Appendix B - ATtiny13A specification at 125°C - Appendix

Appendix B – ATtiny13A Specification at 125°C
This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.
8-bit
Microcontroller
with 1K Bytes
In-System
Programmable
Flash
ATtiny13A
Appendix B
Rev. 8126F-Appendix B–AVR–05/12
1. Electrical Characteristics
1.1
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C
*NOTICE:
Storage Temperature ..................................... -65°C to +150°C
Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Maximum Operating Voltage ............................................ 6.0V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins ................................ 200.0 mA
1.2
DC Characteristics
Table 1-1.
Symbol
DC Characteristics, TA = -40°C to +125°C
Parameter
Input Low Voltage,
Any Pin as I/O
VIL
Input Low Voltage,
RESET Pin as Reset (4)
Input High Voltage,
Any Pin as I/O
VIH
Input High Voltage,
RESET Pin as Reset (4)
VCC = 1.8 - 2.4V
Min
-0.5
Typ(1)
Max
Units
0.2VCC
(2)
V
(2)
V
VCC = 2.4 - 5.5V
-0.5
0.3VCC
VCC = 1.8 - 5.5V
-0.5
0.2VCC (2)
V
VCC = 1.8 - 2.4V
0.7VCC (3)
VCC + 0.5
V
VCC = 2.4 - 5.5V
0.6VCC (3)
VCC + 0.5
V
VCC = 1.8 - 5.5V
0.9VCC (3)
VCC + 0.5
V
Output Low Voltage,
Pins PB0 and PB1 (5)
IOL = 20 mA, VCC = 5V
0.9
V
IOL = 10 mA, VCC = 3V
0.7
V
Output Low Voltage,
Pins PB2, PB3 and PB4 (5)
IOL = 10 mA, VCC = 5V
0.8
V
IOL = 5 mA, VCC = 3V
0.6
V
Output High Voltage,
Pins PB0 and PB1 (6)
IOH = -20 mA, VCC = 5V
4.0
V
IOH = -10 mA, VCC = 3V
2.3
V
Output High Voltage,
Pins PB2, PB3 and PB4 (6)
IOH = -10 mA, VCC = 5V
4.2
V
IOH = -5 mA, VCC = 3V
2.5
V
VOL
VOH
ILIL
Input Leakage
Current I/O Pin
VCC = 5.5V, pin low
-1
1
µA
ILIH
Input Leakage
Current I/O Pin
VCC = 5.5V, pin high
-1
1
µA
Pull-Up Resistor, I/O Pin
VCC = 5.5V, input low
20
50
kΩ
Pull-Up Resistor, Reset Pin
VCC = 5.5V, input low
30
80
kΩ
RPU
2
Condition
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Table 1-1.
Symbol
DC Characteristics, TA = -40°C to +125°C (Continued)
Parameter
Supply Current,
Active Mode (7)
ICC
Supply Current,
Idle Mode (7)
Supply Current,
Power-Down Mode (8)
Notes:
Typ(1)
Max
Units
f = 1MHz, VCC = 2V
0.2
0.35
mA
f = 4MHz, VCC = 3V
1.2
1.8
mA
f = 8MHz, VCC = 5V
3.6
6
mA
f = 1MHz, VCC = 2V
0.03
0.2
mA
f = 4MHz, VCC = 3V
0.2
1
mA
f = 8MHz, VCC = 5V
0.7
3
mA
WDT enabled, VCC = 3V
3.9
20
µA
WDT disabled, VCC = 3V
0.15
10
µA
Condition
Min
1. Typical values at +25°C.
2. “Max” means the highest value where the pin is guaranteed to be read as low.
3. “Min” means the lowest value where the pin is guaranteed to be read as high.
4. Not tested in production.
5. Although each I/O port can under non-transient, steady state conditions sink more than the test conditions, the sum of all IOL
(for all ports) should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are
not guaranteed to sink current greater than the listed test condition.
6. Although each I/O port can under non-transient, steady state conditions source more than the test conditions, the sum of all
IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins
are not guaranteed to source current greater than the listed test condition.
7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.
8. BOD Disabled.
1.3
Clock Characteristics
1.3.1
Accuracy of Calibrated Internal Oscillator
It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the
oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure
2-53 on page 32, Figure 2-54 on page 33, Figure 2-55 on page 33, and in Figure 2-56 on page 34.
Table 1-2.
Calibration Accuracy of Internal Oscillator
Calibration
Method
Factory
Calibration
User
Calibration
Notes:
Target Frequency
VCC
Temperature
Accuracy at given Voltage
& Temperature(1)
4.8 / 9.6 MHz
3V
25°C
±10%
Fixed frequency within:
4 – 5 MHz / 8 – 10 MHz
Fixed voltage within:
1.8 – 5.5V
Fixed temperature
within:
-40°C to +125°C
±2%
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
3
8126F-Appendix B–AVR–05/12
1.4
System and Reset Characteristics
1.4.1
Enhanced Power-On Reset
Table 1-3.
Symbol
Characteristics of Enhanced Power-On Reset. TA = -40 to +125°C
Parameter
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
0.6
1.3
1.7
V
Release threshold of power-on reset (2)
VPOR
VPOA
Activation threshold of power-on reset
SRON
Power-On Slope Rate
Note:
Min(1)
(3)
0.01
V/ms
1. Values are guidelines only.
2. Threshold where device is released from reset when voltage is rising.
3. The Power-on Reset will not work unless the supply voltage has been below VPOA.
1.5
ADC Characteristics
Table 1-4.
Symbol
ADC Characteristics, Single Ended Channels. TA = -40°C to +125°C
Parameter
Condition
Min
Typ
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
10
Bits
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
3
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
4
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz,
Noise Reduction Mode
2.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz,
Noise Reduction Mode
3.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1
LSB
Differential Non-linearity
(DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
3.5
LSB
Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.5
LSB
Conversion Time
Free Running Conversion
Input Voltage
13
260
µs
50
1000
kHz
GND
VREF
V
Input Bandwidth
4
Units
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
Clock Frequency
VIN
Max
VINT
Internal Voltage Reference
RAIN
Analog Input Resistance
38.5
1.0
1.1
100
kHz
1.2
V
MΩ
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
1.6
Analog Comparator Characteristics
Table 1-5.
Analog Comparator Characteristics, TA = -40°C to +125°C
Symbol
Parameter
Condition
VAIO
Input Offset Voltage
VCC = 5V, VIN = VCC / 2
ILAC
Input Leakage Current
VCC = 5V, VIN = VCC / 2
Analog Propagation Delay
(from saturation to slight overdrive)
VCC = 2.7V
750
VCC = 4.0V
500
Analog Propagation Delay
(large step change)
VCC = 2.7V
100
VCC = 4.0V
75
Digital Propagation Delay
VCC = 1.8 - 5.5V
1
tAPD
tDPD
Note:
All parameters are based on simulation results.
1.7
Serial Programming Characteristics
Table 1-6.
Parameter
1/tCLCL
Oscillator Frequency
Oscillator Period
1/tCLCL
tCLCL
Condition
Units
< 10
40
mV
250
nA
-250
Oscillator Period
tSHSL
SCK Pulse Width High
tSLSH
SCK Pulse Width Low
tOVSH
MOSI Setup to SCK High
tSHOX
MOSI Hold after SCK High
Min
2
Typ
0
VCC = 1.8 – 5.5V
CLK
VCC = 1.8 – 5.5V
Units
1
MHz
ns
9.6
104
MHz
ns
0
VCC = 4.5 – 5.5V
Max
1000
0
VCC = 2.7 – 5.5V
Oscillator Frequency
tCLCL
Note:
Max
ns
Oscillator Frequency
Oscillator Period
1/tCLCL
Typ
Serial Programming Characteristics, TA = -40°C to +125°C
Symbol
tCLCL
Min
20
50
MHz
ns
2 tCLCL(1)
ns
(1)
ns
2 tCLCL
tCLCL
ns
2 tCLCL
ns
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
5
8126F-Appendix B–AVR–05/12
2. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.
A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
I CP ≈ V CC × C L × f SW
where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of
I/O pin.
2.1
Current Consumption in Active Mode
Figure 2-1.
Active Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 9.6 MHz
6
125 °C
85 °C
25 °C
-40 °C
5
ICC (mA)
4
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
6
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-2.
Active Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 4.8 MHz
3,5
125 °C
85 °C
25 °C
-40 °C
3
ICC (mA)
2,5
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-3.
Active Supply Current vs. VCC (Internal WDT Oscillator, 128 kHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 128 kHz
0,12
25 °C
-40 °C
85 °C
125 °C
0,1
ICC (mA)
0,08
0,06
0,04
0,02
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
7
8126F-Appendix B–AVR–05/12
Figure 2-4.
Active Supply Current vs. VCC (32 kHz External Clock)
ACTIVE SUPPLY CURRENT vs. VCC
32 KHz EXTERNAL CLOCK, PRR = 0xFF
0,03
125 °C
85 °C
25 °C
-40 °C
0,025
ICC (mA)
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.2
Current Consumption in Idle Mode
Figure 2-5.
Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 9.6 MHz
1,6
1,4
125 °C
85 °C
25 °C
-40 °C
1,2
ICC (mA)
1
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
8
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-6.
Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 4.8 MHz
0,7
125 °C
85 °C
0,6
25 °C
-40 °C
ICC (mA)
0,5
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-7.
Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL OSCILLATOR, 128 kHz
0,025
-40 °C
125 °C
25 °C
85 °C
ICC (mA)
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
9
8126F-Appendix B–AVR–05/12
Figure 2-8.
Idle Supply Current vs. VCC (32 kHz External Clock)
IDLE SUPPLY CURRENT vs. VCC
32 KHz EXTERNAL OSCILLATOR, PRR=0xFF
0,008
125 °C
ICC (mA)
0,006
85 °C
25 °C
-40 °C
0,004
0,002
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.3
Current Consumption in Power-down Mode
Figure 2-9.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER DISABLED
3,5
125 °C
3
ICC (uA)
2,5
2
1,5
1
85 °C
-40 °C
25 °C
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
10
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-10. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER ENABLED
10
125 °C
-40 °C
8
25 °C
85 °C
ICC (uA)
6
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.4
Current Consumption of Peripheral Units
Figure 2-11. Brownout Detector Current vs. VCC
BROWNOUT DETECTOR CURRENT vs. VCC
40
35
30
125 °C
85 °C
25 °C
-40 °C
ICC (uA)
25
20
15
10
5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
11
8126F-Appendix B–AVR–05/12
Figure 2-12. ADC Current vs. VCC
ADC CURRENT vs. VCC
f = 1.0 MHz
400
125 °C
85 °C
25 °C
-40 °C
350
300
ICC (uA)
250
200
150
100
50
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-13. Analog Comparator Current vs. VCC
ANALOG COMPARATOR CURRENT vs. VCC
f = 1.0 MHz
100
125 °C
90
85 °C
80
25 °C
-40 °C
70
ICC (uA)
60
50
40
30
20
10
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
12
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-14. Programming Current vs. VCC
PROGRAMMING CURRENT vs. VCC
9000
8000
-40 °C
7000
25 °C
ICC (uA)
6000
85 °C
5000
125 °C
4000
3000
2000
1000
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.5
Pull-up Resistors
Figure 2-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
60
50
IOP (uA)
40
30
20
10
25 °C
85 °C
-40 °C
125 °C
0
0
0,5
1
1,5
2
VOP (V)
13
8126F-Appendix B–AVR–05/12
Figure 2-16. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 3V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 3V
100
90
80
70
IOP (uA)
60
50
40
30
20
25 °C
85 °C
-40 °C
125 °C
10
0
0
0,5
1
1,5
2
2,5
3
3,5
VOP (V)
Figure 2-17. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
160
140
120
IOP (uA)
100
80
60
40
25 °C
85 °C
-40 °C
125 °C
20
0
0
1
2
3
4
5
6
VOP (V)
14
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
40
IRESET (uA)
30
20
10
25 °C
-40 °C
85 °C
125 °C
0
0
0,5
1
1,5
2
VRESET (V)
Figure 2-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 3V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 3V
100
90
80
70
IOP (uA)
60
50
40
30
20
25 °C
85 °C
-40 °C
125 °C
10
0
0
0,5
1
1,5
2
2,5
3
3,5
VOP (V)
15
8126F-Appendix B–AVR–05/12
Figure 2-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
140
120
IRESET (uA)
100
80
60
40
20
25 °C
-40 °C
85 °C
125 °C
0
0
1
2
3
4
5
6
VRESET (V)
2.6
Output Driver Strength (Low Power Pins)
Figure 2-21. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, V CC = 1.8V
1,8
1,7
1,6
1,5
VOH (V)
1,4
1,3
1,2
-40 °C
1,1
1
25 °C
0,9
85 °C
125 °C
0,8
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOH (mA)
16
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-22. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, V CC = 3V
3
2,9
VOH (V)
2,8
2,7
-40 °C
2,6
25 °C
2,5
85 °C
2,4
125 °C
2,3
0
1
2
3
4
5
6
7
8
9
10
IOH (mA)
Figure 2-23. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
LOW POWER PINS, VCC = 5V
5
4,8
VOH (V)
4,6
-40 °C
4,4
25 °C
85 °C
4,2
125 °C
4
0
2
4
6
8
10
12
14
16
18
20
IOH (mA)
17
8126F-Appendix B–AVR–05/12
Figure 2-24. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, V CC = 1.8V
2,5
125 °C
85 °C
25 °C
2
VOL (V)
1,5
1
-40 °C
0,5
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOL (mA)
Figure 2-25. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, VCC = 3V
1,2
125 °C
1
85 °C
VOL (V)
0,8
25 °C
0,6
-40 °C
0,4
0,2
0
0
1
2
3
4
5
6
7
8
9
10
IOL (mA)
18
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-26. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
LOW POWER PINS, V CC = 5V
1,4
125 °C
1,2
85 °C
1
VOL (V)
25 °C
0,8
-40 °C
0,6
0,4
0,2
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
2.7
Output Driver Strength (Regular Pins)
Figure 2-27. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V
1,8
1,7
VOH (V)
1,6
1,5
-40 °C
1,4
25 °C
85 °C
125 °C
1,3
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOH (mA)
19
8126F-Appendix B–AVR–05/12
Figure 2-28. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
3
2,9
VOH (V)
2,8
-40 °C
2,7
25 °C
2,6
85 °C
125 °C
2,5
0
1
2
3
4
5
6
7
8
9
10
IOH (mA)
Figure 2-29. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
5
VOH (V)
4,8
4,6
-40 °C
25 °C
85 °C
4,4
125 °C
4,2
0
2
4
6
8
10
12
14
16
18
20
IOH (mA)
20
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-30. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V
0,5
125 °C
0,4
85 °C
0,3
VOL (V)
25 °C
-40 °C
0,2
0,1
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOL (mA)
Figure 2-31. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
0,5
125 °C
0,4
85 °C
25 °C
VOL (V)
0,3
-40 °C
0,2
0,1
0
0
1
2
3
4
5
6
7
8
9
10
IOL (mA)
21
8126F-Appendix B–AVR–05/12
Figure 2-32. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
0,7
125 °C
0,6
85 °C
VOL (V)
0,5
25 °C
-40 °C
0,4
0,3
0,2
0,1
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
Figure 2-33. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 1.8V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 1.8V
1,6
1,4
1,2
VOH (V)
1
0,8
0,6
-40 °C
0,4
25 °C
85 °C
125 °C
0,2
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
IOH (mA)
22
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-34. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
4,5
4
3,5
VOH (V)
3
2,5
2
125 °C
85 °C
25 °C
-40 °C
1,5
1
0,5
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
IOH (mA)
Figure 2-35. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
4,5
4
3,5
-40 °C
25 °C
85 °C
125 °C
VOH (V)
3
2,5
2
1,5
1
0,5
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
IOH (mA)
23
8126F-Appendix B–AVR–05/12
Figure 2-36. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 1.8V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 1.8V
1
0,8
VOL (V)
0,6
125 °C
85 °C
0,4
25 °C
-40 °C
0,2
0
0
0,1
0,2
0,3
0,4
0,5
0,6
IOL (mA)
Figure 2-37. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
1,6
125 °C
1,4
1,2
85 °C
VOL (V)
1
0,8
25 °C
0,6
-40 °C
0,4
0,2
0
0
0,5
1
1,5
2
2,5
3
IOL (mA)
24
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-38. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
1,6
1,4
1,2
VOL (V)
125 °C
1
85 °C
0,8
25 °C
0,6
-40 °C
0,4
0,2
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOL (mA)
2.8
Input Thresholds and Hysteresis (for I/O Ports)
Figure 2-39. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as '1')
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIH, I/O PIN READ AS '1'
3
125 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
25
8126F-Appendix B–AVR–05/12
Figure 2-40. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as '0')
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIL, I/O PIN READ AS '0'
2,5
125 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-41. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
I/O PIN INPUT HYSTERESIS vs. VCC
0,6
-40 °C
Input Hysteresis (V)
0,5
25 °C
0,4
85 °C
0,3
125 °C
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
26
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-42. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '1')
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC
VIH, RESET READ AS '1'
3
125 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-43. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '0')
RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC
VIL, RESET READ AS '0'
2,5
125 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
27
8126F-Appendix B–AVR–05/12
Figure 2-44. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
RESET PIN AS IO, INPUT HYSTERESIS vs. VCC
1
0,9
0,8
Input Hysteresis (V)
0,7
-40 °C
0,6
0,5
25 °C
0,4
85 °C
125 °C
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.9
BOD, Bandgap and Reset
Figure 2-45. BOD Thresholds vs. Temperature (BODLEVEL is 4.3V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 4.3V
4,4
4,38
VCC RISING
Threshold (V)
4,36
4,34
4,32
4,3
VCC FALLING
4,28
4,26
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
28
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-46. BOD Thresholds vs. Temperature (BODLEVEL is 2.7V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 2.7V
2,8
2,78
VCC RISING
Threshold (V)
2,76
2,74
2,72
2,7
VCC FALLING
2,68
2,66
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
Figure 2-47. BOD Thresholds vs. Temperature (BODLEVEL is 1.8V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 1.8V
1,85
1,84
VCC RISING
Threshold (V)
1,83
1,82
1,81
VCC FALLING
1,8
1,79
1,78
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
29
8126F-Appendix B–AVR–05/12
Figure 2-48. Bandgap Voltage vs. VCC
BANDGAP VOLTAGE vs. VCC
1,14
Bandgap Voltage (V)
1,13
1,12
1,11
85 °C
25 °C
125 °C
1,1
-40 °C
1,09
1,08
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-49. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '1')
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIH, PIN READ AS '1'
2,5
-40 °C
25 °C
85 °C
125 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
30
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-50. VIL: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '0')
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIL, PIN READ AS '0'
2,5
125 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
4,5
5
5,5
VCC (V)
Figure 2-51. VIH-VIL: Reset Input Pin Hysteresis vs. VCC
RESET PIN INPUT HYSTERESIS vs. VCC
1
0,9
0,8
Input Hysteresis (V)
0,7
0,6
-40 °C
0,5
0,4
25 °C
0,3
85 °C
0,2
125 °C
0,1
0
1,5
2
2,5
3
3,5
4
VCC (V)
31
8126F-Appendix B–AVR–05/12
Figure 2-52. Minimum Reset Pulse Width vs. VCC
MINIMUM RESET PULSE WIDTH vs. VCC
1800
1600
1400
Pulsewidth (ns)
1200
1000
800
600
400
125 °C
85 °C
25 °C
-40 °C
200
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.10
Internal Oscillator Speed
Figure 2-53. Calibrated 9.6 MHz Oscillator Frequency vs. Temperature
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. TEMPERATURE
10,2
5.5 V
4.5 V
2.7 V
1.8 V
Frequency (MHz)
10
9,8
9,6
9,4
9,2
9
-40
-20
0
20
40
60
80
100
120
140
Temperature
32
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-54. Calibrated 9.6 MHz Oscillator Frequency vs. VCC
CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
10,2
125 °C
10
Frequency (MHz)
85 °C
9,8
9,6
25 °C
9,4
9,2
-40 °C
9
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-55. Calibrated 4.8 MHz Oscillator Frequency vs. Temperature
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. TEMPERATURE
5,2
5.5 V
1.8 V
4.5 V
2.7 V
5,1
Frequency (MHz)
5
4,9
4,8
4,7
4,6
4,5
4,4
4,3
-40
-20
0
20
40
60
80
100
120
140
Temperature
33
8126F-Appendix B–AVR–05/12
Figure 2-56. Calibrated 4.8 MHz Oscillator Frequency vs. VCC
CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
5,2
125 °C
5,1
5
Frequency (MHz)
85 °C
4,9
4,8
25 °C
4,7
4,6
4,5
-40 °C
4,4
4,3
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-57. 128 kHz Watchdog Oscillator Frequency vs. Temperature
WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE
116000
114000
Frequency (kH)
112000
110000
108000
1.8 V
106000
2.7 V
104000
4.5 V
5.5 V
102000
100000
-40
-20
0
20
40
60
80
100
120
140
Temperature
34
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
Figure 2-58. 128 kHz Watchdog Oscillator Frequency vs. VCC
WATCHDOG OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE
116000
Frequency (Hz)
114000
112000
-40 °C
110000
25 °C
108000
106000
85 °C
104000
102000
125 °C
100000
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
35
8126F-Appendix B–AVR–05/12
3. Ordering Information
Speed (MHz)
Power Supply (V)
Ordering Code(1)
Package(2)
Operation Range
1.8 - 5.5
ATtiny13A-SF
ATtiny13A-SFR
ATtiny13A-MMF
ATtiny13A-MMFR
8S2
8S2
10M1(3)
10M1(3)
Industrial
(-40°C to +125°C)
20
Notes:
1. Code indicators:
– F: matte tin
– R: tape & reel
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
Package Type
8S2
8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC)
10M1
10-pad, 3 x 3 x 1 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
36
ATtiny13A
8126F-Appendix B–AVR–05/12
ATtiny13A
4. Revision History
Revision No.
History
8126A–Appendix B–AVR–07/10
8126-Appendix B rev A, initial revision
8126E–Appendix B–AVR–08/11
Removed “Preliminary” status, updated contact information
8126F–Appendix B–AVR–05/12
Updated ordering codes
37
8126F-Appendix B–AVR–05/12
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2012 Atmel Corporation. All rights reserved.
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
8126F-Appendix B–AVR–05/12