Appendix A - ATtiny24A/44A specification at 105°C - Appendix

Appendix A – ATtiny24A/44A Specification at 105°C
This document contains information specific to devices operating at temperatures up
to 105°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.
8-bit
Microcontroller
with 2K/4K
Bytes In-System
Programmable
Flash
ATtiny24A
ATtiny44A
Appendix A
Rev. 8183D-Appendix A–AVR–08/11
1. Memories
1.1
EEPROM Data Memory
The EEPROM has an endurance of at least 50,000 write/erase cycles.
2
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
2. Electrical Characteristics
2.1
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C
*NOTICE:
Storage Temperature ..................................... -65°C to +150°C
Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Maximum Operating Voltage ............................................ 6.0V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins ................................ 200.0 mA
2.2
DC Characteristics
Table 2-1.
Symbol
DC Characteristics. TA = -40°C to +105°C
Parameter
Input Low Voltage
VIL
Input Low Voltage,
RESET Pin as Reset (4)
Input High-voltage
Except RESET pin
VIH
Input High-voltage
RESET pin as Reset (4)
Condition
Typ(1)
Min
Max
Units
(3)
V
V
VCC = 1.8V - 2.4V
-0.5
0.2VCC
VCC = 2.4V - 5.5V
-0.5
0.3VCC(3)
VCC = 1.8V - 5.5
-0.5
0.2VCC(3)
VCC = 1.8V - 2.4V
0.7VCC(2)
VCC +0.5
V
VCC = 2.4V - 5.5V
0.6VCC
(2)
VCC +0.5
V
VCC = 1.8V to 5.5V
0.9VCC(2)
VCC +0.5
V
IOL = 10 mA, VCC = 5V
0.6
V
IOL = 5 mA, VCC = 3V
0.5
V
VOL
Output Low Voltage(5)
Except RESET pin(7)
Output High-voltage(6)
Except RESET pin(7)
IOH = -10 mA, VCC = 5V
4.3
V
VOH
IOH = -5 mA, VCC = 3V
2.5
V
ILIL
Input Leakage
Current I/O Pin
Vcc = 5.5V, pin low
(absolute value)
< 0.05
1 (8)
µA
ILIH
Input Leakage
Current I/O Pin
Vcc = 5.5V, pin high
(absolute value)
< 0.05
1 (8)
µA
Pull-up Resistor, I/O Pin
VCC = 5.5V, input low
20
50
kΩ
Pull-up Resistor, Reset Pin
VCC = 5.5V, input low
30
60
kΩ
RPU
3
8183D-Appendix A–AVR–08/11
Table 2-1.
Symbol
DC Characteristics. TA = -40°C to +105°C (Continued)
Parameter
Supply Current,
Active Mode (9)
ICC
Supply Current,
Idle Mode (9)
Supply Current,
Power-Down Mode (10)
Notes:
Typ(1)
Max
Units
f = 1MHz, VCC = 2V
0.25
0.5
mA
f = 4MHz, VCC = 3V
1.2
2
mA
f = 8MHz, VCC = 5V
4.4
7
mA
f = 1MHz, VCC = 2V
0.04
0.2
mA
f = 4MHz, VCC = 3V
0.25
0.6
mA
f = 8MHz, VCC = 5V
1.3
2
mA
WDT enabled, VCC = 3V
4
20
µA
WDT disabled, VCC = 3V
0.2
10
µA
Condition
Min
1. Typical values at 25°C.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. “Max” means the highest value where the pin is guaranteed to be read as low.
4. Not tested in production.
5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH
may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.
7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins. See Figure 3-25, Figure 3-26, Figure 3-27, and Figure 3-28
(starting on page 22).
8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower.
9. Values are with external clock using methods described in “Minimizing Power Consumption”. Power reduction is enabled
(PRR = 0xFF) and there is no I/O drive.
10. BOD disabled.
2.3
Speed
The maximum operating frequency of the device depends on VCC. As shown in Figure 2-1, the
relationship between maximum frequency and VCC is linear in the region 1.8V < VCC < 4.5V.
Figure 2-1.
Maximum Frequency vs. VCC. TA = -40°C to +105°C
20 MHz
4 MHz
1.8V
4
4.5V
5.5V
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
2.4
Clock Characteristics
2.4.1
Accuracy of Calibrated Internal Oscillator
It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and
temperature characteristics can be found in Figure 3-46 on page 32.
Table 2-2.
Calibration Accuracy of Internal RC Oscillator
Calibration
Method
Target Frequency
VCC
Temperature
Accuracy at given voltage
& temperature(1)
Factory
Calibration
8.0 MHz
3V
25°C
±10%
User
Calibration
Fixed frequency within:
7.3 – 8.1 MHz
Fixed voltage within:
1.8V – 5.5V
Fixed temperature
within: -40°C to 105°C
±1%
Note:
2.5
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
System and Reset Characteristics
2.5.1
Power-On Reset
Table 2-3.
Symbol
Parameter
Release threshold of power-on reset
VPOR
(2)
Activation threshold of power-on reset
VPOA
SRON
Notes:
Characteristics of Enhanced Power-On Reset. TA = -40 to +105°C
(3)
Power-On Slope Rate
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
0.6
1.3
1.7
V
0.01
V/ms
1. Values are guidelines, only
2. Threshold where device is released from reset when voltage is rising
3. The Power-on Reset will not work unless the supply voltage has been below VPOA
2.6
Analog Comparator Characteristics
Table 2-4.
Analog Comparator Characteristics, TA = -40°C to +105°C
Symbol
Parameter
Condition
VAIO
Input Offset Voltage
VCC = 5V, VIN = VCC / 2
ILAC
Input Leakage Current
VCC = 5V, VIN = VCC / 2
Analog Propagation Delay
(from saturation to slight overdrive)
VCC = 2.7V
750
VCC = 4.0V
500
Analog Propagation Delay
(large step change)
VCC = 2.7V
100
VCC = 4.0V
75
Digital Propagation Delay
VCC = 1.8V - 5.5
1
tAPD
tDPD
Note:
Min
Typ
Max
Units
< 10
40
mV
50
nA
-50
ns
2
CLK
All parameters are based on simulation results and are not tested in production
5
8183D-Appendix A–AVR–08/11
2.7
ADC Characteristics
Table 2-5.
Symbol
ADC Characteristics, Single Ended Channels. T = -40°C to +105°C
Parameter
Condition
Min
Typ
Resolution
Units
10
Bits
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.0
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
2.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.0
LSB
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1.0
LSB
Differential Non-linearity
(DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.0
LSB
Offset Error (Absolute)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1.5
LSB
Conversion Time
Free Running Conversion
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Clock Frequency
VIN
Max
Input Voltage
14
280
µs
50
1000
kHz
GND
VREF
V
Input Bandwidth
38.5
kHz
AREF
External Voltage Reference
2.0
VINT
Internal Voltage Reference
1.0
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
6
0
1.1
VCC
V
1.2
V
1023
LSB
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Table 2-6.
Symbol
ADC Characteristics, Differential Channels (Unipolar Mode), TA = -40°C to +105°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and Quantization, Gain
and Offset Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
15
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10
LSB
Gain = 1x
10
LSB
Gain = 20x
15
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4
LSB
Gain Error
Offset Error
Conversion Time
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
Free Running Conversion
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
4
kHz
AREF
External Reference Voltage
2.0
VINT
Internal Voltage Reference
1.0
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
0
1.1
VCC - 1.0
V
1.2
V
1023
LSB
7
8183D-Appendix A–AVR–08/11
Table 2-7.
Symbol
ADC Characteristics, Differential Channels (Bipolar Mode), TA = -40°C to +105°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and Quantization, Gain
and Offset Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
5
LSB
Gain = 1x
4
LSB
Gain = 20x
5
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4
LSB
Gain Error
Offset Error
Conversion Time
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
Free Running Conversion
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
4
kHz
AREF
External Reference Voltage
2.0
VINT
Internal Voltage Reference
1.0
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
8
-512
1.1
VCC - 1.0
V
1.2
V
511
LSB
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
2.8
Serial Programming Characteristics
Table 2-8.
Symbol
1/tCLCL
1/tCLCL
tSHSL
Parameter
Oscillator Frequency
Oscillator Period
tCLCL
tCLCL
Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V
(Unless Otherwise Noted)
Oscillator Period (VCC = 4.5V - 5.5V)
50
SCK Pulse Width Low
tOVSH
MOSI Setup to SCK High
tSHOX
MOSI Hold after SCK High
Max
Units
4
MHz
250
0
SCK Pulse Width High
Typ
0
Oscillator Frequency (VCC = 4.5V - 5.5V)
tSLSH
Note:
Min
ns
20
MHz
ns
2 tCLCL
(1)
ns
2 tCLCL
(1)
ns
tCLCL
ns
2 tCLCL
ns
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
9
8183D-Appendix A–AVR–08/11
3. Typical Characteristics
3.1
3.1.1
ATtiny24A
Current Consumption in Active Mode
Figure 3-1.
Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
6
105 °C
85 °C
25 °C
-40 °C
5
ICC (mA)
4
3
2
1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
Figure 3-2.
1.2
105 °C
85 °C
25 °C
-40 °C
1
ICC (mA)
0.8
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
10
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-3.
Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0.14
0.12
-40 °C
105 °C
25 °C
85 °C
ICC (mA)
0.1
0.08
0.06
0.04
0.02
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.1.2
Current Consumption in Idle Mode
Figure 3-4.
Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
2
1.8
1.6
1.4
105 °C
85 °C
25 °C
-40 °C
ICC (mA)
1.2
1
0.8
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
11
8183D-Appendix A–AVR–08/11
Figure 3-5.
Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
0.4
0.35
105 °C
85 °C
25 °C
-40 °C
0.3
ICC (mA)
0.25
0.2
0.15
0.1
0.05
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-6.
Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0.03
0.025
-40 °C
105 °C
25 °C
85 °C
ICC (mA)
0.02
0.015
0.01
0.005
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
12
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.1.3
Current Consumption of Standby Supply
Figure 3-7.
Standby Supply Current vs. VCC (4 MHz External Crystal, External Capacitors,
Watchdog Timer Disabled)
TBD
3.1.4
Current Consumption in Power-down Mode
Figure 3-8.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
3
2.5
ICC (uA)
2
105 °C
1.5
1
85 °C
0.5
25 °C
-40 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
13
8183D-Appendix A–AVR–08/11
Figure 3-9.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
10
105 °C
-40 °C
8
85 °C
25 °C
ICC (uA)
6
4
2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.1.5
Current Consumption of Peripheral Units
Figure 3-10. Programming Current vs. VCC
10000
9000
-40 °C
8000
7000
ICC (uA)
6000
25 °C
5000
85 °C
105 °C
4000
3000
2000
1000
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
14
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-11. Brownout Detector Current vs. VCC (BOD Level = 1.8V)
50
40
ICC (uA)
30
105 °C
85 °C
25 °C
-40 °C
20
10
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-12. Watchdog Timer Current vs. VCC
8
-40 °C
7
25 °C
85 °C
105 °C
6
ICC (uA)
5
4
3
2
1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
15
8183D-Appendix A–AVR–08/11
3.1.6
Pull-up Resistors
Figure 3-13. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)
60
50
IOP (uA)
40
30
20
25 °C
10
-40 °C
85 °C
0
105 °C
0
0.5
1
1.5
2
VOP (V)
Figure 3-14. Pull-up Resistor Current vs. input Voltage (I/O Pin, VCC = 2.7V)
80
70
60
IOP (uA)
50
40
30
25 °C
20
85 °C
-40 °C
10
105 °C
0
0
0.5
1
1.5
2
2.5
3
VOP (V)
16
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)
160
140
120
IOP (uA)
100
80
60
25 °C
40
85 °C
20
-40 °C
105 °C
0
0
1
2
3
4
5
VOP (V)
Figure 3-16. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
40
35
30
IRESET (uA)
25
20
15
10
25 °C
-40 °C
85 °C
105 °C
5
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET (V)
17
8183D-Appendix A–AVR–08/11
Figure 3-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
60
50
IRESET (uA)
40
30
20
10
25 °C
-40 °C
85 °C
105 °C
0
0
0,5
1
1,5
2
2,5
3
VRESET (V)
Figure 3-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
120
100
IRESET (uA)
80
60
40
20
25 °C
-40 °C
85 °C
105 °C
0
0
1
2
3
4
5
6
VRESET (V)
18
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.1.7
Output Driver Strength
Figure 3-19. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)
0.5
0.4
105 °C
85 °C
0.3
VOL (V)
25 °C
-40 °C
0.2
0.1
0
0
1
2
3
4
5
IOL (mA)
Figure 3-20. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)
0.5
105 °C
0.4
85 °C
25 °C
VOL (V)
0.3
-40 °C
0.2
0.1
0
0
2
4
6
8
10
IOL (mA)
19
8183D-Appendix A–AVR–08/11
Figure 3-21. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)
0.7
105 °C
0.6
85 °C
0.5
VOL (V)
25 °C
0.4
-40 °C
0.3
0.2
0.1
0
0
5
10
15
20
IOL (mA)
Figure 3-22. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)
1.8
1.7
VOH (V)
1.6
1.5
-40 °C
25 °C
1.4
85 °C
105 °C
1.3
0
1
2
3
4
5
IOH (mA)
20
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-23. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)
3
2.9
VOH (V)
2.8
-40 °C
2.7
25 °C
2.6
85 °C
105 °C
2.5
0
2
4
6
8
10
IOH (mA)
Figure 3-24. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
5
4.9
VOH (V)
4.8
4.7
4.6
-40 °C
4.5
25 °C
4.4
85 °C
105 °C
4.3
0
5
10
15
20
IOH (mA)
21
8183D-Appendix A–AVR–08/11
Figure 3-25. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)
1.6
105 °C
VOL (V)
1.2
85 °C
25 °C
0.8
-40 °C
0.4
0
0
0.5
1
1.5
2
2.5
3
IOL (mA)
Figure 3-26. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)
1.2
105 °C
1
85 °C
VOL (V)
0.8
25 °C
0.6
-40 °C
0.4
0.2
0
0
1
2
3
4
5
IOL (mA)
22
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-27. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V)
3
2.5
VOH (V)
2
1.5
-40 °C
25 °C
85 °C
105 °C
1
0.5
0
0
0.4
0.8
1.2
1.6
IOH (mA)
Figure 3-28. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V)
5
4
3
VOH (V)
-40 °C
25 °C
85 °C
105 °C
2
1
0
0
0.4
0.8
1.2
1.6
IOH (mA)
23
8183D-Appendix A–AVR–08/11
3.1.8
Input Threshold and Hysteresis (for I/O Ports)
Figure 3-29. VIH: Input Threshold Voltage vs. VCC (IO Pin, Read as ‘1’)
3.5
105 °C
85 °C
25 °C
-40 °C
3
Threshold (V)
2.5
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-30. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
2.5
105 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
24
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-31. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
0.8
0.7
Input Hysteresis (V)
0.6
-40 °C
25 °C
85 °C
105 °C
0.5
0.4
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-32. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)
3
105 °C
85 °C
25 °C
-40 °C
2.5
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
25
8183D-Appendix A–AVR–08/11
Figure 3-33. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)
2.5
105 °C
85 °C
-40 °C
25 °C
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
1
0.9
Input Hysteresis (V)
0.8
0.7
105 °C
0.6
25 °C
85 °C
-40 °C
0.5
0.4
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
26
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.1.9
BOD and Bandgap
Figure 3-35. BOD Threshold vs. Temperature (BODLEVEL = 4.3V)
4.4
VCC RISING
4.38
Threshold (V)
4.36
4.34
4.32
VCC FALLING
4.3
4.28
4.26
-40
-20
0
20
40
60
80
100
120
Temperature (C)
Figure 3-36. BOD Threshold vs. Temperature (BODLEVEL = 2.7V)
2.8
VCC RISING
2.78
Threshold (V)
2.76
2.74
2.72
VCC FALLING
2.7
2.68
2.66
-40
-20
0
20
40
60
80
100
120
Temperature (C)
27
8183D-Appendix A–AVR–08/11
Figure 3-37. BOD Threshold vs. Temperature (BODLEVEL = 1.8V)
1.86
1.85
VCC RISING
Threshold (V)
1.84
1.83
1.82
VCC FALLING
1.81
1.8
1.79
-40
-20
0
20
40
60
80
100
120
Temperature (C)
Figure 3-38. Bandgap Voltage vs. Temperature (VCC = 5V)
1.12
Bandgap Voltage (V)
1.11
1.1
1.09
1.08
1.07
1.06
-40
-20
0
20
40
60
80
100
120
Temperature
28
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-39. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)
2,5
Threshold (V)
2
1,5
-40 °C
25 °C
85 °C
105 °C
1
0,5
0
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 3-40. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)
2,5
105 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
29
8183D-Appendix A–AVR–08/11
Figure 3-41. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin)
1
0.9
0.8
Input Hysteresis (V)
0.7
-40 °C
0.6
0.5
25 °C
0.4
0.3
85 °C
0.2
105 °C
0.1
0
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-42. Minimum Reset Pulse Width vs. VCC
2000
Pulsewidth (ns)
1500
1000
500
105 °C
85 °C
25 °C
-40 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
30
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.1.10
Analog Comparator Offset
Figure 3-43. Analog Comparator Offset (VCC = 5V)
0,004
0,002
0
Offset (V)
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
-0,002
-0,004
-40 °C
25 °C
85 °C
105 °C
-0,006
-0,008
-0,01
Vin (V)
3.1.11
Internal Oscillator Speed
Figure 3-44. Watchdog Oscillator Frequency vs. VCC
126
124
122
Frequency (kHz)
-40 °C
120
25 °C
118
116
114
85 °C
112
105 °C
110
108
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
31
8183D-Appendix A–AVR–08/11
Figure 3-45. Watchdog Oscillator Frequency vs. Temperature
126
124
122
Frequency (kHz)
120
118
116
1.8 V
114
3.0 V
112
5.0 V
110
108
-40
-20
0
20
40
60
80
100
120
Temperature
Figure 3-46. Calibrated 8 MHz Oscillator Frequency vs. Temperature
8.4
5.0 V
3.0 V
8.3
8.2
Frequency (MHz)
1.8 V
8.1
8
7.9
7.8
7.7
7.6
7.5
-40
-20
0
20
40
60
80
100
120
Temperature
32
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-47. Calibrated 8 MHz Oscillator Frequency vs. OSCCAL Value (VCC = 3V)
20
105 °C
85 °C
25 °C
-40 °C
16
FRC (MHz)
12
8
4
0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
OSCCAL (X1)
3.2
3.2.1
ATtiny44A
Current Consumption in Active Mode
Figure 3-48. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
6
105 °C
85 °C
25 °C
-40 °C
5
ICC (mA)
4
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
33
8183D-Appendix A–AVR–08/11
Figure 3-49. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
1,2
105 °C
85 °C
25 °C
-40 °C
1
ICC (mA)
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 3-50. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0,14
-40 °C
25 °C
85 °C
105 °C
0,12
0,1
ICC (mA)
0,08
0,06
0,04
0,02
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
34
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.2.2
Current Consumption in Idle Mode
Figure 3-51. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
2
1.8
105 °C
85 °C
25 °C
-40 °C
1.6
1.4
ICC (mA)
1.2
1
0.8
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-52. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
0.4
105 °C
85 °C
25 °C
-40 °C
0.35
0.3
ICC (mA)
0.25
0.2
0.15
0.1
0.05
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
35
8183D-Appendix A–AVR–08/11
Figure 3-53. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0.03
-40 °C
105 °C
85 °C
25 °C
0.025
ICC (mA)
0.02
0.015
0.01
0.005
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.2.3
Current Consumption of Standby Supply
Figure 3-54. Standby Supply Current vs. VCC (4 MHz External Crystal, External Capacitors,
Watchdog Timer Disabled)
0.1
105 °C
85 °C
0.08
25 °C
-40 °C
ICC (mA)
0.06
0.04
0.02
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
36
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.2.4
Current Consumption in Power-down Supply Mode
Figure 3-55. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
3
105 °C
2.5
ICC (uA)
2
1.5
85 °C
1
0.5
25 °C
-40 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-56. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
10
105 °C
8
-40 °C
85 °C
25 °C
ICC (uA)
6
4
2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
37
8183D-Appendix A–AVR–08/11
3.2.5
Current Consumption of Peripheral Units
Figure 3-57. Programming Current vs. VCC
14000
12000
-40 °C
ICC (uA)
10000
8000
25 °C
6000
85 °C
105 °C
4000
2000
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-58. Brownout Detector Current vs. VCC (BOD Level = 1.8V)
50
40
ICC (uA)
30
105 °C
85 °C
25 °C
-40 °C
20
10
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
38
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-59. Watchdog Timer Current vs. VCC
0.008
-40 °C
0.007
25 °C
85 °C
105 °C
0.006
ICC (mA)
0.005
0.004
0.003
0.002
0.001
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.2.6
Pull-up Resistors
Figure 3-60. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)
60
50
IOP (uA)
40
30
20
10
25 °C
-40 °C
85 °C
105 °C
0
0
0.5
1
1.5
2
VOP (V)
39
8183D-Appendix A–AVR–08/11
Figure 3-61. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 2.7V)
80
70
60
IOP (uA)
50
40
30
20
25 °C
-40 °C
85 °C
105 °C
10
0
0
0.5
1
1.5
2
2.5
3
VOP (V)
Figure 3-62. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)
160
140
120
IOP (uA)
100
80
60
40
25 °C
-40 °C
85 °C
105 °C
20
0
0
1
2
3
4
5
VOP (V)
40
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-63. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
40
35
30
IRESET (uA)
25
20
15
10
25 °C
-40 °C
85 °C
105 °C
5
0
0
0.5
1
1.5
2
VRESET (V)
Figure 3-64. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
60
50
IRESET (uA)
40
30
20
10
25 °C
-40 °C
85 °C
105 °C
0
0
0.5
1
1.5
2
2.5
3
VRESET (V)
41
8183D-Appendix A–AVR–08/11
Figure 3-65. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
120
100
IRESET (uA)
80
60
40
20
25 °C
-40 °C
85 °C
105 °C
0
0
1
2
3
4
5
VRESET (V)
3.2.7
Output Driver Strength
Figure 3-66. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)
0.5
0.4
105 °C
85 °C
0.3
VOL (V)
25 °C
-40 °C
0.2
0.1
0
0
1
2
3
4
5
IOL (mA)
42
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-67. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)
0.5
105 °C
0.4
85 °C
25 °C
VOL (V)
0.3
-40 °C
0.2
0.1
0
0
2
4
6
8
10
IOL (mA)
Figure 3-68. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)
0.7
0.6
105 °C
85 °C
0.5
VOL (V)
25 °C
0.4
-40 °C
0.3
0.2
0.1
0
0
5
10
15
20
IOL (mA)
43
8183D-Appendix A–AVR–08/11
Figure 3-69. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)
1.8
1.7
VOH (V)
1.6
1.5
-40 °C
1.4
25 °C
85 °C
105 °C
1.3
0
1
2
3
4
5
IOH (mA)
Figure 3-70. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)
3
2.9
VOH (V)
2.8
2.7
-40 °C
25 °C
2.6
85 °C
105 °C
2.5
0
2
4
6
8
10
IOH (mA)
44
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-71. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
5
4.9
VOH (V)
4.8
4.7
4.6
-40 °C
4.5
25 °C
4.4
85 °C
105 °C
4.3
0
5
10
15
20
IOH (mA)
Figure 3-72. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)
1.6
105 °C
VOL (V)
1.2
85 °C
25 °C
0.8
-40 °C
0.4
0
0
0.5
1
1.5
2
2.5
3
IOL (mA)
45
8183D-Appendix A–AVR–08/11
Figure 3-73. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)
1.2
105 °C
1
85 °C
VOL (V)
0.8
25 °C
0.6
-40 °C
0.4
0.2
0
0
1
2
3
4
5
IOL (mA)
Figure 3-74. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V)
3
2.5
VOH (V)
2
1.5
-40 °C
25 °C
85 °C
105 °C
1
0.5
0
0
0.4
0.8
1.2
1.6
IOH (mA)
46
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-75. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V)
5
4
3
VOH (V)
-40 °C
25 °C
85 °C
105 °C
2
1
0
0
0.4
0.8
1.2
1.6
IOH (mA)
3.2.8
Input Threshold and Hysteresis (for I/O Ports)
Figure 3-76. VIH: Input Threshold Voltage vs. VCC (IO Pin, Read as ‘1’)
3.5
105 °C
85 °C
25 °C
-40 °C
3
Threshold (V)
2.5
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
47
8183D-Appendix A–AVR–08/11
Figure 3-77. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
2.5
105 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-78. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
0.8
0.7
Input Hysteresis (V)
0.6
-40 °C
25 °C
85 °C
105 °C
0.5
0.4
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
48
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-79. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)
3
-40 °C
25 °C
85 °C
105 °C
2.5
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-80. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)
2.5
105 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
49
8183D-Appendix A–AVR–08/11
Figure 3-81. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
1
Input Hysteresis (mV)
0.8
-40 °C
25 °C
85 °C
105 °C
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.2.9
BOD and Bandgap and Reset
Figure 3-82. BOD Threshold vs. Temperature (BODLEVEL = 4.3V)
4.36
4.34
Threshold (V)
4.32
4.3
VCC RISING
4.28
4.26
4.24
4.22
VCC FALLING
4.2
-40
-20
0
20
40
60
80
100
120
Temperature (C)
50
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-83. BOD Threshold vs. Temperature (BODLEVEL = 2.7V)
2.78
2.76
Threshold (V)
2.74
VCC RISING
2.72
2.7
2.68
2.66
VCC FALLING
2.64
-40
-20
0
20
40
60
80
100
120
Temperature (C)
Figure 3-84. BOD Threshold vs. Temperature (BODLEVEL = 1.8V)
1.84
1.83
Threshold (V)
1.82
1.81
VCC RISING
1.8
1.79
1.78
VCC FALLING
1.77
1.76
-40
-20
0
20
40
60
80
100
120
Temperature (C)
51
8183D-Appendix A–AVR–08/11
Figure 3-85. Bandgap Voltage vs. Temperature (VCC = 5V)
1.12
Bandgap Voltage (V)
1.11
1.1
1.09
1.08
1.07
1.06
-40
-20
0
20
40
60
80
100
120
Temperature
Figure 3-86. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)
2,5
2
Threshold (V)
1,5
-40 °C
25 °C
85 °C
105 °C
1
0,5
0
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
52
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
Figure 3-87. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)
2,5
105 °C
85 °C
25 °C
-40 °C
2
Threshold (V)
1,5
1
0,5
0
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 3-88. Reset Pin Input Hysteresis vs. VCC
1
0.9
0.8
Input Hysteresis (V)
0.7
0.6
0.5
0.4
0.3
0.2
-40 °C
25 °C
85 °C
105 °C
0.1
0
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
53
8183D-Appendix A–AVR–08/11
Figure 3-89. Minimum Reset Pulse Width vs. VCC
2000
Pulsewidth (ns)
1500
1000
500
105 °C
85 °C
25 °C
-40 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.2.10
Analog Comparator Offset
Figure 3-90. Analog Comparator Offset (VCC = 5V)
0,004
0,003
0,002
0,001
0
Offset (V)
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
-0,001
-0,002
-0,003
-0,004
-40 °C
25 °C
85 °C
105 °C
-0,005
-0,006
-0,007
VIN (V)
54
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
3.2.11
Internal Oscillator Speed
Figure 3-91. Watchdog Oscillator Frequency vs. VCC
0.122
0.12
0.118
Frequency (MHz)
-40 °C
0.116
25 °C
0.114
0.112
0.11
85 °C
0.108
105 °C
0.106
0.104
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-92. Watchdog Oscillator Frequency vs. Temperature
0.122
0.12
Frequency (MHz)
0.118
0.116
0.114
0.112
1.8 V
0.11
3.0 V
0.108
5.0 V
0.106
0.104
-40
-20
0
20
40
60
80
100
120
VCC (V)
55
8183D-Appendix A–AVR–08/11
Figure 3-93. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
8.2
5.0 V
3.0 V
8.1
Frequency (MHz)
8
1.8 V
7.9
7.8
7.7
7.6
7.5
-40
-20
0
20
40
60
80
100
120
Temperature
Figure 3-94. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value (VCC = 3V)
16
25 °C
85 °C
-40 °C
105 °C
14
Frequency (MHz)
12
10
8
6
4
2
0
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240
OSCCAL (X1)
56
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
4. Ordering Information
4.1
ATtiny24A
Speed (MHz)
Power Supply
Ordering Code (1)
Package (2)
Operational Range
20
1.8 - 5.5V
ATtiny24A-SSN
ATtiny24A-SSNR
14S1
14S1
Extended
(-40°C to +105°C)
Notes:
1. Code indicators:
– F: matte tin
– R: tape & reel
2. All packages are Pb-free, halide-free and fully green and they comply with the European Directive for Restriction of Hazardous Substances (RoHS directive).
Package Type
14S1
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
57
8183D-Appendix A–AVR–08/11
4.2
ATtiny44A
Speed (MHz)
Power Supply
Ordering Code (1)
Package (2)
Operational Range
20
1.8 - 5.5V
ATtiny44A-SSN
ATtiny44A-SSNR
14S1
14S1
Extended
(-40°C to +105°C)
Notes:
1. Code indicators:
– F: matte tin
– R: tape & reel
2. All packages are Pb-free, halide-free and fully green and they comply with the European Directive for Restriction of Hazardous Substances (RoHS directive).
Package Type
14S1
58
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
ATtiny24A/44A
8183D-Appendix A–AVR–08/11
ATtiny24A/44A
5. Revision History
Revision No.
History
8183A–Appendix A–AVR–12/10
Initial revision
8183D–Appendix A–AVR–08/11
Added ordering codes for tape&reel
59
8183D-Appendix A–AVR–08/11
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2011 Atmel Corporation. All rights reserved.
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
8183D-Appendix A–AVR–08/11