ESR)
Min.
Typ.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Crystal load capacitance 12pF
28
CTOSC1
Parasitic capacitance
TOSC1 pin
3.5
CTOSC2
Parasitic capacitance
TOSC2 pin
3.5
Recommended safety
factor
Note:
1.
Max.
Units
k
pF
capacitance load matched to crystal specification
3
See Figure 33-4 for definition.
Figure 33-4. TOSC Input Capacitance
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768 kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
80
33.1.14 SPI Characteristics
Figure 33-5. SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 33-6. SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
81
Table 33-28. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 20-3 in
XMEGA C Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
33.1.15 Two-Wire Interface Characteristics
Table 33-29 on page 83 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 33-7.
Figure 33-7. Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tHD;STA
tSU;DAT
tSU;STO
SDA
tBUF
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
82
Table 33-29. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7*VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3*VCC
Vhys
Hysteresis of Schmitt trigger inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL clock frequency
0.05*VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
fSCL  100kHz
RP
Value of pull-up resistor
tHD;STA
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
Set-up time for a repeated START
condition
tSU;STA
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Units
V
0
0.4
20+0.1Cb (1)(2)
300
20+0.1Cb (1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
100ns
--------------Cb
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
300ns
--------------Cb
ns

µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
83
33.2
Atmel ATxmega32C4
33.2.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 33-30 under may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 33-30. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power supply voltage
IVCC
Current into a VCC pin
200
IGND
Current out of a GND pin
200
VPIN
Pin voltage with respect to GND
and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
Tj
Junction temperature
mA
°C
150
33.2.2 General Operating Ratings
The device must operate within the ratings listed in Table 33-31 in order for all other electrical characteristics and typical
characteristics of the device to be valid.
Table 33-31. General Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
VCC
Power supply voltage
1.60
3.6
AVCC
Analog supply voltage
1.60
3.6
TA
Temperature range
-40
85
Tj
Junction temperature
-40
105
Units
V
°C
Table 33-32. Operating Voltage and Frequency
Symbol
ClkCPU
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
The maximum CPU clock frequency depends on VCC. As shown in Figure 33-8 on page 85 the Frequency vs. VCC curve
is linear between 1.8V < VCC < 2.7V.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
84
Figure 33-8. Maximum Frequency vs. VCC
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
85
33.2.3 Current Consumption
Table 33-33. Current Consumption for Active Mode and Sleep Modes
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active power
consumption(1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
40
VCC = 3.0V
80
VCC = 1.8V
200
VCC = 3.0V
410
VCC = 1.8V
350
600
0.75
1.4
7.5
12
VCC = 3.0V
2.8
VCC = 1.8V
42
VCC = 3.0V
85
VCC = 1.8V
85
225
170
350
2.7
5.5
0.1
1.0
2.0
4.5
T = 105°C
0.1
7.0
WDT and sampled BOD enabled,
T = 25°C
1.4
3.0
3.0
6.0
1.4
10
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and sampled BOD enabled,
T = 105°C
Power-save power
consumption(2)
Reset power consumption
Notes:
1.
2.
mA
µA
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.5
VCC = 3.0V
1.5
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2.0
VCC = 3.0V
0.7
2.0
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3.0
VCC = 3.0V
1.0
3.0
VCC = 3.0V
300
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
2.0
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle power
consumption(1)
Min.
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
86
Table 33-34. Current Consumption for Modules and Peripherals
Symbol
Parameter
Condition(1)
Min.
ULP oscillator
0.8
32.768kHz int. oscillator
29
2MHz int. oscillator
32MHz int. oscillator
PLL
BOD
Max.
Units
85
DFLL enabled with 32.768kHz int. osc. as reference
115
245
DFLL enabled with 32.768kHz int. osc. as reference
410
20x multiplication factor,
32MHz int. osc. DIV4 as reference
290
Watchdog timer
ICC
Typ.
µA
1.0
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
Internal 1.0V reference
175
Temperature sensor
170
1.2
16ksps
VREF = Ext. ref.
ADC
75ksps
VREF = Ext. ref.
USART
1.
1.0
CURRLIMIT = MEDIUM
0.9
CURRLIMIT = HIGH
0.8
CURRLIMIT = LOW
1.7
mA
300ksps
VREF = Ext. ref.
3.1
Rx and Tx enabled, 9600 BAUD
11
µA
4
mA
Flash memory and EEPROM programming
Note:
CURRLIMIT = LOW
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock
without prescaling, T = 25°C unless other conditions are given.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
87
33.2.4 Wake-up Time from Sleep Modes
Table 33-35. Device Wake-up Time from Sleep Modes with Various System Clock Sources
Symbol
Parameter
Wake-up time from idle,
standby, and extended standby
mode
twakeup
Wake-up time from power-save
and power-down mode
Note:
1.
Condition
Min.
Typ. (1)
External 2MHz clock
2.0
32.768kHz internal oscillator
120
2MHz internal oscillator
2.0
32MHz internal oscillator
0.2
External 2MHz clock
5.0
32.768kHz internal oscillator
320
2MHz internal oscillator
9.0
32MHz internal oscillator
5.0
Max.
Units
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 33-9. All peripherals and modules start
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 33-9. Wake-up Time Definition
Wakeup time
Wakeup request
Clock output
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
88
33.2.5 I/O Pin Characteristics
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output
voltage limits reflect or exceed this specification.
Table 33-36. I/O Pin Characteristics
Symbol
(1)
IOH /
IOL (2)
Parameter
Max.
Units
-20
20
mA
VCC = 2.4 - 3.6V
0.7*Vcc
VCC+0.5
VCC = 1.6 - 2.4V
0.8*VCC
VCC+0.5
VCC = 2.4- 3.6V
-0.5
0.3*VCC
VCC = 1.6 - 2.4V
-0.5
0.2*VCC
I/O pin source/sink current
VIH
High level input voltage
VIL
Low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
IIN
Input leakage current I/O pin
RP
Pull/buss keeper resistor
Notes:
Condition
1.
2.
Min.
Typ.
VCC = 3.3V
IOH = -4mA
2.6
2.9
VCC = 3.0V
IOH = -3mA
2.1
2.7
VCC = 1.8V
IOH = -1mA
1.4
1.6
VCC = 3.3V
IOL = 8mA
0.4
0.76
VCC = 3.0V
IOL = 5mA
0.3
0.64
VCC = 1.8V
IOL = 3mA
0.2
0.46
<0.01
1
T = 25°C
V
25
µA
k
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
89
33.2.6 ADC Characteristics
Table 33-37. Power supply, Reference, and Input Range
Symbol
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
VCC- 0.3
VCC+ 0.3
1
AVCC- 0.6
Units
V
Rin
Input resistance
Switched
4.5
k
Cin
Input capacitance
Switched
5
pF
RAREF
Reference input resistance
(leakage only)
CAREF
Reference input capacitance
Static load
Vin
Input range
Conversion range
Differential mode, Vinp - Vinn
Conversion range
Single ended unsigned mode, Vinp
>10
M
7
pF
0
VREF
-VREF
VREF
-V
VREF-V
V
Table 33-38. Clock and Timing
Symbol
ClkADC
Parameter
ADC clock frequency
Condition
Min.
Maximum is 1/4 of peripheral clock
frequency
100
Measuring internal signals
fClkADC
Typ.
1800
Sample rate
Sample rate
Units
kHz
125
300
Current limitation (CURRLIMIT) off
fADC
Max.
300
CURRLIMIT = LOW
16
250
CURRLIMIT = MEDIUM
150
CURRLIMIT = HIGH
50
Sampling time
Configurable in steps of 1/2 ClkADC cycles
up to 32 ClkADC cycles
0.28
320
Conversion time (latency)
(RES+1)/2 + GAIN
RES (Resolution) = 8 or 12, GAIN=0 to 3
4.5
10
Start-up time
ADC clock cycles
12
24
ADC settling time
After changing reference or input mode
7
7
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
ksps
µs
ClkADC
cycles
90
Table 33-39. Accuracy Characteristics
Symbol
RES
Condition(2)
Parameter
Resolution
12-bit resolution
Differential mode
INL(1)
Integral non-linearity
Differential mode
Differential non-linearity
Single ended
unsigned mode
Offset Error
Gain Error
Gain Error
Typ.
Max.
Differential
8
12
12
Single ended signed
7
11
11
Single ended unsigned
8
12
12
16ksps, VREF = 3V
0.5
1
16ksps, all VREF
0.8
2
300ksps, VREF = 3V
0.6
1
1
2
16ksps, VREF = 3.0V
0.5
1
16ksps, all VREF
1.3
2
16ksps, VREF = 3V
0.3
1
16ksps, all VREF
0.5
1
300ksps, VREF = 3V
0.35
1
300ksps, all VREF
0.5
1
16ksps, VREF = 3.0V
0.6
1
16ksps, all VREF
0.6
1
300ksps, all VREF
Single ended
unsigned mode
DNL(1)
Min.
Differential mode
Differential mode
Single ended
unsigned mode
1.
2.
Bits
lsb
8
mV
Temperature drift
0.01
mV/K
Operating voltage drift
0.25
mV/V
External reference
-5
AVCC/1.6
-5
AVCC/2.0
-6
Bandgap
±10
Temperature drift
0.02
mV/K
Operating voltage drift
2
mV/V
External reference
-8
AVCC/1.6
-8
AVCC/2.0
-8
Bandgap
±10
Temperature drift
0.03
mV/K
2
mV/V
Operating voltage drift
Notes:
Units
mV
mV
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
91
Table 33-40. Gain Stage Characteristics
Rin
Csample
Input resistance
Switched in normal mode
4.0
k
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
1/2
Clock rate
Same as ADC
100
0
1
0.5x gain, normal mode
-1
1x gain, normal mode
-1
8x gain, normal mode
-1
64x gain, normal mode
10
0.5x gain, normal mode
10
Offset Error,
1x gain, normal mode
5
input referred
8x gain, normal mode
-20
64x gain, normal mode
-150
Gain Error
AVCC- 0.6
V
3
ClkADC
cycles
1800
kHz
%
mV
33.2.7 Analog Comparator Characteristics
Table 33-41. Analog Comparator Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
Voff
Input offset voltage
VCC=1.6V - 3.6V
<±10
mV
Ilk
Input leakage current
VCC=1.6V - 3.6V
<1
nA
Input voltage range
-0.1
AC startup time
AVCC
100
Vhys1
Hysteresis, none
VCC=1.6V - 3.6V
0
Vhys2
Hysteresis, small
VCC=1.6V - 3.6V
11
Vhys3
Hysteresis, large
VCC=1.6V - 3.6V
26
tdelay
Propagation delay
VCC = 3.0V, T= 85°C
16
VCC=1.6V - 3.6V
16
Integral non-linearity (INL)
0.3
64-level voltage scaler
V
µs
mV
90
0.5
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
ns
lsb
92
33.2.8 Bandgap and Internal 1.0V Reference Characteristics
Table 33-42. Bandgap and Internal 1.0V Reference Characteristics
Symbol
Parameter
Startup time
Condition
Min.
As reference for ADC
Typ.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.98
Variation over voltage and temperature
Calibrated at T= 85°C, VCC = 3.0V
1
Units
µs
1.5
Bandgap voltage
INT1V
Max.
1.02
±1.0
V
%
33.2.9 Brownout Detection Characteristics
Table 33-43. Brownout Detection Characteristics(1)
Symbol
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
Note:
Typ.
Max.
1.50
1.62
1.75
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
VHYST
Min.
Continuous mode
µs
1000
Hysteresis
1.
V
0.4
Sampled mode
Units
1.2
%
BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.
33.2.10 External Reset Characteristics
Table 33-44. External Reset Characteristics
Symbol
tEXT
Parameter
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Condition
Reset pin pull-up resistor
Min.
Typ.
1000
90
VCC = 2.7 - 3.6V
0.6*VCC
VCC = 1.6 - 2.7V
0.6*VCC
Max.
Units
ns
VCC = 2.7 - 3.6V
0.5*VCC
VCC = 1.6 - 2.7V
0.4*VCC
25
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
V
k
93
33.2.11 Power-on Reset Characteristics
Table 33-45. Power-on Reset Characteristics
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
Typ.
Max.
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
33.2.12 Flash and EEPROM Memory Characteristics
Table 33-46. Endurance and Data Retention
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
Units
Cycle
Year
Cycle
Year
Table 33-47. Programming time.
Symbol
Parameter
(2)
Chip erase
Flash
EEPROM
Notes:
1.
2.
Condition
Min.
Typ.(1)
32KB Flash, EEPROM
50
Page erase
4
Page write
4
Atomic page erase and write
8
Page erase
4
Page write
4
Atomic page erase and write
8
Max.
Units
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
94
33.2.13 Clock and Oscillator Characteristics
33.2.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics
Table 33-48. 32.768kHz Internal Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Frequency
Factory calibration accuracy
Typ.
Max.
32.768
T = 85C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
-0.5
0.5
%
33.2.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics
Table 33-49. 2MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
2.2
Units
MHz
2.0
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Units
DFLL calibration stepsize
0.18
33.2.13.3 Calibrated and Tunable 32MHz Internal Oscillator Characteristics
Table 33-50. 32MHz Internal Oscillator Characteristics
Symbol
Parameter
Frequency range
Condition
Min.
Typ.
Max.
DFLL can tune to this frequency over
voltage and temperature
30
32
55
Factory calibrated frequency
Factory calibration accuracy
MHz
32
T = 85C, VCC= 3.0V
User calibration accuracy
-1.5
1.5
-0.2
0.2
%
Max.
Units
DFLL calibration step size
0.19
33.2.13.4 32kHz Internal ULP Oscillator Characteristics
Table 33-51. 32kHz Internal ULP Oscillator Characteristics
Symbol
Parameter
Condition
Min.
Factory calibrated frequency
Factory calibration accuracy
Accuracy
Typ.
32
T = 85C, VCC= 3.0V
kHz
-12
12
-30
30
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
%
95
33.2.13.5 Internal Phase Locked Loop (PLL) Characteristics
Table 33-52. Internal PLL Characteristics
Symbol
fIN
Input frequency
Output frequency(1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
Start-up time
25
Re-lock time
25
Max.
Units
MHz
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
33.2.13.6 External Clock Characteristics
Figure 33-10.External Clock Drive Waveform
tCH
tCH
tCF
tCR
VIH1
VIL1
tCL
tCK
Table 33-53. External Clock used as System Clock without Prescaling
Symbol
Clock frequency(1)
1/tCK
tCK
Clock period
tCH
Clock high time
tCL
Clock low time
tCR
Rise time (for maximum frequency)
tCF
Fall time (for maximum frequency)
tCK
Note:
Parameter
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
96
Table 33-54. External Clock with Prescaler (1) for System Clock
Symbol
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
tCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
33.2.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics
Table 33-55. External 16MHz Crystal Oscillator and XOSC Characteristics
.
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
0
FRQRANGE=1, 2, or 3
0
XOSCPWR=0
XOSCPWR=1
Units
ns
0
FRQRANGE=0
0.03
FRQRANGE=1
0.03
FRQRANGE=2 or 3
0.03
XOSCPWR=1
Duty cycle
Max.
0
XOSCPWR=1
Frequency error
Typ.
0.003
FRQRANGE=0
50
FRQRANGE=1
50
FRQRANGE=2 or 3
50
%
50
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
97
Symbol
Parameter
Condition
44k
1MHz crystal, CL=20pF
67k
2MHz crystal, CL=20pF
67k
2MHz crystal
82k
8MHz crystal
1500
9MHz crystal
1500
8MHz crystal
2700
9MHz crystal
2700
12MHz crystal
1000
9MHz crystal
3600
12MHz crystal
1300
16MHz crystal
590
9MHz crystal
390
12MHz crystal
50
16MHz crystal
10
9MHz crystal
1500
12MHz crystal
650
16MHz crystal
270
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
1000
16MHz crystal
440
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
1300
16MHz crystal
590
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
Negative impedance
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
RQ
Negative impedance
ESR
Start-up time
Typ.
0.4MHz resonator,
CL=100pF
XOSCPWR=0,
FRQRANGE=0
RQ
Min.
SF = safety factor
Max.


min(RQ)/SF
XOSCPWR=0,
FRQRANGE=0
0.4MHz resonator,
CL=100pF
1.0
XOSCPWR=0,
FRQRANGE=1
2MHz crystal, CL=20pF
2.6
XOSCPWR=0,
FRQRANGE=2
8MHz crystal, CL=20pF
0.8
XOSCPWR=0,
FRQRANGE=3
12MHz crystal, CL=20pF
1.0
XOSCPWR=1,
FRQRANGE=3
16MHz crystal, CL=20pF
1.4
Units
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
k
ms
98
Symbol
Parameter
Condition
Min.
Typ.
CXTAL1
Parasitic capacitance
XTAL1 pin
5.9
CXTAL2
Parasitic capacitance
XTAL2 pin
8.3
CLOAD
Parasitic capacitance load
3.5
Max.
Units
pF
33.2.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics
Table 33-56. External 32.768kHz Crystal Oscillator and TOSC Characteristics
Symbol
Parameter
Condition
ESR/R1
Recommended crystal
equivalent series
resistance (ESR)
Min.
Typ.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
Crystal load capacitance 12pF
28
CTOSC1
Parasitic capacitance
TOSC1 pin
3.5
CTOSC2
Parasitic capacitance
TOSC2 pin
3.5
Recommended safety
factor
Note:
1.
Max.
Units
k
pF
capacitance load matched to crystal specification
3
See Figure 33-11 for definition.
Figure 33-11.TOSC Input Capacitance
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768 kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without
external capacitors.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
99
33.2.14 SPI Characteristics
Figure 33-12. SPI Timing Requirements in Master Mode
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 33-13. SPI Timing Requirements in Slave Mode
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
100
Table 33-57. SPI Timing Characteristics and Requirements
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK period
Master
(See Table 20-3 in
XMEGA C Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK rise time
Master
2.7
tSCKF
SCK fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK rise time
Slave
1600
tSSCKF
SCK fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
33.2.15 Two-Wire Interface Characteristics
Table 33-58 on page 102 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 33-14.
Figure 33-14. Two-wire Interface Bus Timing
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tHD;STA
tSU;DAT
tSU;STO
SDA
tBUF
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
101
Table 33-58. Two-wire Interface Characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
VIH
Input high voltage
0.7*VCC
VCC+0.5
VIL
Input low voltage
-0.5
0.3*VCC
Vhys
Hysteresis of Schmitt trigger inputs
VOL
Output low voltage
tr
Rise time for both SDA and SCL
tof
Output fall time from VIHmin to VILmax
tSP
Spikes suppressed by input filter
II
Input current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL clock frequency
0.05*VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
fSCL  100kHz
RP
Value of pull-up resistor
tHD;STA
Hold time (repeated) START condition
tLOW
Low period of SCL clock
tHIGH
High period of SCL clock
Set-up time for a repeated START
condition
tSU;STA
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Units
V
0
0.4
20+0.1Cb (1)(2)
300
20+0.1Cb (1)(2)
250
0
50
-10
10
µA
10
pF
400
kHz
0
100ns
--------------Cb
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
0.6
fSCL  100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL  100kHz
250
fSCL > 100kHz
100
fSCL  100kHz
4.0
fSCL > 100kHz
0.6
fSCL  100kHz
4.7
fSCL > 100kHz
1.3
300ns
--------------Cb
ns

µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
102
34.
Typical Characteristics
34.1
Atmel ATxmega16C4
34.1.1 Current Consumption
34.1.1.1 Active Mode Supply Current
Figure 34-1. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
600
550
3.6V
500
Icc [µA]
450
400
3.0V
350
2.7V
300
250
2.2V
200
1.8V
150
100
50
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
Figure 34-2. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
11
10
3.6V
9
8
3.0V
Icc [mA]
7
2.7V
6
5
4
2.2V
3
2
1.8V
1
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
103
Figure 34-3. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
180
160
-40°C
Icc [µA]
140
25°C
85°C
105°C
120
100
80
60
40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-4. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock
600
-40°C
25°C
85°C
105°C
550
500
Icc [µA]
450
400
350
300
250
200
150
100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
104
Figure 34-5. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
1350
1200
-40°C
25 °C
85°C
105°C
1050
Icc [µA]
900
750
600
450
300
150
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-6. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
5.0
-40°C
25 °C
85°C
105°C
4.5
4.0
Icc [mA]
3.5
3.0
2.5
2.0
1.5
1.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
105
Figure 34-7. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
12.0
-40 °C
11.5
11.0
25 °C
10.5
85 °C
105°C
10.0
Icc [mA]
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
34.1.1.2 Idle Mode Supply Current
Figure 34-8. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
120
3.6V
105
90
3.0V
ICC[uA]
75
2.7V
60
2.2V
45
1.8V
30
15
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
106
Figure 34-9. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
4.0
3.6
3.6V
3.2
Icc [mA]
2.8
3.0V
2.4
2.7V
2.0
1.6
1.2
2.2V
0.8
1.8V
0.4
0.0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Frenquecy [MHz]
Figure 34-10.Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
35.50
105°C
34.75
34.00
33.25
32.50
Icc [µA]
31.75
85°C
31.00
-40°C
30.25
25 °C
29.50
28.75
28.00
27.25
26.50
25.75
25.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
107
Figure 34-11.Idle Mode Supply Current vs. VCC
fSYS = MHz external clock
130
105°C
85 °C
25 °C
-40°C
120
110
100
Icc [µA]
90
80
70
60
50
40
30
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-12.Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
330
-40°C
25°C
85 °C
105 °C
310
290
270
Icc [µA]
250
230
210
190
170
150
130
110
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
108
Figure 34-13.Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
1600
-40 °C
25 °C
85°C
105°C
1500
1400
1300
Icc [µA]
1200
1100
1000
900
800
700
600
500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-14.Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
4.25
-40°C
4.00
25 °C
85°C
105°C
3.75
Icc [mA]
3.50
3.25
3.00
2.75
2.50
2.25
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
109
34.1.1.3 Power-down Mode Supply Current
Figure 34-15.Power-down Mode Supply Current vs. VCC
All functions disabled
5.5
105°C
5.0
4.5
4.0
Icc [µA]
3.5
3.0
2.5
2.0
85°C
1.5
1.0
0.5
25°C
-40°C
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-16.Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
6.5
105°C
6.0
5.5
5.0
Icc [µA]
4.5
4.0
3.5
85°C
3.0
2.5
2.0
25°C
-40°C
1.5
1.0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
110
Figure 34-17.Power-down Mode Supply Current vs. Temperature
Watchdog and sampled BOD enabled and running from internal ULP oscillator
7.5
7.0
3.6V
6.5
3.0V
2.7V
2.2V
1.8V
6.0
5.5
Icc [µA]
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
34.1.1.4 Power-save Mode Supply Current
Figure 34-18.Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
111
34.1.1.5 Standby Mode Supply Current
Figure 34-19.Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.1
105°C
10.9
9.7
85°C
I CC [µA]
8.5
25°C
-40°C
7.3
6.1
4.9
3.7
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-20.Standby Supply Current vs. VCC
25°C, running from different crystal oscillators
480
16MHz
12MHz
440
ICC [µA]
400
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC[V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
112
34.1.2 I/O Pin Characteristics
34.1.2.1 Pull-up
Figure 34-21.I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
72
64
56
IPIN [µA]
48
40
32
24
-40°C
25°C
85°C
105°C
16
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
VPIN [V]
Figure 34-22.I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
108
96
IPIN [µA]
84
72
60
48
36
-40°C
25°C
85°C
105°C
24
12
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
VPIN [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
113
Figure 34-23.I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
IPIN [µA]
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
VPIN [V]
34.1.2.2 Output Voltage vs. Sink/Source Current
Figure 34-24. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
2.0
1.8
1.6
VPIN [V]
1.4
1.2
1.0
0.8
0.6
0.4
85°C 105°C
25°C
-40°C
0.2
0
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
I PIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
114
Figure 34-25. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.15
2.80
2.45
VPIN [V]
2.10
1.75
1.40
1.05
25°C
-40°C
85°C
105°C
0.70
0.35
0
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 34-26. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.5
3.15
2.8
VPIN [V]
2.45
2.1
1.75
1.4
1.05
0.7
25°C
-40°C
85°C
105°C
0.35
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
115
Figure 34-27. I/O Pin Output Voltage vs. Source Current
4
VPIN [V]
3.65
3.3
3.6V
3.3V
2.95
3.0V
2.7V
2.6
2.25
1.9
1.8V
1.6V
1.55
1.2
0.85
0.5
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 34-28. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1
0.9
0.8
105°C
VPIN [V]
0.7
25°C
85°C
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
116
Figure 34-29. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.1
105°C
85°C
1.0
0.9
25°C
0.8
-40°C
VPIN [V]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
Figure 34-30. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
VPIN [V]
1
0.9
105°C
85°C
0.8
25°C
0.7
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
117
Figure 34-31. I/O Pin Output Voltage vs. Sink Current
1.5
1.8V
1.6V
1.35
2.7V
3.0V
3.3V
3.6V
1.2
VPIN [V]
1.05
0.9
0.75
0.6
0.45
0.3
0.15
0
0
2
4
6
8
10
12
14
16
18
20
IPIN [mA]
34.1.2.3 Thresholds and Hysteresis
Figure 34-32.I/O Pin Input Threshold Voltage vs. VCC
T = 25C
1.8
VIH
Vthreshold [V]
1.7
1.6
VIL
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
118
Figure 34-33. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
-40°C
25°C
85 °C
105 °C
1.8
1.7
Vthreshold [V]
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-34. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
,p
1.75
-40°C
25°C
85 °C
105 °C
1.60
Vthreshold [V]
1.45
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
119
Figure 34-35. I/O Pin Input Hysteresis vs. VCC
0.42
0.39
-40°C
Vthreshold [V]
0.36
0.33
0.3
25°C
0.27
0.24
85°C
0.21
105°C
0.18
0.15
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.4
2.6
2.8
3.0
VCC [V]
34.1.3 ADC Characteristics
Figure 34-36. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.6
1.4
INL[LSB]
1.2
Single-ended unsigned mode
1.0
0.8
0.6
Differential mode
0.4
Single-ended signed mode
0.2
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
120
Figure 34-37. INL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.70
0.65
Single-ended unsigned mode
INL[LSB]
0.60
0.55
Differential mode
0.50
0.45
0.40
0.35
Single-ended signed mode
0.30
0.25
50
100
150
200
250
300
ADC sample rate [ksps]
Figure 34-38. INL Error vs. Input Code
1.25
1.00
0.75
INL[LSB]
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-1.25
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
121
Figure 34-39. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
0.70
0.65
DNL [LSB]
0.60
Single-ended unsigned mode
0.55
0.50
0.45
0.40
Differential mode
0.35
Single-ended signed mode
0.30
0.25
0.20
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 34-40. DNL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.60
0.55
Single-ended unsigned mode
DNL [LSB]
0.50
0.45
0.40
Differential mode
0.35
0.30
Single-ended signed mode
0.25
0.20
50
100
150
200
250
300
ADC sample rate [ksps]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
122
Figure 34-41.DNL Error vs. Input Code
1
DNL [LSB]
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 34-42. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps
-5
Gain error [mV]
-6
-7
Differential mode
-8
-9
Single-ended signed mode
-10
-11
-12
Single-ended unsigned mode
-13
-14
-15
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
123
Figure 34-43. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps
-2
Gain error [mV]
-3
-4
Differential mode
-5
Single-ended signed
mode
-6
Single-ended unsigned mode
-7
-8
-9
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-44. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps
9.4
9.2
Offset error [mV]
9.0
8.8
Differential mode
8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
124
Figure 34-45. Gain Error vs. Temperature
VCC = 3.0V, VREF = external 2.0V
0
-2
Gain error [mV]
Single-ended signed mode
-4
-6
Differential mode
-8
-10
Single-ended unsigned mode
-12
-14
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-46. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps
8.00
Offset error [mV]
7.00
6.00
5.00
Differential mode
4.00
3.00
2.00
1.00
0.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
125
34.1.4 Analog Comparator Characteristics
Figure 34-47. Analog Comparator Hysteresis vs. VCC
High speed, small hysteresis
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
-40°C
6
5
4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-48. Analog Comparator Hysteresis vs. VCC
High speed, large hysteresis
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
126
Figure 34-49. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-50. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
68
64
105°C
85°C
60
VHYST [mV]
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
127
Figure 34-51. Analog Comparator Current Source vs. Calibration Value
T = 25C
8
ICURRENTSOURCE [µA]
7.25
6.5
5.75
5
3.6V
4.25
3.0V
3.5
2.2V
2.75
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
Figure 34-52. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7.0
6.6
ICURRENTSOURCE [µA]
6.2
5.8
5.4
5.0
4.6
4.2
-40°C
25°C
85°C
105°C
3.8
3.4
3.0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
128
Figure 34-53. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.050
0.025
INL [LSB]
0
-0.025
-0.050
-0.075
-0.100
25°C
-0.125
-0.150
0
10
20
30
40
50
60
70
SCALEFAC
34.1.5 Internal 1.0V Reference Characteristics
Bandgap Voltage [V]
Figure 34-54. ADC Internal 1.0V Reference vs. Temperature
1.0088
1.008
1.0072
1.0064
1.0056
1.0048
1.004
1.0032
1.0024
1.0016
1.0008
1
0.9992
0.9984
0.9976
0.9968
1.8V
2.2V
2.7V
3.0V
3.6V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
129
34.1.6 BOD Characteristics
Figure 34-55. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.574
Rising Vcc
1.57
Falling Vcc
1.566
VBOT [V]
1.562
1.558
1.554
1.55
1.546
1.542
1.538
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
95
105
Temperature [°C]
Figure 34-56. BOD Thresholds vs. Temperature
BOD level = 3.0V
2.992
2.984
Rising Vcc
2.976
VBOT [V]
2.968
2.96
2.952
2.944
Falling Vcc
2.936
2.928
2.92
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
130
34.1.7 External Reset Characteristics
Figure 34-57. Minimum Reset Pin Pulse Width vs. VCC
145
140
135
130
TRST [ns]
125
120
115
110
105
105°C
85°C
100
95
25°C
-40°C
90
85
80
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-58. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
72
64
IRESET [µA]
56
48
40
32
24
16
-40°C
25°C
85°C
105°C
8
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VRESET [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
131
Figure 34-59. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VRESET [V]
Figure 34-60. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VRESET [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
132
Figure 34-61. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
-40°C
25°C
85°C
105°C
2.10
2.00
1.90
1.80
V threshold [V]
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-62. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.7
-40°C
25°C
85 °C
105 °C
1.6
1.5
Vthreshold [V]
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
133
34.1.8 Power-on Reset Characteristics
Figure 34-63. Power-on Reset Current Consumption vs. VCC
I CC [µA]
BOD level = 3.0V, enabled in continuous mode
700
-40°C
600
25°C
500
85°C
105°C
400
300
200
100
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
Figure 34-64. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
650
-40°C
585
520
25°C
85°C
105°C
I CC [µA]
455
390
325
260
195
130
65
0
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
134
34.1.9 Oscillator Characteristics
34.1.9.1 Ultra Low-Power Internal Oscillator
Frequency [kHz]
Figure 34-65.Ultra Low-Power Internal Oscillator Frequency vs. Temperature
35.4
35.1
34.8
34.5
34.2
33.9
33.6
33.3
33.0
32.7
32.4
32.1
31.8
31.5
31.2
30.9
3.6V
3.3V
3.0V
2.7V
2.0V
1.8V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
34.1.9.2 32.768kHz Internal Oscillator
Figure 34-66. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.9
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
Frequency [kHz]
32.8
32.75
32.7
32.65
32.6
32.55
32.5
32.45
32.4
32.35
32.3
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
135
Figure 34-67. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
51
3.0V
47
Frequency [kHz]
43
39
35
31
27
23
19
15
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
RC32KCAL [7..0]
34.1.9.3 2MHz Internal Oscillator
Figure 34-68. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.16
2.14
Frequency [MHz]
2.12
2.10
2.08
2.06
2.04
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.02
2.00
1.98
1.96
1.94
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
136
Figure 34-69. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.012
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.008
Frequency [MHz]
2.004
2.00
1.996
1.992
1.988
1.984
1.98
1.976
1.972
1.968
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-70. 2MHz Internal Oscillator CALA Calibration Step Size
Step Size [%]
VCC = 3V
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
-40°C
25°C
85°C
105°C
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
137
34.1.9.4 32MHz Internal Oscillator
Figure 34-71. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
36.45
36
Frequency [MHz]
35.55
35.1
34.65
34.2
33.75
33.3
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
32.4
31.95
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-72. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
138
Figure 34-73. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.34
0.32
0.30
Step Size [%]
0.28
0.26
0.24
0.22
0.20
0.16
-40°C
105°C
85°C
0.14
25°C
0.18
0.12
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
34.1.9.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 34-74. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
55.3
54.6
53.9
Frequency [MHz]
53.2
52.5
51.8
51.1
50.4
49.7
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
49.0
48.3
47.6
46.9
46.2
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
139
Figure 34-75. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
48.24
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
48.15
Frequency [MHz]
48.06
47.97
47.88
47.79
47.70
47.61
47.52
47.43
47.34
47.25
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-76. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.29
0.27
Step Size [%]
0.25
0.23
0.21
0.19
-40°C
0.17
25°C
105°C
0.15
0.13
85°C
0.11
0.09
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
140
34.1.10 Two-Wire Interface Characteristics
Figure 34-77. SDA Hold Time vs. Temperature
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
Figure 34-78. SDA Hold Time vs. Supply Voltage
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
141
34.1.11 PDI Characteristics
Figure 34-79. Maximum PDI Frequency vs. VCC
22
21
-40°C
Frequency max [MHz]
20
19
25°C
18
85°C
105°C
17
16
15
14
13
12
11
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
142
34.2
Atmel ATxmega32C4
34.2.1 Current Consumption
34.2.1.1 Active Mode Supply Current
Figure 34-80. Active Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
600
550
3.6V
500
ICC [µA]
450
400
3.0V
350
2.7V
300
250
2.2V
200
1.8V
150
100
50
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
Figure 34-81. Active Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
11
10
3.6V
9
ICC [mA]
8
3.0V
7
2.7V
6
5
4
2.2V
3
2
1.8V
1
0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Frequency [MHz]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
143
Figure 34-82. Active Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
180
160
-40°C
Icc [µA]
140
25°C
85°C
105°C
120
100
80
60
40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-83. Active Mode Supply Current vs. VCC
fSYS = 1MHz external clock
600
-40°C
25°C
85°C
105°C
550
500
Icc [µA]
450
400
350
300
250
200
150
100
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
144
Figure 34-84. Active Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
1350
1200
-40°C
25 °C
85°C
105°C
1050
Icc [µA]
900
750
600
450
300
150
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-85. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
5.0
-40°C
25 °C
85°C
105°C
4.5
4.0
Icc [mA]
3.5
3.0
2.5
2.0
1.5
1.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
145
Figure 34-86. Active Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator
12.0
-40 °C
11.5
11.0
25 °C
10.5
85 °C
105°C
10.0
Icc [mA]
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
34.2.1.2 Idle Mode Supply Current
Figure 34-87. Idle Mode Supply Current vs. Frequency
fSYS = 0 - 1MHz external clock, T = 25°C
120
3.6V
105
90
3.0V
ICC[uA]
75
2.7V
60
2.2V
45
1.8V
30
15
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
146
Figure 34-88. Idle Mode Supply Current vs. Frequency
fSYS = 1 - 32MHz external clock, T = 25°C
4.0
3.6
3.6V
3.2
Icc [mA]
2.8
3.0V
2.4
2.7V
2.0
1.6
1.2
2.2V
0.8
1.8V
0.4
0.0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Frenquecy [MHz]
Figure 34-89. Idle Mode Supply Current vs. VCC
fSYS = 32.768kHz internal oscillator
35.50
105°C
34.75
34.00
33.25
32.50
Icc [µA]
31.75
85°C
31.00
-40°C
30.25
25 °C
29.50
28.75
28.00
27.25
26.50
25.75
25.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
147
Figure 34-90. Idle Mode Supply Current vs. VCC
fSYS = 1MHz external clock
130
105°C
85 °C
25 °C
-40°C
120
110
100
Icc [µA]
90
80
70
60
50
40
30
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-91. Idle Mode Supply Current vs. VCC
fSYS = 2MHz internal oscillator
330
-40°C
25°C
85 °C
105 °C
310
290
270
Icc [µA]
250
230
210
190
170
150
130
110
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
148
Figure 34-92. Idle Mode Supply Current vs. VCC
fSYS = 32MHz internal oscillator prescaled to 8MHz
1600
-40 °C
25 °C
85°C
105°C
1500
1400
1300
Icc [µA]
1200
1100
1000
900
800
700
600
500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-93. Idle Mode Current vs. VCC
fSYS = 32MHz internal oscillator
4.25
-40°C
4.00
25 °C
85°C
105°C
3.75
Icc [mA]
3.50
3.25
3.00
2.75
2.50
2.25
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
149
34.2.1.3 Power-down Mode Supply Current
Figure 34-94. Power-down Mode Supply Current vs. VCC
All functions disabled
5.5
105°C
5.0
4.5
4.0
Icc [µA]
3.5
3.0
2.5
2.0
85°C
1.5
1.0
0.5
25°C
-40°C
0.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-95. Power-down Mode Supply Current vs. VCC
Watchdog and sampled BOD enabled
6.5
105°C
6.0
5.5
5.0
Icc [µA]
4.5
4.0
3.5
85°C
3.0
2.5
2.0
25°C
-40°C
1.5
1.0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
150
Figure 34-96. Power-down Mode Supply Current vs. Temperature
Watchdog and sampled BOD enabled and running from internal ULP oscillator
7.5
7.0
3.6V
6.5
3.0V
2.7V
2.2V
1.8V
6.0
5.5
Icc [µA]
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
34.2.1.4 Power-save Mode Supply Current
Figure 34-97.Power-save Mode Supply Current vs.VCC
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC
0.9
Normal mode
0.8
0.7
ICC [µA]
0.6
Low-power mode
0.5
0.4
0.3
0.2
0.1
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
151
34.2.1.5 Standby Mode Supply Current
Figure 34-98. Standby Supply Current vs. VCC
Standby, fSYS = 1MHz
12.1
105°C
10.9
9.7
85°C
I CC [µA]
8.5
25°C
-40°C
7.3
6.1
4.9
3.7
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-99. Standby Supply Current vs. VCC
25°C, running from different crystal oscillators
480
16MHz
12MHz
440
ICC [µA]
400
360
320
8MHz
2MHz
280
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC[V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
152
34.2.2 I/O Pin Characteristics
34.2.2.1 Pull-up
Figure 34-100. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 1.8V
72
64
56
IPIN [µA]
48
40
32
24
-40°C
25°C
85°C
105°C
16
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
VPIN [V]
Figure 34-101. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.0V
120
108
96
IPIN [µA]
84
72
60
48
36
-40°C
25°C
85°C
105°C
24
12
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
VPIN [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
153
Figure 34-102. I/O Pin Pull-up Resistor Current vs. Input Voltage
VCC = 3.3V
135
120
105
IPIN [µA]
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
VPIN [V]
34.2.2.2 Output Voltage vs. Sink/Source Current
Figure 34-103. I/O Pin Output Voltage vs. Source Current
VCC = 1.8V
2.0
1.8
1.6
VPIN [V]
1.4
1.2
1.0
0.8
0.6
0.4
85°C 105°C
25°C
-40°C
0.2
0
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
I PIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
154
Figure 34-104. I/O Pin Output Voltage vs. Source Current
VCC = 3.0V
3.15
2.80
2.45
VPIN [V]
2.10
1.75
1.40
1.05
25°C
-40°C
85°C
105°C
0.70
0.35
0
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 34-105. I/O Pin Output Voltage vs. Source Current
VCC = 3.3V
3.5
3.15
2.8
VPIN [V]
2.45
2.1
1.75
1.4
1.05
0.7
25°C
-40°C
85°C
105°C
0.35
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
155
Figure 34-106. I/O Pin Output Voltage vs. Source Current
4
VPIN [V]
3.65
3.3
3.6V
3.3V
2.95
3.0V
2.7V
2.6
2.25
1.9
1.8V
1.6V
1.55
1.2
0.85
0.5
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
Figure 34-107. I/O Pin Output Voltage vs. Sink Current
VCC = 1.8V
1
0.9
0.8
105°C
VPIN [V]
0.7
25°C
85°C
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
156
Figure 34-108. I/O Pin Output Voltage vs. Sink Current
VCC = 3.0V
1.1
105°C
85°C
1.0
0.9
25°C
0.8
-40°C
VPIN [V]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
Figure 34-109. I/O Pin Output Voltage vs. Sink Current
VCC = 3.3V
VPIN [V]
1
0.9
105°C
85°C
0.8
25°C
0.7
-40°C
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
IPIN [mA]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
157
Figure 34-110. I/O Pin Output Voltage vs. Sink Current
1.5
1.8V
1.6V
1.35
2.7V
3.0V
3.3V
3.6V
1.2
VPIN [V]
1.05
0.9
0.75
0.6
0.45
0.3
0.15
0
0
2
4
6
8
10
12
14
16
18
20
IPIN [mA]
34.2.2.3 Thresholds and Hysteresis
Figure 34-111. I/O Pin Input Threshold Voltage vs. VCC
T = 25C
1.8
VIH
Vthreshold [V]
1.7
1.6
VIL
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
158
Figure 34-112. I/O Pin Input Threshold Voltage vs. VCC
VIH I/O pin read as “1”
-40°C
25°C
85 °C
105 °C
1.8
1.7
Vthreshold [V]
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-113. I/O Pin Input Threshold Voltage vs. VCC
VIL I/O pin read as “0”
1.75
-40°C
25°C
85 °C
105 °C
1.60
Vthreshold [V]
1.45
1.30
1.15
1.00
0.85
0.70
0.55
0.40
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
159
Figure 34-114. I/O Pin Input Hysteresis vs. VCC
0.42
0.39
-40°C
Vthreshold [V]
0.36
0.33
0.3
25°C
0.27
0.24
85°C
0.21
105°C
0.18
0.15
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.4
2.6
2.8
3.0
VCC [V]
34.2.3 ADC Characteristics
Figure 34-115. INL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
1.6
1.4
INL[LSB]
1.2
Single-ended unsigned mode
1.0
0.8
0.6
Differential mode
0.4
Single-ended signed mode
0.2
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
160
Figure 34-116. INL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.70
0.65
Single-ended unsigned mode
INL[LSB]
0.60
0.55
Differential mode
0.50
0.45
0.40
0.35
Single-ended signed mode
0.30
0.25
50
100
150
200
250
300
ADC sample rate [ksps]
Figure 34-117. INL Error vs. Input Code
1.25
1.00
0.75
INL[LSB]
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
-1.25
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
161
Figure 34-118. DNL Error vs. External VREF
T = 25C, VCC = 3.6V, external reference
0.70
0.65
DNL [LSB]
0.60
Single-ended unsigned mode
0.55
0.50
0.45
0.40
Differential mode
0.35
Single-ended signed mode
0.30
0.25
0.20
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 34-119. DNL Error vs. Sample Rate
T = 25C, VCC = 3.6V, VREF = 3.0V external
0.60
0.55
Single-ended unsigned mode
DNL [LSB]
0.50
0.45
0.40
Differential mode
0.35
0.30
Single-ended signed mode
0.25
0.20
50
100
150
200
250
300
ADC sample rate [ksps]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
162
Figure 34-120. DNL Error vs. Input Code
1
DNL [LSB]
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 34-121. Gain Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps
-5
Gain error [mV]
-6
-7
Differential mode
-8
-9
Single-ended signed mode
-10
-11
-12
Single-ended unsigned mode
-13
-14
-15
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
163
Figure 34-122. Gain Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps
-2
Gain error [mV]
-3
-4
Differential mode
-5
Single-ended signed
mode
-6
Single-ended unsigned mode
-7
-8
-9
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-123. Offset Error vs. VREF
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps
9.4
9.2
Offset error [mV]
9.0
8.8
Differential mode
8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
164
Figure 34-124. Gain Error vs. Temperature
VCC = 3.0V, VREF = external 2.0V
0
-2
Gain error [mV]
Single-ended signed mode
-4
-6
Differential mode
-8
-10
Single-ended unsigned mode
-12
-14
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-125. Offset Error vs. VCC
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps
8.00
Offset error [mV]
7.00
6.00
5.00
Differential mode
4.00
3.00
2.00
1.00
0.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
165
34.2.4 Analog Comparator Characteristics
Figure 34-126. Analog Comparator Hysteresis vs. VCC
High speed, small hysteresis
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
-40°C
6
5
4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-127. Analog Comparator Hysteresis vs. VCC
High speed, large hysteresis
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
166
Figure 34-128. Analog Comparator Hysteresis vs. VCC
Low power, small hysteresis
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-129. Analog Comparator Hysteresis vs. VCC
Low power, large hysteresis
68
64
105°C
85°C
60
VHYST [mV]
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
167
Figure 34-130. Analog Comparator Current Source vs. Calibration Value
T = 25C
8
ICURRENTSOURCE [µA]
7.25
6.5
5.75
5
3.6V
4.25
3.0V
3.5
2.2V
2.75
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
Figure 34-131. Analog Comparator Current Source vs. Calibration Value
VCC = 3.0V
7.0
6.6
ICURRENTSOURCE [µA]
6.2
5.8
5.4
5.0
4.6
4.2
-40°C
25°C
85°C
105°C
3.8
3.4
3.0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIBA [3..0]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
168
Figure 34-132. Voltage Scaler INL vs. SCALEFAC
T = 25C, VCC = 3.0V
0.050
0.025
INL [LSB]
0
-0.025
-0.050
-0.075
-0.100
25°C
-0.125
-0.150
0
10
20
30
40
50
60
70
SCALEFAC
34.2.5 Internal 1.0V Reference Characteristics
Bandgap Voltage [V]
Figure 34-133. ADC Internal 1.0V Reference vs. Temperature
1.0088
1.008
1.0072
1.0064
1.0056
1.0048
1.004
1.0032
1.0024
1.0016
1.0008
1
0.9992
0.9984
0.9976
0.9968
1.8V
2.2V
2.7V
3.0V
3.6V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
169
34.2.6 BOD Characteristics
Figure 34-134. BOD Thresholds vs. Temperature
BOD level = 1.6V
1.574
Rising Vcc
1.57
Falling Vcc
1.566
VBOT [V]
1.562
1.558
1.554
1.55
1.546
1.542
1.538
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
95
105
Temperature [°C]
Figure 34-135. BOD Thresholds vs. Temperature
BOD level = 3.0V
2.992
2.984
Rising Vcc
2.976
VBOT [V]
2.968
2.96
2.952
2.944
Falling Vcc
2.936
2.928
2.92
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
170
34.2.7 External Reset Characteristics
Figure 34-136. Minimum Reset Pin Pulse Width vs. VCC
145
140
135
130
TRST [ns]
125
120
115
110
105
105°C
85°C
100
95
25°C
-40°C
90
85
80
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 34-137. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 1.8V
80
72
64
IRESET [µA]
56
48
40
32
24
16
-40°C
25°C
85°C
105°C
8
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VRESET [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
171
Figure 34-138. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.0V
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VRESET [V]
Figure 34-139. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage
VCC = 3.3V
150
135
120
IRESET [µA]
105
90
75
60
45
30
-40°C
25°C
85°C
105°C
15
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VRESET [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
172
Figure 34-140. Reset Pin Input Threshold Voltage vs. VCC
VIH - Reset pin read as “1”
-40°C
25°C
85°C
105°C
2.10
2.00
1.90
1.80
V threshold [V]
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 34-141. Reset Pin Input Threshold Voltage vs. VCC
VIL - Reset pin read as “0”
1.7
-40°C
25°C
85 °C
105 °C
1.6
1.5
Vthreshold [V]
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
173
34.2.8 Power-on Reset Characteristics
Figure 34-142. Power-on Reset Current Consumption vs. VCC
I CC [µA]
BOD level = 3.0V, enabled in continuous mode
700
-40°C
600
25°C
500
85°C
105°C
400
300
200
100
0
0.4
0.7
1.0
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
Figure 34-143. Power-on Reset Current Consumption vs. VCC
BOD level = 3.0V, enabled in sampled mode
650
-40°C
585
520
25°C
85°C
105°C
I CC [µA]
455
390
325
260
195
130
65
0
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
174
34.2.9 Oscillator Characteristics
34.2.9.1 Ultra Low-Power Internal Oscillator
Frequency [kHz]
Figure 34-144. Ultra Low-Power Internal Oscillator Frequency vs. Temperature
35.4
35.1
34.8
34.5
34.2
33.9
33.6
33.3
33.0
32.7
32.4
32.1
31.8
31.5
31.2
30.9
3.6V
3.3V
3.0V
2.7V
2.0V
1.8V
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
34.2.9.2 32.768kHz Internal Oscillator
Figure 34-145. 32.768kHz Internal Oscillator Frequency vs. Temperature
32.9
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
Frequency [kHz]
32.8
32.75
32.7
32.65
32.6
32.55
32.5
32.45
32.4
32.35
32.3
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
175
Figure 34-146. 32.768kHz Internal Oscillator Frequency vs. Calibration Value
VCC = 3.0V, T = 25°C
55
51
3.0V
Frequency [kHz]
47
43
39
35
31
27
23
19
15
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240 256
RC32KCAL [7..0]
34.2.9.3 2MHz Internal Oscillator
Figure 34-147. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
2.16
2.14
Frequency [MHz]
2.12
2.10
2.08
2.06
2.04
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.02
2.00
1.98
1.96
1.94
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
176
Figure 34-148. 2MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
2.012
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
2.008
Frequency [MHz]
2.004
2.00
1.996
1.992
1.988
1.984
1.98
1.976
1.972
1.968
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-149. 2MHz Internal Oscillator CALA Calibration Step Size
Step Size [%]
VCC = 3V
0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
-40°C
25°C
85°C
105°C
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
177
34.2.9.4 32MHz Internal Oscillator
Figure 34-150. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
36.45
36
Frequency [MHz]
35.55
35.1
34.65
34.2
33.75
33.3
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.85
32.4
31.95
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-151. 32MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
32.15
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
32.1
32.05
Frequency [MHz]
32
31.95
31.9
31.85
31.8
31.75
31.7
31.65
31.6
31.55
31.5
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
178
Figure 34-152. 32MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.34
0.32
0.30
Step Size [%]
0.28
0.26
0.24
0.22
0.20
0.16
-40°C
105°C
85°C
0.14
25°C
0.18
0.12
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
34.2.9.5 32MHz Internal Oscillator Calibrated to 48MHz
Figure 34-153. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL disabled
55.3
54.6
53.9
Frequency [MHz]
53.2
52.5
51.8
51.1
50.4
49.7
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
49.0
48.3
47.6
46.9
46.2
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
179
Figure 34-154. 48MHz Internal Oscillator Frequency vs. Temperature
DFLL enabled, from the 32.768kHz internal oscillator
48.24
3.6V
3.3V
3.0V
2.7V
2.2V
1.8V
48.15
Frequency [MHz]
48.06
47.97
47.88
47.79
47.70
47.61
47.52
47.43
47.34
47.25
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
Temperature [°C]
Figure 34-155. 48MHz Internal Oscillator CALA Calibration Step Size
VCC = 3.0V
0.29
0.27
Step Size [%]
0.25
0.23
0.21
0.19
-40°C
0.17
25°C
105°C
0.15
0.13
85°C
0.11
0.09
0
10
20
30
40
50
60
70
80
90
100
110
120
130
CALA
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
180
34.2.10 Two-Wire Interface Characteristics
Figure 34-156. SDA Hold Time vs. Temperature
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
Temperature [°C]
Figure 34-157. SDA Hold Time vs. Supply Voltage
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
181
34.2.11 PDI Characteristics
Figure 34-158. Maximum PDI Frequency vs. VCC
22
21
-40°C
Frequency max [MHz]
20
19
25°C
18
85°C
105°C
17
16
15
14
13
12
11
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
182
35.
Errata
35.1
Atmel ATxmega32C4
35.1.1 Rev. H
 AC system status flags are only valid if AC-system is enabled
 Temperature sensor not calibrated
1. AC system status flags are only valid if AC-system is enabled
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not
possible to clear the AC interrupt flags without enabling either of the Analog comparators.
Problem fix/Workaround
Software should clear the AC system flags once, after enabling the AC system before using the AC system status
flags.
2. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
35.2
Atmel ATxmega16C4
35.2.1 Rev. H
 AC system status flags are only valid if AC-system is enabled
 Temperature sensor not calibrated
1. AC system status flags are only valid if AC-system is enabled
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not
possible to clear the AC interrupt flags without enabling either of the Analog comparators.
Problem fix/Workaround
Software should clear the AC system flags once, after enabling the AC system before using the AC system status
flags.
2. Temperature sensor not calibrated
Temperature sensor factory calibration not implemented.
Problem fix/Workaround
None.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
183
36.
Datasheet Revision History
Note that the referring page numbers in this section are referred to this document. The referring revision in this section
are referring to the document revision.
36.1
36.2
36.3
8493I – 12/2014
1.
Some minor corrections according to the template.
2.
Trademark corrections.
3.
Several cross-references have been corrected.
8493H – 07/2014
1.
Updated the “Ordering Information” on page 2. Added ordering codes for ATxmega16C4/32C4 @ 105C.
2.
Updated Table 33-4 on page 67 and Table 33-33 on page 86. Added ICC Power-down power consumption for
T=105C for all functions disabled and for WDT and sampled BOD enabled
3.
Updated Table 33-17 on page 75 and Table 33-46 on page 94. Updated all tables to include values for T=85C
and T=105C. Removed T=55C
4.
Changed VCC to AVCC in Section 26. “ADC – 12-bit Analog to Digital Converter” on page 46 and in Section 27.1
“Features” on page 48.
5.
Updated the typical characteristics of “Atmel ATxmega16C4” and “Atmel ATxmega32C4” with characterizations
@105C
6.
Changed VCC to AVCC in Section 26. “ADC – 12-bit Analog to Digital Converter” on page 46 and Section 27. “AC –
Analog Comparator” on page 48.
7.
Changed values for TCCO in Table 29-3 on page 53.
8493G – 01/2014
1.
36.4
36.5
Updated the typical characteristics with characterization at 105C.
8493F – 10/2013
1.
Updated pin locations of TOSC1 and TOSC2 in Port E - Alternate functions in Table 29-5 on page 54.
2.
Updated pin locations of XTAL1, XTAL2, TOSC1, and TOSC2 in Port R - Alternate functions in Table 29-6 on page
54.
8493E – 10/2013
1.
Updated Port C - Alternate functions in Table 29-3 on page 53.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
184
36.6
8493D – 07/2013.
1.
36.7
36.9

ATxmega32C4 “Rev. H” on page 183

ATxmega16C4 “Rev. H” on page 183
8493C – 02/2013
1.
Updated the datasheet with Atmel new blue logo.
2.
Updated Figure 2-1 on page 4. PE2/PE3 are now half gray.
3.
Updated Figure 2-1 on page 4. Pin 19 is VCC and not VDD.
4.
Added Figure 2-2 on page 5.
5.
Updated Table 7-1 on page 15. Device ID for ATxmega32C4 is 44; 95; 1E. Device ID for ATxmega16 is 43; 94; 1E
6.
Updated “I/O Ports” on page 29. Removed “Optional slew rate control”. The feature doesn't exist in XMEGA C and
XMEGA D devices.
7.
Updated Figure 27-1 on page 49, “Analog Comparator Overview”
8.
Updated “Pinout and Pin Functions” on page 51, to take into account the “Pinout/Block Diagram” on page 4.
9.
Updated “External Clock Characteristics” on page 77 and “ External Clock Characteristics” on page 96. Added Table
33-24 on page 77, Table 33-25 on page 78, Table 33-53 on page 96, and Table 33-54 on page 97.
10.
Updated Table 33-26 on page 78, and Table 33-55 on page 97. Added ESR parameter.
11.
Updated Table 33-29 on page 83 and Table 33-58 on page 102. Input low voltage VIL min for I2C is -0.5V.
12.
Added “Electrical Characteristics” for “Atmel ATxmega16C4” on page 65.
13.
Added “Typical Characteristics” for “Atmel ATxmega16C4” on page 103.
15.
36.8
Errata Temperature sensor not calibrated added to:
Updated “Errata” on page 183. Added Errata to all rev H: AC system status flags are only valid if AC-system is
enabled.
8493B – 05/2012
1.
Updated “Packaging Information” on page 62. Added “7P” on page 64.
2.
Added “Electrical Characteristics” on page 65.
3.
Added “Typical Characteristics” on page 103.
8493A – 02/2012
1.
Initial revision.
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
185
Table of Contents
Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.
Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1
4.
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1
Recommended Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.
Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.
AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
8.
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13
13
15
16
16
16
16
16
17
17
Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.1
8.2
9.
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
System Clock and Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.1
9.2
9.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.1
10.2
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
i
11. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11.1
11.2
11.3
11.4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
24
24
25
12. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12.1
12.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . . . . . . . . . . . 27
13.1
13.2
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
14.1
14.2
14.3
14.4
14.5
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
29
30
32
32
15. TC0/1 – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15.1
15.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
16. TC2 – Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
16.1
16.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17.1
17.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
18. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
18.1
18.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
19. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
19.1
19.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
20. USB – Universal Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20.1
20.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21.1
21.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
22. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22.1
22.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
ii
23. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
23.1
23.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
24. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
24.1
24.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
25. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
25.1
25.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
26. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
26.1
26.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
27. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
27.1
27.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
28. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
28.1
28.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
29. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
29.1
29.2
Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Alternate Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
30. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
31. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
32. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
32.1
32.2
32.3
44A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
PW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
33. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
33.1
33.2
Atmel ATxmega16C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Atmel ATxmega32C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
34. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
34.1
34.2
Atmel ATxmega16C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Atmel ATxmega32C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
35. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
35.1
35.2
Atmel ATxmega32C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Atmel ATxmega16C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
36. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
36.1
36.2
36.3
36.4
8493I – 12/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493H – 07/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493G – 01/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493F – 10/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
184
184
184
184
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
iii
36.5
36.6
36.7
36.8
36.9
8493E – 10/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493D – 07/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493C – 02/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493B – 05/2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8493A – 02/2012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
184
185
185
185
185
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
XMEGA C4 [DATASHEET]
Atmel-8493I-AVR-ATxmega16C4-32C4-Datasheet–12/2014
iv
XXXXXX
Atmel Corporation
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
© 2014 Atmel Corporation. / Rev.: Atmel-8493H-AVR-ATxmega16C4-32C4-Datasheet_12/2014.
Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, QTouch®, XMEGA®, and others are registered trademarks or trademarks of
Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.