Appendix A – ATtiny24A/44A Specification at 105°C This document contains information specific to devices operating at temperatures up to 105°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2K/4K Bytes In-System Programmable Flash ATtiny24A ATtiny44A Appendix A Rev. 8183D-Appendix A–AVR–08/11 1. Memories 1.1 EEPROM Data Memory The EEPROM has an endurance of at least 50,000 write/erase cycles. 2 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 2. Electrical Characteristics 2.1 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C *NOTICE: Storage Temperature ..................................... -65°C to +150°C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins ................................ 200.0 mA 2.2 DC Characteristics Table 2-1. Symbol DC Characteristics. TA = -40°C to +105°C Parameter Input Low Voltage VIL Input Low Voltage, RESET Pin as Reset (4) Input High-voltage Except RESET pin VIH Input High-voltage RESET pin as Reset (4) Condition Typ(1) Min Max Units (3) V V VCC = 1.8V - 2.4V -0.5 0.2VCC VCC = 2.4V - 5.5V -0.5 0.3VCC(3) VCC = 1.8V - 5.5 -0.5 0.2VCC(3) VCC = 1.8V - 2.4V 0.7VCC(2) VCC +0.5 V VCC = 2.4V - 5.5V 0.6VCC (2) VCC +0.5 V VCC = 1.8V to 5.5V 0.9VCC(2) VCC +0.5 V IOL = 10 mA, VCC = 5V 0.6 V IOL = 5 mA, VCC = 3V 0.5 V VOL Output Low Voltage(5) Except RESET pin(7) Output High-voltage(6) Except RESET pin(7) IOH = -10 mA, VCC = 5V 4.3 V VOH IOH = -5 mA, VCC = 3V 2.5 V ILIL Input Leakage Current I/O Pin Vcc = 5.5V, pin low (absolute value) < 0.05 1 (8) µA ILIH Input Leakage Current I/O Pin Vcc = 5.5V, pin high (absolute value) < 0.05 1 (8) µA Pull-up Resistor, I/O Pin VCC = 5.5V, input low 20 50 kΩ Pull-up Resistor, Reset Pin VCC = 5.5V, input low 30 60 kΩ RPU 3 8183D-Appendix A–AVR–08/11 Table 2-1. Symbol DC Characteristics. TA = -40°C to +105°C (Continued) Parameter Supply Current, Active Mode (9) ICC Supply Current, Idle Mode (9) Supply Current, Power-Down Mode (10) Notes: Typ(1) Max Units f = 1MHz, VCC = 2V 0.25 0.5 mA f = 4MHz, VCC = 3V 1.2 2 mA f = 8MHz, VCC = 5V 4.4 7 mA f = 1MHz, VCC = 2V 0.04 0.2 mA f = 4MHz, VCC = 3V 0.25 0.6 mA f = 8MHz, VCC = 5V 1.3 2 mA WDT enabled, VCC = 3V 4 20 µA WDT disabled, VCC = 3V 0.2 10 µA Condition Min 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is guaranteed to be read as high. 3. “Max” means the highest value where the pin is guaranteed to be read as low. 4. Not tested in production. 5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See Figure 3-25, Figure 3-26, Figure 3-27, and Figure 3-28 (starting on page 22). 8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower. 9. Values are with external clock using methods described in “Minimizing Power Consumption”. Power reduction is enabled (PRR = 0xFF) and there is no I/O drive. 10. BOD disabled. 2.3 Speed The maximum operating frequency of the device depends on VCC. As shown in Figure 2-1, the relationship between maximum frequency and VCC is linear in the region 1.8V < VCC < 4.5V. Figure 2-1. Maximum Frequency vs. VCC. TA = -40°C to +105°C 20 MHz 4 MHz 1.8V 4 4.5V 5.5V ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 2.4 Clock Characteristics 2.4.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 3-46 on page 32. Table 2-2. Calibration Accuracy of Internal RC Oscillator Calibration Method Target Frequency VCC Temperature Accuracy at given voltage & temperature(1) Factory Calibration 8.0 MHz 3V 25°C ±10% User Calibration Fixed frequency within: 7.3 – 8.1 MHz Fixed voltage within: 1.8V – 5.5V Fixed temperature within: -40°C to 105°C ±1% Note: 2.5 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). System and Reset Characteristics 2.5.1 Power-On Reset Table 2-3. Symbol Parameter Release threshold of power-on reset VPOR (2) Activation threshold of power-on reset VPOA SRON Notes: Characteristics of Enhanced Power-On Reset. TA = -40 to +105°C (3) Power-On Slope Rate Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 0.6 1.3 1.7 V 0.01 V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOA 2.6 Analog Comparator Characteristics Table 2-4. Analog Comparator Characteristics, TA = -40°C to +105°C Symbol Parameter Condition VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 Analog Propagation Delay (from saturation to slight overdrive) VCC = 2.7V 750 VCC = 4.0V 500 Analog Propagation Delay (large step change) VCC = 2.7V 100 VCC = 4.0V 75 Digital Propagation Delay VCC = 1.8V - 5.5 1 tAPD tDPD Note: Min Typ Max Units < 10 40 mV 50 nA -50 ns 2 CLK All parameters are based on simulation results and are not tested in production 5 8183D-Appendix A–AVR–08/11 2.7 ADC Characteristics Table 2-5. Symbol ADC Characteristics, Single Ended Channels. T = -40°C to +105°C Parameter Condition Min Typ Resolution Units 10 Bits VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.0 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz 2.5 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.0 LSB Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.0 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.0 LSB Offset Error (Absolute) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Clock Frequency VIN Max Input Voltage 14 280 µs 50 1000 kHz GND VREF V Input Bandwidth 38.5 kHz AREF External Voltage Reference 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output 6 0 1.1 VCC V 1.2 V 1023 LSB ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Table 2-6. Symbol ADC Characteristics, Differential Channels (Unipolar Mode), TA = -40°C to +105°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 15 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10 LSB Gain = 1x 10 LSB Gain = 20x 15 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain Error Offset Error Conversion Time Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage Free Running Conversion 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth 4 kHz AREF External Reference Voltage 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output 0 1.1 VCC - 1.0 V 1.2 V 1023 LSB 7 8183D-Appendix A–AVR–08/11 Table 2-7. Symbol ADC Characteristics, Differential Channels (Bipolar Mode), TA = -40°C to +105°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 5 LSB Gain = 1x 4 LSB Gain = 20x 5 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4 LSB Gain Error Offset Error Conversion Time Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage Free Running Conversion 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth 4 kHz AREF External Reference Voltage 2.0 VINT Internal Voltage Reference 1.0 RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output 8 -512 1.1 VCC - 1.0 V 1.2 V 511 LSB ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 2.8 Serial Programming Characteristics Table 2-8. Symbol 1/tCLCL 1/tCLCL tSHSL Parameter Oscillator Frequency Oscillator Period tCLCL tCLCL Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted) Oscillator Period (VCC = 4.5V - 5.5V) 50 SCK Pulse Width Low tOVSH MOSI Setup to SCK High tSHOX MOSI Hold after SCK High Max Units 4 MHz 250 0 SCK Pulse Width High Typ 0 Oscillator Frequency (VCC = 4.5V - 5.5V) tSLSH Note: Min ns 20 MHz ns 2 tCLCL (1) ns 2 tCLCL (1) ns tCLCL ns 2 tCLCL ns 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz 9 8183D-Appendix A–AVR–08/11 3. Typical Characteristics 3.1 3.1.1 ATtiny24A Current Consumption in Active Mode Figure 3-1. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) 6 105 °C 85 °C 25 °C -40 °C 5 ICC (mA) 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) Figure 3-2. 1.2 105 °C 85 °C 25 °C -40 °C 1 ICC (mA) 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 10 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0.14 0.12 -40 °C 105 °C 25 °C 85 °C ICC (mA) 0.1 0.08 0.06 0.04 0.02 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.1.2 Current Consumption in Idle Mode Figure 3-4. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) 2 1.8 1.6 1.4 105 °C 85 °C 25 °C -40 °C ICC (mA) 1.2 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 11 8183D-Appendix A–AVR–08/11 Figure 3-5. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 0.4 0.35 105 °C 85 °C 25 °C -40 °C 0.3 ICC (mA) 0.25 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0.03 0.025 -40 °C 105 °C 25 °C 85 °C ICC (mA) 0.02 0.015 0.01 0.005 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 12 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.1.3 Current Consumption of Standby Supply Figure 3-7. Standby Supply Current vs. VCC (4 MHz External Crystal, External Capacitors, Watchdog Timer Disabled) TBD 3.1.4 Current Consumption in Power-down Mode Figure 3-8. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 3 2.5 ICC (uA) 2 105 °C 1.5 1 85 °C 0.5 25 °C -40 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 13 8183D-Appendix A–AVR–08/11 Figure 3-9. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 10 105 °C -40 °C 8 85 °C 25 °C ICC (uA) 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.1.5 Current Consumption of Peripheral Units Figure 3-10. Programming Current vs. VCC 10000 9000 -40 °C 8000 7000 ICC (uA) 6000 25 °C 5000 85 °C 105 °C 4000 3000 2000 1000 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 14 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-11. Brownout Detector Current vs. VCC (BOD Level = 1.8V) 50 40 ICC (uA) 30 105 °C 85 °C 25 °C -40 °C 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-12. Watchdog Timer Current vs. VCC 8 -40 °C 7 25 °C 85 °C 105 °C 6 ICC (uA) 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 15 8183D-Appendix A–AVR–08/11 3.1.6 Pull-up Resistors Figure 3-13. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V) 60 50 IOP (uA) 40 30 20 25 °C 10 -40 °C 85 °C 0 105 °C 0 0.5 1 1.5 2 VOP (V) Figure 3-14. Pull-up Resistor Current vs. input Voltage (I/O Pin, VCC = 2.7V) 80 70 60 IOP (uA) 50 40 30 25 °C 20 85 °C -40 °C 10 105 °C 0 0 0.5 1 1.5 2 2.5 3 VOP (V) 16 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-15. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V) 160 140 120 IOP (uA) 100 80 60 25 °C 40 85 °C 20 -40 °C 105 °C 0 0 1 2 3 4 5 VOP (V) Figure 3-16. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 35 30 IRESET (uA) 25 20 15 10 25 °C -40 °C 85 °C 105 °C 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) 17 8183D-Appendix A–AVR–08/11 Figure 3-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 60 50 IRESET (uA) 40 30 20 10 25 °C -40 °C 85 °C 105 °C 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) Figure 3-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 100 IRESET (uA) 80 60 40 20 25 °C -40 °C 85 °C 105 °C 0 0 1 2 3 4 5 6 VRESET (V) 18 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.1.7 Output Driver Strength Figure 3-19. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V) 0.5 0.4 105 °C 85 °C 0.3 VOL (V) 25 °C -40 °C 0.2 0.1 0 0 1 2 3 4 5 IOL (mA) Figure 3-20. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V) 0.5 105 °C 0.4 85 °C 25 °C VOL (V) 0.3 -40 °C 0.2 0.1 0 0 2 4 6 8 10 IOL (mA) 19 8183D-Appendix A–AVR–08/11 Figure 3-21. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V) 0.7 105 °C 0.6 85 °C 0.5 VOL (V) 25 °C 0.4 -40 °C 0.3 0.2 0.1 0 0 5 10 15 20 IOL (mA) Figure 3-22. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V) 1.8 1.7 VOH (V) 1.6 1.5 -40 °C 25 °C 1.4 85 °C 105 °C 1.3 0 1 2 3 4 5 IOH (mA) 20 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-23. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V) 3 2.9 VOH (V) 2.8 -40 °C 2.7 25 °C 2.6 85 °C 105 °C 2.5 0 2 4 6 8 10 IOH (mA) Figure 3-24. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V) 5 4.9 VOH (V) 4.8 4.7 4.6 -40 °C 4.5 25 °C 4.4 85 °C 105 °C 4.3 0 5 10 15 20 IOH (mA) 21 8183D-Appendix A–AVR–08/11 Figure 3-25. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V) 1.6 105 °C VOL (V) 1.2 85 °C 25 °C 0.8 -40 °C 0.4 0 0 0.5 1 1.5 2 2.5 3 IOL (mA) Figure 3-26. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V) 1.2 105 °C 1 85 °C VOL (V) 0.8 25 °C 0.6 -40 °C 0.4 0.2 0 0 1 2 3 4 5 IOL (mA) 22 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-27. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V) 3 2.5 VOH (V) 2 1.5 -40 °C 25 °C 85 °C 105 °C 1 0.5 0 0 0.4 0.8 1.2 1.6 IOH (mA) Figure 3-28. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V) 5 4 3 VOH (V) -40 °C 25 °C 85 °C 105 °C 2 1 0 0 0.4 0.8 1.2 1.6 IOH (mA) 23 8183D-Appendix A–AVR–08/11 3.1.8 Input Threshold and Hysteresis (for I/O Ports) Figure 3-29. VIH: Input Threshold Voltage vs. VCC (IO Pin, Read as ‘1’) 3.5 105 °C 85 °C 25 °C -40 °C 3 Threshold (V) 2.5 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-30. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 2.5 105 °C 85 °C 25 °C -40 °C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 24 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-31. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 0.8 0.7 Input Hysteresis (V) 0.6 -40 °C 25 °C 85 °C 105 °C 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-32. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’) 3 105 °C 85 °C 25 °C -40 °C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 25 8183D-Appendix A–AVR–08/11 Figure 3-33. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’) 2.5 105 °C 85 °C -40 °C 25 °C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O) 1 0.9 Input Hysteresis (V) 0.8 0.7 105 °C 0.6 25 °C 85 °C -40 °C 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 26 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.1.9 BOD and Bandgap Figure 3-35. BOD Threshold vs. Temperature (BODLEVEL = 4.3V) 4.4 VCC RISING 4.38 Threshold (V) 4.36 4.34 4.32 VCC FALLING 4.3 4.28 4.26 -40 -20 0 20 40 60 80 100 120 Temperature (C) Figure 3-36. BOD Threshold vs. Temperature (BODLEVEL = 2.7V) 2.8 VCC RISING 2.78 Threshold (V) 2.76 2.74 2.72 VCC FALLING 2.7 2.68 2.66 -40 -20 0 20 40 60 80 100 120 Temperature (C) 27 8183D-Appendix A–AVR–08/11 Figure 3-37. BOD Threshold vs. Temperature (BODLEVEL = 1.8V) 1.86 1.85 VCC RISING Threshold (V) 1.84 1.83 1.82 VCC FALLING 1.81 1.8 1.79 -40 -20 0 20 40 60 80 100 120 Temperature (C) Figure 3-38. Bandgap Voltage vs. Temperature (VCC = 5V) 1.12 Bandgap Voltage (V) 1.11 1.1 1.09 1.08 1.07 1.06 -40 -20 0 20 40 60 80 100 120 Temperature 28 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-39. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’) 2,5 Threshold (V) 2 1,5 -40 °C 25 °C 85 °C 105 °C 1 0,5 0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 3-40. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’) 2,5 105 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 29 8183D-Appendix A–AVR–08/11 Figure 3-41. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin) 1 0.9 0.8 Input Hysteresis (V) 0.7 -40 °C 0.6 0.5 25 °C 0.4 0.3 85 °C 0.2 105 °C 0.1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-42. Minimum Reset Pulse Width vs. VCC 2000 Pulsewidth (ns) 1500 1000 500 105 °C 85 °C 25 °C -40 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 30 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.1.10 Analog Comparator Offset Figure 3-43. Analog Comparator Offset (VCC = 5V) 0,004 0,002 0 Offset (V) 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 -0,002 -0,004 -40 °C 25 °C 85 °C 105 °C -0,006 -0,008 -0,01 Vin (V) 3.1.11 Internal Oscillator Speed Figure 3-44. Watchdog Oscillator Frequency vs. VCC 126 124 122 Frequency (kHz) -40 °C 120 25 °C 118 116 114 85 °C 112 105 °C 110 108 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 31 8183D-Appendix A–AVR–08/11 Figure 3-45. Watchdog Oscillator Frequency vs. Temperature 126 124 122 Frequency (kHz) 120 118 116 1.8 V 114 3.0 V 112 5.0 V 110 108 -40 -20 0 20 40 60 80 100 120 Temperature Figure 3-46. Calibrated 8 MHz Oscillator Frequency vs. Temperature 8.4 5.0 V 3.0 V 8.3 8.2 Frequency (MHz) 1.8 V 8.1 8 7.9 7.8 7.7 7.6 7.5 -40 -20 0 20 40 60 80 100 120 Temperature 32 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-47. Calibrated 8 MHz Oscillator Frequency vs. OSCCAL Value (VCC = 3V) 20 105 °C 85 °C 25 °C -40 °C 16 FRC (MHz) 12 8 4 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 3.2 3.2.1 ATtiny44A Current Consumption in Active Mode Figure 3-48. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) 6 105 °C 85 °C 25 °C -40 °C 5 ICC (mA) 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 33 8183D-Appendix A–AVR–08/11 Figure 3-49. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 1,2 105 °C 85 °C 25 °C -40 °C 1 ICC (mA) 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 3-50. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0,14 -40 °C 25 °C 85 °C 105 °C 0,12 0,1 ICC (mA) 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 34 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.2.2 Current Consumption in Idle Mode Figure 3-51. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) 2 1.8 105 °C 85 °C 25 °C -40 °C 1.6 1.4 ICC (mA) 1.2 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-52. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 0.4 105 °C 85 °C 25 °C -40 °C 0.35 0.3 ICC (mA) 0.25 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 35 8183D-Appendix A–AVR–08/11 Figure 3-53. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0.03 -40 °C 105 °C 85 °C 25 °C 0.025 ICC (mA) 0.02 0.015 0.01 0.005 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.2.3 Current Consumption of Standby Supply Figure 3-54. Standby Supply Current vs. VCC (4 MHz External Crystal, External Capacitors, Watchdog Timer Disabled) 0.1 105 °C 85 °C 0.08 25 °C -40 °C ICC (mA) 0.06 0.04 0.02 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 36 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.2.4 Current Consumption in Power-down Supply Mode Figure 3-55. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 3 105 °C 2.5 ICC (uA) 2 1.5 85 °C 1 0.5 25 °C -40 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-56. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 10 105 °C 8 -40 °C 85 °C 25 °C ICC (uA) 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 37 8183D-Appendix A–AVR–08/11 3.2.5 Current Consumption of Peripheral Units Figure 3-57. Programming Current vs. VCC 14000 12000 -40 °C ICC (uA) 10000 8000 25 °C 6000 85 °C 105 °C 4000 2000 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-58. Brownout Detector Current vs. VCC (BOD Level = 1.8V) 50 40 ICC (uA) 30 105 °C 85 °C 25 °C -40 °C 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 38 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-59. Watchdog Timer Current vs. VCC 0.008 -40 °C 0.007 25 °C 85 °C 105 °C 0.006 ICC (mA) 0.005 0.004 0.003 0.002 0.001 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.2.6 Pull-up Resistors Figure 3-60. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V) 60 50 IOP (uA) 40 30 20 10 25 °C -40 °C 85 °C 105 °C 0 0 0.5 1 1.5 2 VOP (V) 39 8183D-Appendix A–AVR–08/11 Figure 3-61. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 2.7V) 80 70 60 IOP (uA) 50 40 30 20 25 °C -40 °C 85 °C 105 °C 10 0 0 0.5 1 1.5 2 2.5 3 VOP (V) Figure 3-62. Pull-up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V) 160 140 120 IOP (uA) 100 80 60 40 25 °C -40 °C 85 °C 105 °C 20 0 0 1 2 3 4 5 VOP (V) 40 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-63. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 35 30 IRESET (uA) 25 20 15 10 25 °C -40 °C 85 °C 105 °C 5 0 0 0.5 1 1.5 2 VRESET (V) Figure 3-64. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 60 50 IRESET (uA) 40 30 20 10 25 °C -40 °C 85 °C 105 °C 0 0 0.5 1 1.5 2 2.5 3 VRESET (V) 41 8183D-Appendix A–AVR–08/11 Figure 3-65. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 100 IRESET (uA) 80 60 40 20 25 °C -40 °C 85 °C 105 °C 0 0 1 2 3 4 5 VRESET (V) 3.2.7 Output Driver Strength Figure 3-66. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V) 0.5 0.4 105 °C 85 °C 0.3 VOL (V) 25 °C -40 °C 0.2 0.1 0 0 1 2 3 4 5 IOL (mA) 42 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-67. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V) 0.5 105 °C 0.4 85 °C 25 °C VOL (V) 0.3 -40 °C 0.2 0.1 0 0 2 4 6 8 10 IOL (mA) Figure 3-68. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V) 0.7 0.6 105 °C 85 °C 0.5 VOL (V) 25 °C 0.4 -40 °C 0.3 0.2 0.1 0 0 5 10 15 20 IOL (mA) 43 8183D-Appendix A–AVR–08/11 Figure 3-69. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V) 1.8 1.7 VOH (V) 1.6 1.5 -40 °C 1.4 25 °C 85 °C 105 °C 1.3 0 1 2 3 4 5 IOH (mA) Figure 3-70. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V) 3 2.9 VOH (V) 2.8 2.7 -40 °C 25 °C 2.6 85 °C 105 °C 2.5 0 2 4 6 8 10 IOH (mA) 44 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-71. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V) 5 4.9 VOH (V) 4.8 4.7 4.6 -40 °C 4.5 25 °C 4.4 85 °C 105 °C 4.3 0 5 10 15 20 IOH (mA) Figure 3-72. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V) 1.6 105 °C VOL (V) 1.2 85 °C 25 °C 0.8 -40 °C 0.4 0 0 0.5 1 1.5 2 2.5 3 IOL (mA) 45 8183D-Appendix A–AVR–08/11 Figure 3-73. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V) 1.2 105 °C 1 85 °C VOL (V) 0.8 25 °C 0.6 -40 °C 0.4 0.2 0 0 1 2 3 4 5 IOL (mA) Figure 3-74. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V) 3 2.5 VOH (V) 2 1.5 -40 °C 25 °C 85 °C 105 °C 1 0.5 0 0 0.4 0.8 1.2 1.6 IOH (mA) 46 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-75. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V) 5 4 3 VOH (V) -40 °C 25 °C 85 °C 105 °C 2 1 0 0 0.4 0.8 1.2 1.6 IOH (mA) 3.2.8 Input Threshold and Hysteresis (for I/O Ports) Figure 3-76. VIH: Input Threshold Voltage vs. VCC (IO Pin, Read as ‘1’) 3.5 105 °C 85 °C 25 °C -40 °C 3 Threshold (V) 2.5 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 47 8183D-Appendix A–AVR–08/11 Figure 3-77. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 2.5 105 °C 85 °C 25 °C -40 °C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-78. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 0.8 0.7 Input Hysteresis (V) 0.6 -40 °C 25 °C 85 °C 105 °C 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 48 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-79. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’) 3 -40 °C 25 °C 85 °C 105 °C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-80. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’) 2.5 105 °C 85 °C 25 °C -40 °C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 49 8183D-Appendix A–AVR–08/11 Figure 3-81. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O) 1 Input Hysteresis (mV) 0.8 -40 °C 25 °C 85 °C 105 °C 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.2.9 BOD and Bandgap and Reset Figure 3-82. BOD Threshold vs. Temperature (BODLEVEL = 4.3V) 4.36 4.34 Threshold (V) 4.32 4.3 VCC RISING 4.28 4.26 4.24 4.22 VCC FALLING 4.2 -40 -20 0 20 40 60 80 100 120 Temperature (C) 50 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-83. BOD Threshold vs. Temperature (BODLEVEL = 2.7V) 2.78 2.76 Threshold (V) 2.74 VCC RISING 2.72 2.7 2.68 2.66 VCC FALLING 2.64 -40 -20 0 20 40 60 80 100 120 Temperature (C) Figure 3-84. BOD Threshold vs. Temperature (BODLEVEL = 1.8V) 1.84 1.83 Threshold (V) 1.82 1.81 VCC RISING 1.8 1.79 1.78 VCC FALLING 1.77 1.76 -40 -20 0 20 40 60 80 100 120 Temperature (C) 51 8183D-Appendix A–AVR–08/11 Figure 3-85. Bandgap Voltage vs. Temperature (VCC = 5V) 1.12 Bandgap Voltage (V) 1.11 1.1 1.09 1.08 1.07 1.06 -40 -20 0 20 40 60 80 100 120 Temperature Figure 3-86. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’) 2,5 2 Threshold (V) 1,5 -40 °C 25 °C 85 °C 105 °C 1 0,5 0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 52 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A Figure 3-87. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’) 2,5 105 °C 85 °C 25 °C -40 °C 2 Threshold (V) 1,5 1 0,5 0 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 3-88. Reset Pin Input Hysteresis vs. VCC 1 0.9 0.8 Input Hysteresis (V) 0.7 0.6 0.5 0.4 0.3 0.2 -40 °C 25 °C 85 °C 105 °C 0.1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 53 8183D-Appendix A–AVR–08/11 Figure 3-89. Minimum Reset Pulse Width vs. VCC 2000 Pulsewidth (ns) 1500 1000 500 105 °C 85 °C 25 °C -40 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.2.10 Analog Comparator Offset Figure 3-90. Analog Comparator Offset (VCC = 5V) 0,004 0,003 0,002 0,001 0 Offset (V) 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 -0,001 -0,002 -0,003 -0,004 -40 °C 25 °C 85 °C 105 °C -0,005 -0,006 -0,007 VIN (V) 54 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 3.2.11 Internal Oscillator Speed Figure 3-91. Watchdog Oscillator Frequency vs. VCC 0.122 0.12 0.118 Frequency (MHz) -40 °C 0.116 25 °C 0.114 0.112 0.11 85 °C 0.108 105 °C 0.106 0.104 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-92. Watchdog Oscillator Frequency vs. Temperature 0.122 0.12 Frequency (MHz) 0.118 0.116 0.114 0.112 1.8 V 0.11 3.0 V 0.108 5.0 V 0.106 0.104 -40 -20 0 20 40 60 80 100 120 VCC (V) 55 8183D-Appendix A–AVR–08/11 Figure 3-93. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 8.2 5.0 V 3.0 V 8.1 Frequency (MHz) 8 1.8 V 7.9 7.8 7.7 7.6 7.5 -40 -20 0 20 40 60 80 100 120 Temperature Figure 3-94. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value (VCC = 3V) 16 25 °C 85 °C -40 °C 105 °C 14 Frequency (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 56 ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 4. Ordering Information 4.1 ATtiny24A Speed (MHz) Power Supply Ordering Code (1) Package (2) Operational Range 20 1.8 - 5.5V ATtiny24A-SSN ATtiny24A-SSNR 14S1 14S1 Extended (-40°C to +105°C) Notes: 1. Code indicators: – F: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European Directive for Restriction of Hazardous Substances (RoHS directive). Package Type 14S1 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) 57 8183D-Appendix A–AVR–08/11 4.2 ATtiny44A Speed (MHz) Power Supply Ordering Code (1) Package (2) Operational Range 20 1.8 - 5.5V ATtiny44A-SSN ATtiny44A-SSNR 14S1 14S1 Extended (-40°C to +105°C) Notes: 1. Code indicators: – F: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European Directive for Restriction of Hazardous Substances (RoHS directive). Package Type 14S1 58 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) ATtiny24A/44A 8183D-Appendix A–AVR–08/11 ATtiny24A/44A 5. Revision History Revision No. History 8183A–Appendix A–AVR–12/10 Initial revision 8183D–Appendix A–AVR–08/11 Added ordering codes for tape&reel 59 8183D-Appendix A–AVR–08/11 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8183D-Appendix A–AVR–08/11