Appendix B – ATtiny13A Specification at 125°C This document contains information specific to devices operating at temperatures up to 125°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 1K Bytes In-System Programmable Flash ATtiny13A Appendix B Rev. 8126F-Appendix B–AVR–05/12 1. Electrical Characteristics 1.1 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C *NOTICE: Storage Temperature ..................................... -65°C to +150°C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins ................................ 200.0 mA 1.2 DC Characteristics Table 1-1. Symbol DC Characteristics, TA = -40°C to +125°C Parameter Input Low Voltage, Any Pin as I/O VIL Input Low Voltage, RESET Pin as Reset (4) Input High Voltage, Any Pin as I/O VIH Input High Voltage, RESET Pin as Reset (4) VCC = 1.8 - 2.4V Min -0.5 Typ(1) Max Units 0.2VCC (2) V (2) V VCC = 2.4 - 5.5V -0.5 0.3VCC VCC = 1.8 - 5.5V -0.5 0.2VCC (2) V VCC = 1.8 - 2.4V 0.7VCC (3) VCC + 0.5 V VCC = 2.4 - 5.5V 0.6VCC (3) VCC + 0.5 V VCC = 1.8 - 5.5V 0.9VCC (3) VCC + 0.5 V Output Low Voltage, Pins PB0 and PB1 (5) IOL = 20 mA, VCC = 5V 0.9 V IOL = 10 mA, VCC = 3V 0.7 V Output Low Voltage, Pins PB2, PB3 and PB4 (5) IOL = 10 mA, VCC = 5V 0.8 V IOL = 5 mA, VCC = 3V 0.6 V Output High Voltage, Pins PB0 and PB1 (6) IOH = -20 mA, VCC = 5V 4.0 V IOH = -10 mA, VCC = 3V 2.3 V Output High Voltage, Pins PB2, PB3 and PB4 (6) IOH = -10 mA, VCC = 5V 4.2 V IOH = -5 mA, VCC = 3V 2.5 V VOL VOH ILIL Input Leakage Current I/O Pin VCC = 5.5V, pin low -1 1 µA ILIH Input Leakage Current I/O Pin VCC = 5.5V, pin high -1 1 µA Pull-Up Resistor, I/O Pin VCC = 5.5V, input low 20 50 kΩ Pull-Up Resistor, Reset Pin VCC = 5.5V, input low 30 80 kΩ RPU 2 Condition ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Table 1-1. Symbol DC Characteristics, TA = -40°C to +125°C (Continued) Parameter Supply Current, Active Mode (7) ICC Supply Current, Idle Mode (7) Supply Current, Power-Down Mode (8) Notes: Typ(1) Max Units f = 1MHz, VCC = 2V 0.2 0.35 mA f = 4MHz, VCC = 3V 1.2 1.8 mA f = 8MHz, VCC = 5V 3.6 6 mA f = 1MHz, VCC = 2V 0.03 0.2 mA f = 4MHz, VCC = 3V 0.2 1 mA f = 8MHz, VCC = 5V 0.7 3 mA WDT enabled, VCC = 3V 3.9 20 µA WDT disabled, VCC = 3V 0.15 10 µA Condition Min 1. Typical values at +25°C. 2. “Max” means the highest value where the pin is guaranteed to be read as low. 3. “Min” means the lowest value where the pin is guaranteed to be read as high. 4. Not tested in production. 5. Although each I/O port can under non-transient, steady state conditions sink more than the test conditions, the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 6. Although each I/O port can under non-transient, steady state conditions source more than the test conditions, the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 8. BOD Disabled. 1.3 Clock Characteristics 1.3.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-53 on page 32, Figure 2-54 on page 33, Figure 2-55 on page 33, and in Figure 2-56 on page 34. Table 1-2. Calibration Accuracy of Internal Oscillator Calibration Method Factory Calibration User Calibration Notes: Target Frequency VCC Temperature Accuracy at given Voltage & Temperature(1) 4.8 / 9.6 MHz 3V 25°C ±10% Fixed frequency within: 4 – 5 MHz / 8 – 10 MHz Fixed voltage within: 1.8 – 5.5V Fixed temperature within: -40°C to +125°C ±2% 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). 3 8126F-Appendix B–AVR–05/12 1.4 System and Reset Characteristics 1.4.1 Enhanced Power-On Reset Table 1-3. Symbol Characteristics of Enhanced Power-On Reset. TA = -40 to +125°C Parameter Typ(1) Max(1) Units 1.1 1.4 1.7 V 0.6 1.3 1.7 V Release threshold of power-on reset (2) VPOR VPOA Activation threshold of power-on reset SRON Power-On Slope Rate Note: Min(1) (3) 0.01 V/ms 1. Values are guidelines only. 2. Threshold where device is released from reset when voltage is rising. 3. The Power-on Reset will not work unless the supply voltage has been below VPOA. 1.5 ADC Characteristics Table 1-4. Symbol ADC Characteristics, Single Ended Channels. TA = -40°C to +125°C Parameter Condition Min Typ Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) 10 Bits VREF = 4V, VCC = 4V, ADC clock = 200 kHz 3 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz 4 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz, Noise Reduction Mode 2.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz, Noise Reduction Mode 3.5 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 3.5 LSB Offset Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.5 LSB Conversion Time Free Running Conversion Input Voltage 13 260 µs 50 1000 kHz GND VREF V Input Bandwidth 4 Units Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Clock Frequency VIN Max VINT Internal Voltage Reference RAIN Analog Input Resistance 38.5 1.0 1.1 100 kHz 1.2 V MΩ ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A 1.6 Analog Comparator Characteristics Table 1-5. Analog Comparator Characteristics, TA = -40°C to +125°C Symbol Parameter Condition VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 Analog Propagation Delay (from saturation to slight overdrive) VCC = 2.7V 750 VCC = 4.0V 500 Analog Propagation Delay (large step change) VCC = 2.7V 100 VCC = 4.0V 75 Digital Propagation Delay VCC = 1.8 - 5.5V 1 tAPD tDPD Note: All parameters are based on simulation results. 1.7 Serial Programming Characteristics Table 1-6. Parameter 1/tCLCL Oscillator Frequency Oscillator Period 1/tCLCL tCLCL Condition Units < 10 40 mV 250 nA -250 Oscillator Period tSHSL SCK Pulse Width High tSLSH SCK Pulse Width Low tOVSH MOSI Setup to SCK High tSHOX MOSI Hold after SCK High Min 2 Typ 0 VCC = 1.8 – 5.5V CLK VCC = 1.8 – 5.5V Units 1 MHz ns 9.6 104 MHz ns 0 VCC = 4.5 – 5.5V Max 1000 0 VCC = 2.7 – 5.5V Oscillator Frequency tCLCL Note: Max ns Oscillator Frequency Oscillator Period 1/tCLCL Typ Serial Programming Characteristics, TA = -40°C to +125°C Symbol tCLCL Min 20 50 MHz ns 2 tCLCL(1) ns (1) ns 2 tCLCL tCLCL ns 2 tCLCL ns 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz 5 8126F-Appendix B–AVR–05/12 2. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly at frequencies higher than the ordering code indicates. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. The current drawn from pins with a capacitive load may be estimated (for one pin) as follows: I CP ≈ V CC × C L × f SW where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin. 2.1 Current Consumption in Active Mode Figure 2-1. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 9.6 MHz 6 125 °C 85 °C 25 °C -40 °C 5 ICC (mA) 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 6 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-2. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 4.8 MHz 3,5 125 °C 85 °C 25 °C -40 °C 3 ICC (mA) 2,5 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-3. Active Supply Current vs. VCC (Internal WDT Oscillator, 128 kHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 128 kHz 0,12 25 °C -40 °C 85 °C 125 °C 0,1 ICC (mA) 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 7 8126F-Appendix B–AVR–05/12 Figure 2-4. Active Supply Current vs. VCC (32 kHz External Clock) ACTIVE SUPPLY CURRENT vs. VCC 32 KHz EXTERNAL CLOCK, PRR = 0xFF 0,03 125 °C 85 °C 25 °C -40 °C 0,025 ICC (mA) 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.2 Current Consumption in Idle Mode Figure 2-5. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 9.6 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 9.6 MHz 1,6 1,4 125 °C 85 °C 25 °C -40 °C 1,2 ICC (mA) 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 8 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-6. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 4.8 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 4.8 MHz 0,7 125 °C 85 °C 0,6 25 °C -40 °C ICC (mA) 0,5 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-7. Idle Supply Current vs. VCC (Internal Oscillator, 128 kHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL OSCILLATOR, 128 kHz 0,025 -40 °C 125 °C 25 °C 85 °C ICC (mA) 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 9 8126F-Appendix B–AVR–05/12 Figure 2-8. Idle Supply Current vs. VCC (32 kHz External Clock) IDLE SUPPLY CURRENT vs. VCC 32 KHz EXTERNAL OSCILLATOR, PRR=0xFF 0,008 125 °C ICC (mA) 0,006 85 °C 25 °C -40 °C 0,004 0,002 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.3 Current Consumption in Power-down Mode Figure 2-9. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) POWER-DOWN SUPPLY CURRENT vs. VCC WATCHDOG TIMER DISABLED 3,5 125 °C 3 ICC (uA) 2,5 2 1,5 1 85 °C -40 °C 25 °C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 10 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-10. Power-Down Supply Current vs. VCC (Watchdog Timer Enabled) POWER-DOWN SUPPLY CURRENT vs. VCC WATCHDOG TIMER ENABLED 10 125 °C -40 °C 8 25 °C 85 °C ICC (uA) 6 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.4 Current Consumption of Peripheral Units Figure 2-11. Brownout Detector Current vs. VCC BROWNOUT DETECTOR CURRENT vs. VCC 40 35 30 125 °C 85 °C 25 °C -40 °C ICC (uA) 25 20 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 11 8126F-Appendix B–AVR–05/12 Figure 2-12. ADC Current vs. VCC ADC CURRENT vs. VCC f = 1.0 MHz 400 125 °C 85 °C 25 °C -40 °C 350 300 ICC (uA) 250 200 150 100 50 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-13. Analog Comparator Current vs. VCC ANALOG COMPARATOR CURRENT vs. VCC f = 1.0 MHz 100 125 °C 90 85 °C 80 25 °C -40 °C 70 ICC (uA) 60 50 40 30 20 10 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 12 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-14. Programming Current vs. VCC PROGRAMMING CURRENT vs. VCC 9000 8000 -40 °C 7000 25 °C ICC (uA) 6000 85 °C 5000 125 °C 4000 3000 2000 1000 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.5 Pull-up Resistors Figure 2-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE 60 50 IOP (uA) 40 30 20 10 25 °C 85 °C -40 °C 125 °C 0 0 0,5 1 1,5 2 VOP (V) 13 8126F-Appendix B–AVR–05/12 Figure 2-16. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 3V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE VCC = 3V 100 90 80 70 IOP (uA) 60 50 40 30 20 25 °C 85 °C -40 °C 125 °C 10 0 0 0,5 1 1,5 2 2,5 3 3,5 VOP (V) Figure 2-17. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE 160 140 120 IOP (uA) 100 80 60 40 25 °C 85 °C -40 °C 125 °C 20 0 0 1 2 3 4 5 6 VOP (V) 14 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE 40 IRESET (uA) 30 20 10 25 °C -40 °C 85 °C 125 °C 0 0 0,5 1 1,5 2 VRESET (V) Figure 2-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 3V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE VCC = 3V 100 90 80 70 IOP (uA) 60 50 40 30 20 25 °C 85 °C -40 °C 125 °C 10 0 0 0,5 1 1,5 2 2,5 3 3,5 VOP (V) 15 8126F-Appendix B–AVR–05/12 Figure 2-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE 140 120 IRESET (uA) 100 80 60 40 20 25 °C -40 °C 85 °C 125 °C 0 0 1 2 3 4 5 6 VRESET (V) 2.6 Output Driver Strength (Low Power Pins) Figure 2-21. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT LOW POWER PINS, V CC = 1.8V 1,8 1,7 1,6 1,5 VOH (V) 1,4 1,3 1,2 -40 °C 1,1 1 25 °C 0,9 85 °C 125 °C 0,8 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOH (mA) 16 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-22. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT LOW POWER PINS, V CC = 3V 3 2,9 VOH (V) 2,8 2,7 -40 °C 2,6 25 °C 2,5 85 °C 2,4 125 °C 2,3 0 1 2 3 4 5 6 7 8 9 10 IOH (mA) Figure 2-23. VOH: I/O Pin Output Voltage vs. Source Current (Low Power Pins, VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT LOW POWER PINS, VCC = 5V 5 4,8 VOH (V) 4,6 -40 °C 4,4 25 °C 85 °C 4,2 125 °C 4 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) 17 8126F-Appendix B–AVR–05/12 Figure 2-24. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT LOW POWER PINS, V CC = 1.8V 2,5 125 °C 85 °C 25 °C 2 VOL (V) 1,5 1 -40 °C 0,5 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL (mA) Figure 2-25. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT LOW POWER PINS, VCC = 3V 1,2 125 °C 1 85 °C VOL (V) 0,8 25 °C 0,6 -40 °C 0,4 0,2 0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) 18 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-26. VOL: I/O Pin Output Voltage vs. Sink Current (Low Power Pins, VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT LOW POWER PINS, V CC = 5V 1,4 125 °C 1,2 85 °C 1 VOL (V) 25 °C 0,8 -40 °C 0,6 0,4 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) 2.7 Output Driver Strength (Regular Pins) Figure 2-27. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 1.8V 1,8 1,7 VOH (V) 1,6 1,5 -40 °C 1,4 25 °C 85 °C 125 °C 1,3 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOH (mA) 19 8126F-Appendix B–AVR–05/12 Figure 2-28. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 3V 3 2,9 VOH (V) 2,8 -40 °C 2,7 25 °C 2,6 85 °C 125 °C 2,5 0 1 2 3 4 5 6 7 8 9 10 IOH (mA) Figure 2-29. VOH: I/O Pin Output Voltage vs. Source Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 5V 5 VOH (V) 4,8 4,6 -40 °C 25 °C 85 °C 4,4 125 °C 4,2 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) 20 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-30. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 1.8V 0,5 125 °C 0,4 85 °C 0,3 VOL (V) 25 °C -40 °C 0,2 0,1 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL (mA) Figure 2-31. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 3V 0,5 125 °C 0,4 85 °C 25 °C VOL (V) 0,3 -40 °C 0,2 0,1 0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) 21 8126F-Appendix B–AVR–05/12 Figure 2-32. VOL: I/O Pin Output Voltage vs. Sink Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 5V 0,7 125 °C 0,6 85 °C VOL (V) 0,5 25 °C -40 °C 0,4 0,3 0,2 0,1 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) Figure 2-33. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 1.8V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 1.8V 1,6 1,4 1,2 VOH (V) 1 0,8 0,6 -40 °C 0,4 25 °C 85 °C 125 °C 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 IOH (mA) 22 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-34. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 3V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 3V 4,5 4 3,5 VOH (V) 3 2,5 2 125 °C 85 °C 25 °C -40 °C 1,5 1 0,5 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 IOH (mA) Figure 2-35. VOH: Reset Pin as I/O, Output Voltage vs. Source Current (VCC = 5V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 5V 4,5 4 3,5 -40 °C 25 °C 85 °C 125 °C VOH (V) 3 2,5 2 1,5 1 0,5 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 IOH (mA) 23 8126F-Appendix B–AVR–05/12 Figure 2-36. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 1.8V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 1.8V 1 0,8 VOL (V) 0,6 125 °C 85 °C 0,4 25 °C -40 °C 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 IOL (mA) Figure 2-37. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 3V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 3V 1,6 125 °C 1,4 1,2 85 °C VOL (V) 1 0,8 25 °C 0,6 -40 °C 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 IOL (mA) 24 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-38. VOL: Reset Pin as I/O, Output Voltage vs. Sink Current (VCC = 5V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 5V 1,6 1,4 1,2 VOL (V) 125 °C 1 85 °C 0,8 25 °C 0,6 -40 °C 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL (mA) 2.8 Input Thresholds and Hysteresis (for I/O Ports) Figure 2-39. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as '1') I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIH, I/O PIN READ AS '1' 3 125 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 25 8126F-Appendix B–AVR–05/12 Figure 2-40. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as '0') I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIL, I/O PIN READ AS '0' 2,5 125 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-41. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) I/O PIN INPUT HYSTERESIS vs. VCC 0,6 -40 °C Input Hysteresis (V) 0,5 25 °C 0,4 85 °C 0,3 125 °C 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 26 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-42. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '1') RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC VIH, RESET READ AS '1' 3 125 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-43. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as '0') RESET PIN AS I/O, THRESHOLD VOLTAGE vs. VCC VIL, RESET READ AS '0' 2,5 125 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 27 8126F-Appendix B–AVR–05/12 Figure 2-44. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O) RESET PIN AS IO, INPUT HYSTERESIS vs. VCC 1 0,9 0,8 Input Hysteresis (V) 0,7 -40 °C 0,6 0,5 25 °C 0,4 85 °C 125 °C 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.9 BOD, Bandgap and Reset Figure 2-45. BOD Thresholds vs. Temperature (BODLEVEL is 4.3V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 4.3V 4,4 4,38 VCC RISING Threshold (V) 4,36 4,34 4,32 4,3 VCC FALLING 4,28 4,26 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) 28 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-46. BOD Thresholds vs. Temperature (BODLEVEL is 2.7V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 2.7V 2,8 2,78 VCC RISING Threshold (V) 2,76 2,74 2,72 2,7 VCC FALLING 2,68 2,66 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) Figure 2-47. BOD Thresholds vs. Temperature (BODLEVEL is 1.8V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 1.8V 1,85 1,84 VCC RISING Threshold (V) 1,83 1,82 1,81 VCC FALLING 1,8 1,79 1,78 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) 29 8126F-Appendix B–AVR–05/12 Figure 2-48. Bandgap Voltage vs. VCC BANDGAP VOLTAGE vs. VCC 1,14 Bandgap Voltage (V) 1,13 1,12 1,11 85 °C 25 °C 125 °C 1,1 -40 °C 1,09 1,08 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-49. VIH: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '1') RESET INPUT THRESHOLD VOLTAGE vs. VCC VIH, PIN READ AS '1' 2,5 -40 °C 25 °C 85 °C 125 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 30 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-50. VIL: Reset Input Threshold Voltage vs. VCC (Reset Pin Read as '0') RESET INPUT THRESHOLD VOLTAGE vs. VCC VIL, PIN READ AS '0' 2,5 125 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4,5 5 5,5 VCC (V) Figure 2-51. VIH-VIL: Reset Input Pin Hysteresis vs. VCC RESET PIN INPUT HYSTERESIS vs. VCC 1 0,9 0,8 Input Hysteresis (V) 0,7 0,6 -40 °C 0,5 0,4 25 °C 0,3 85 °C 0,2 125 °C 0,1 0 1,5 2 2,5 3 3,5 4 VCC (V) 31 8126F-Appendix B–AVR–05/12 Figure 2-52. Minimum Reset Pulse Width vs. VCC MINIMUM RESET PULSE WIDTH vs. VCC 1800 1600 1400 Pulsewidth (ns) 1200 1000 800 600 400 125 °C 85 °C 25 °C -40 °C 200 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.10 Internal Oscillator Speed Figure 2-53. Calibrated 9.6 MHz Oscillator Frequency vs. Temperature CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. TEMPERATURE 10,2 5.5 V 4.5 V 2.7 V 1.8 V Frequency (MHz) 10 9,8 9,6 9,4 9,2 9 -40 -20 0 20 40 60 80 100 120 140 Temperature 32 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-54. Calibrated 9.6 MHz Oscillator Frequency vs. VCC CALIBRATED 9.6MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 10,2 125 °C 10 Frequency (MHz) 85 °C 9,8 9,6 25 °C 9,4 9,2 -40 °C 9 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-55. Calibrated 4.8 MHz Oscillator Frequency vs. Temperature CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. TEMPERATURE 5,2 5.5 V 1.8 V 4.5 V 2.7 V 5,1 Frequency (MHz) 5 4,9 4,8 4,7 4,6 4,5 4,4 4,3 -40 -20 0 20 40 60 80 100 120 140 Temperature 33 8126F-Appendix B–AVR–05/12 Figure 2-56. Calibrated 4.8 MHz Oscillator Frequency vs. VCC CALIBRATED 4.8MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 5,2 125 °C 5,1 5 Frequency (MHz) 85 °C 4,9 4,8 25 °C 4,7 4,6 4,5 -40 °C 4,4 4,3 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-57. 128 kHz Watchdog Oscillator Frequency vs. Temperature WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE 116000 114000 Frequency (kH) 112000 110000 108000 1.8 V 106000 2.7 V 104000 4.5 V 5.5 V 102000 100000 -40 -20 0 20 40 60 80 100 120 140 Temperature 34 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A Figure 2-58. 128 kHz Watchdog Oscillator Frequency vs. VCC WATCHDOG OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 116000 Frequency (Hz) 114000 112000 -40 °C 110000 25 °C 108000 106000 85 °C 104000 102000 125 °C 100000 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 35 8126F-Appendix B–AVR–05/12 3. Ordering Information Speed (MHz) Power Supply (V) Ordering Code(1) Package(2) Operation Range 1.8 - 5.5 ATtiny13A-SF ATtiny13A-SFR ATtiny13A-MMF ATtiny13A-MMFR 8S2 8S2 10M1(3) 10M1(3) Industrial (-40°C to +125°C) 20 Notes: 1. Code indicators: – F: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). Package Type 8S2 8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC) 10M1 10-pad, 3 x 3 x 1 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) 36 ATtiny13A 8126F-Appendix B–AVR–05/12 ATtiny13A 4. Revision History Revision No. History 8126A–Appendix B–AVR–07/10 8126-Appendix B rev A, initial revision 8126E–Appendix B–AVR–08/11 Removed “Preliminary” status, updated contact information 8126F–Appendix B–AVR–05/12 Updated ordering codes 37 8126F-Appendix B–AVR–05/12 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2012 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8126F-Appendix B–AVR–05/12