Appendix B - ATtiny1634 Specification at 125°C - Appendix

ATtiny1634
8-bit AVR® Microcontroller
with 16K Bytes In-System Programmable Flash
DATASHEET APPENDIX B
Appendix B – ATtiny1634 Specification at 125C
This document contains information specific to devices operating at temperatures up to
125C. Only deviations are covered in this appendix, all other information can be found
in the complete datasheet. The complete datasheet can be found at www.atmel.com.
8303D–AVR–02/2013
1.
Memories
The EEPROM has an endurance of at least 50,000 write/erase cycles.
EEPROM may not be programmed at supply voltages below 2V.
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
2
2.
Lock Bits, Fuse Bits and Device Signature
Fuse bits may not be programmed at supply voltages below 2V.
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
3
3.
Electrical Characteristics
3.1
Absolute Maximum Ratings*
Operating Temperature . . . . . . . . . . . -55C to +125C
*NOTICE:
Storage Temperature . . . . . . . . . . . . . -65C to +150C
Voltage on any Pin except RESET
with respect to Ground. . . . . . . . . . -0.5V to VCC+0.5V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these
or other conditions beyond those indicated in
the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Voltage on RESET with respect to Ground-0.5V to +13.0V
Maximum Operating Voltage . . . . . . . . . . . . . . . . 6.0V
DC Current per I/O Pin. . . . . . . . . . . . . . . . . . 40.0 mA
DC Current VCC and GND Pins . . . . . . . . . . 200.0 mA
3.2
DC Characteristics
Table 3-1.
Symbol
DC Characteristics. TA = -40 to +125C
Parameter
Input Low Voltage
VIL
Input Low Voltage,
RESET Pin as Reset (4)
Input High-voltage
Except RESET pin
VIH
Input High-voltage
RESET pin as Reset (4)
Condition
Min
VCC = 1.8 - 2.4V
Typ (1)
Max
Units
-0.5
0.2VCC (2)
V
VCC = 2.4 - 5.5V
-0.5
0.3VCC (2)
V
VCC = 1.8 - 5.5V
-0.5
0.2VCC (2)
VCC = 1.8 - 2.4V
0.7VCC(3)
VCC +0.5
V
VCC = 2.4 - 5.5V
0.6VCC(3)
VCC +0.5
V
VCC = 1.8 - 5.5V
0.9VCC(3)
VCC +0.5
V
0.6
V
0.5
V
Standard I/O: IOL = 10 mA, VCC = 5V
(5)
VOL
Output Low Voltage
Except RESET pin(7)
High-sink I/O: IOL = 20 mA, VCC = 5V
Standard I/O: IOL = 5 mA, VCC = 3V
High-sink I/O: IOL = 10 mA, VCC = 3V
IOH = -10 mA, VCC = 5V
4.3
V
IOH = -5 mA, VCC = 3V
2.5
V
VOH
Output High-voltage(6)
Except RESET pin(7)
ILIL
Input Leakage Current
I/O Pin
VCC = 5.5V, pin low (absolute value)
< 0.05
1 (8)
µA
ILIH
Input Leakage Current
I/O Pin
VCC = 5.5V, pin high (absolute value)
< 0.05
1 (8)
µA
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
4
Symbol
RPU
Parameter
Condition
Pull-up Resistor, I/O Pin
VCC = 5.5V, input low
Pull-up Resistor, Reset
Pin
VCC = 5.5V, input low
Supply Current,
Active Mode (9)
ICC
Supply Current,
Idle Mode (9)
Supply Current,
Power-Down Mode(10)
Min
Typ (1)
Max
Units
20
50
k
30
60
k
f = 1MHz, VCC = 2V
0.23
0.4
mA
f = 4MHz, VCC = 3V
1.3
1.7
mA
f = 8MHz, VCC = 5V
4.3
6
mA
f = 1MHz, VCC = 2V
0.04
0.1
mA
f = 4MHz, VCC = 3V
0.26
0.4
mA
f = 8MHz, VCC = 5V
1.1
1.7
mA
WDT enabled, VCC = 3V
1.7
12
µA
WDT disabled, VCC = 3V
0.1
8
µA
Notes: 1. Typical values at +25C.
2. “Max” means the highest value where the pin is guaranteed to be read as low.
3. “Min” means the lowest value where the pin is guaranteed to be read as high.
4. Not tested in production.
5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady
state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 100 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test
condition.
6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady
state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 100 mA. If IOH exceeds the test
condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed
test condition.
7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See “Output Driver Strength” on page 20.
8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are
lower.
9. Values are with external clock using methods described in “Minimizing Power Consumption” on page 39. Power
Reduction is enabled (PRR = 0xFF) and there is no I/O drive.
10. Bod Disabled.
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
5
3.3
Speed
The maximum operating frequency of the device is dependent on supply voltage, VCC . The relationship between supply
voltage and maximum operating frequency is piecewise linear, as shown in Figure 3-1.
Figure 3-1. Maximum Frequency vs. VCC
8 MHz
6 MHz
2 MHz
1.8V
3.4
2.7V
4.5V
5.5V
Clock
Table 3-2.
Calibration
Method
Accuracy of Calibrated 8MHz Oscillator
Target Frequency
VCC
Temperature
Accuracy
Factory
Calibration
8.0MHz
2.7 – 4V
25C to +85C
±10% (1)
User
Calibration
Within:
7.3 – 8.1MHz
Within:
1.8 – 5.5V
Within:
-40C to +85C
±1% (2)
Notes: 1.
2.
Table 3-3.
Calibration
Method
Factory
Calibration
See device ordering codes on page 37 for alternatives.
Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
Accuracy of Calibrated 32kHz Oscillator
Target Frequency
VCC
Temperature
Accuracy
32kHz
1.8 – 5.5V
-40C to +85C
±35%
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
6
Table 3-4.
3.5
External Clock Drive
VCC = 1.8 - 5.5V
VCC = 2.7 - 5.5V
VCC = 4.5 - 5.5V
Min.
Max.
Min.
Max.
Min.
Max.
Units
0
2
0
8
0
10
MHz
Symbol
Parameter
1/tCLCL
Clock Frequency
tCLCL
Clock Period
500
125
100
ns
tCHCX
High Time
200
40
20
ns
tCLCX
Low Time
200
40
20
ns
tCLCH
Rise Time
2.0
1.6
0.5
s
tCHCL
Fall Time
2.0
1.6
0.5
s
tCLCL
Change in period from one
clock cycle to next
2
2
2
%
System and Reset
Table 3-5.
Symbol
Enhanced Power-On Reset
Parameter
(2)
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
1.3
1.7
V
VPOR
Release threshold of power-on reset
VPOA
Activation threshold of power-on reset (3)
0.6
SRON
Power-On Slope Rate
0.01
Note:
1.
V/ms
Values are guidelines only.
2.
Threshold where device is released from reset when voltage is rising.
3.
The Power-on Reset will not work unless the supply voltage has been below VPOA.
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
7
4.
Typical Characteristics
4.1
Current Consumption in Active Mode
Figure 4-1. Active Supply Current vs. VCC (Internal Oscillator, 8 MHz)
6
125
85
25
-40
5
ICC [mA]
4
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-2. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)
1,4
125
85
25
-40
1,2
1
ICC [mA]
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
8
Figure 4-3. Active Supply Current vs. VCC (Internal Oscillator, 32kHz)
0,045
0,04
125
-40
25
85
0,035
ICC [mA]
0,03
0,025
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Current Consumption in Idle Mode
Figure 4-4. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)
1,4
125
85
25
-40
1,2
1
0,8
ICC [mA]
4.2
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
9
Figure 4-5. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz)
0,5
125
85
25
-40
0,4
ICC [mA]
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-6. Idle Supply Current vs. VCC (Internal Oscillator, 32kHz)
0,05
0,04
125
-40
25
85
ICC
0,03
0,02
0,01
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
10
Current Consumption in Power-down Mode
Figure 4-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
4,5
125
4
3,5
ICC [uA]
3
2,5
2
1,5
1
85
0,5
25
-40
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
12
125
10
8
ICC [uA]
4.3
6
-40
85
25
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
11
4.4
Current Consumption in Reset
Figure 4-9. Reset Current vs. VCC (No Clock, excluding Reset Pull-Up Current)
2
125
-40
25
85
ICC [mA]
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Current Consumption of Peripheral Units
Figure 4-10. Watchdog Timer Current vs. VCC
0,007
125
0,006
-40
25
0,005
85
0,004
IccWDT
4.5
0,003
0,002
0,001
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
12
Figure 4-11. Brownout Detector Current vs. VCC
25
125
85
25
-40
20
ICC [uA]
15
10
5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-12. Sampled Brownout Detector Current vs. VCC
8
-40
7
25
6
85
ICC [uA]
5
4
125
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
13
Figure 4-13. AREF External Reference Pin Current (VCC = 5V)
160
125
85
25
-40
140
AREF pin current [uA]
120
100
80
60
40
20
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
AREF [V]
Pull-up Resistors
Figure 4-14. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
50
25
85
-40
125
40
30
IOP [uA]
4.6
20
10
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VOP [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
14
Figure 4-15. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V)
80
25
85
-40
125
IOP [uA]
60
40
20
0
0
0,5
1
1,5
2
2,5
3
VOP [V]
Figure 4-16. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
140
25
85
-40
125
120
100
IOP [uA]
80
60
40
20
0
0
1
2
3
4
5
6
VOP [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
15
Figure 4-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
40
25
85
-40
125
IRESET [uA]
30
20
10
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET [V]
Figure 4-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
60
25
85
-40
125
50
IRESET [uA]
40
30
20
10
0
0
0,5
1
1,5
2
2,5
3
VRESET [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
16
Figure 4-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
120
25
85
-40
125
100
IRESET [uA]
80
60
40
20
0
0
1
2
3
4
5
6
VRESET [V]
Input Thresholds
Figure 4-20. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)
3
125
85
25
-40
2,5
2
Threshold [V]
4.7
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
17
Figure 4-21. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
3
2,5
125
85
25
-40
Threshold [V]
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-22. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
0,6
125
85
25
0,5
Hysteris VIL VIH IO
0,4
-40
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
18
Figure 4-23. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)
3
125
85
25
-40
2,5
Threshold [V]
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-24. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)
3
2,5
125
-40
85
25
Threshold [V]
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
19
Figure 4-25. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
0,9
0,8
Hysteresis Reset IO VIL VIH
0,7
125
85
25
-40
0,6
0,5
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC
Output Driver Strength
Figure 4-26. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)
2
1,5
VOH [V]
4.8
1
-40
25
0,5
85
125
0
0
1
2
3
4
5
IOH [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
20
Figure 4-27. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)
3
-40
25
85
125
2,5
VOH [V]
2
1,5
1
0,5
0
0
2
4
6
8
10
IOH [mA]
Figure 4-28. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
5
-40
25
85
125
4
VOH [V]
3
2
1
0
0
5
10
15
20
IOH [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
21
Figure 4-29. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)
1
125
0,8
85
VOL [V]
0,6
25
0,4
-40
0,2
0
0
1
2
3
4
5
IOL [mA]
Figure 4-30. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)
1
0,8
125
85
VOL [V]
0,6
25
0,4
-40
0,2
0
0
2
4
6
8
10
IOL [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
22
Figure 4-31. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)
1
125
85
0,8
25
0,6
VOL [V]
-40
0,4
0,2
0
0
5
10
15
20
IOL [mA]
Figure 4-32. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V
2
VOH [V]
1,5
1
0,5
-40
25
85
125
0
0
0,2
0,4
0,6
0,8
1
IOH [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
23
Figure 4-33. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V
3
2,5
VOH [V]
2
1,5
-40
25
85
125
1
0,5
0
0
0,2
0,4
0,6
0,8
1
IOH [mA]
Figure 4-34. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V
5
4
-40
25
85
125
VOH [V]
3
2
1
0
0
0,2
0,4
0,6
0,8
1
IOH [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
24
Figure 4-35. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V)
1
125
85
0,8
25
VOL [V]
0,6
-40
0,4
0,2
0
0
0,2
0,4
0,8
0,6
1
IOL [mA]
Figure 4-36. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)
1
0,8
125
85
VOL [V]
0,6
25
0,4
-40
0,2
0
0
0,5
1
1,5
2
IOL [mA]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
25
Figure 4-37. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)
1
125
0,8
85
25
VOL [V]
0,6
-40
0,4
0,2
0
0
0,5
1
1,5
2
2,5
3
3,5
4
IOL [mA]
BOD
Figure 4-38. BOD Threshold vs Temperature (BODLEVEL = 4.3V)
4,34
4,32
VCC RISING
4,3
4,28
Threshold [V]
4.9
4,26
VCC FALLING
4,24
4,22
4,2
4,18
4,16
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
26
Figure 4-39. BOD Threshold vs Temperature (BODLEVEL = 2.7V)
2,76
VCC RISING
2,74
Threshold [V]
2,72
2,7
VCC FALLING
2,68
2,66
2,64
2,62
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Figure 4-40. BOD Threshold vs Temperature (BODLEVEL = 1.8V)
1,82
VCC RISING
1,81
1,8
Threshold [V]
VCC FALLING
1,79
1,78
1,77
1,76
1,75
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
27
Figure 4-41. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V)
4,33
VCC RISING
4,32
VCC FALLING
4,31
Threshold [V]
4,3
4,29
4,28
4,27
4,26
4,25
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Figure 4-42. Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V)
2,76
2,75
VCC RISING
Threshold [V]
2,74
2,73
VCC FALLING
2,72
2,71
2,7
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
28
Figure 4-43. Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V)
1,8
1,795
Threshold [V]
1,79
VCC RISING
1,785
1,78
1,775
VCC FALLING
1,77
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Bandgap Voltage
Figure 4-44. Bandgap Voltage vs. Supply Voltage
1,085
1,08
105
85
1,075
1,07
Bandgap [V]
4.10
25
1,065
1,06
1,055
1,05
-40
1,045
1,04
1,5
2
2,5
3
3,5
4
4,5
5
5,5
Vcc [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
29
Figure 4-45. Bandgap Voltage vs. Temperature (VCC = 3.3V)
1,07
1,065
Bandgap Voltage [V]
1,06
1,055
1,05
1,045
1,04
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Reset
Figure 4-46. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)
3
125
85
25
-40
2,5
2
Threshold [V]
4.11
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
30
Figure 4-47. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)
3
2,5
125
-40
85
25
Threshold [V]
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-48. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin )
0,7
-40
0,6
Hysteresis [V]
0,5
25
0,4
0,3
85
0,2
125
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
31
Figure 4-49. Minimum Reset Pulse Width vs. VCC
2500
Pulsewidth [ns]
2000
1500
1000
500
125
85
25
-40
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Analog Comparator Offset
Figure 4-50. Analog Comparator Offset vs. VIN (VCC = 5V)
80
-40
70
60
25
125
85
50
Offset [mV]
4.12
40
30
20
10
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
VIN [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
32
Figure 4-51. Analog Comparator Offset vs. VCC (VIN = 1.1V)
8
7
6
Offset [mV]
5
4
-40
25
85
125
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-52. Analog Comparator Hysteresis vs. VIN (VCC = 5.0V)
45
-40
40
35
25
125
85
Hysteresis [mV]
30
25
20
15
10
5
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
VIN [V]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
33
Internal Oscillator Speed
Figure 4-53. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. VCC
8,4
8,3
Frequency
[MHz]
25
85
125
8,2
-40
8,1
8
7,9
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-54. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. Temperature
8,2
8,15
5.0 V
8,1
Frequency [MHz]
4.13
8,05
8
3.0 V
7,95
7,9
-40
-20
0
20
40
60
80
100
120
140
Temperature [°]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
34
Figure 4-55. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. VCC
1,05
1,04
25
85
125
-40
1,03
Frequency [MHz]
1,02
1,01
1
0,99
0,98
0,97
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-56. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. Temperature
1030000
1020000
5.0 V
Frequency
1010000
1000000
3.0 V
990000
1.8 V
980000
970000
-40
-20
0
20
40
60
80
100
120
140
Temperature [°]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
35
Figure 4-57. ULP Oscillator Frequency (Nominal = 32kHz) vs. VCC
33000
32000
-40
FRC [Hz]
31000
25
30000
85
29000
28000
125
27000
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 4-58. ULP Oscillator Frequency (Nominal = 32kHz) vs. Temperature
33000
32000
FRC [Hz]
31000
30000
29000
28000
27000
-40
-20
0
20
40
60
80
100
120
140
Temperature [°]
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
36
5.
Ordering Information
5.1
ATtiny1634
Speed (MHz) (1)
Supply Voltage (V)
Temperature Range
Package (2)
12
1.8 – 5.5
Industrial
(-40C to +125C) (5)
20M1
Accuracy (3)
Ordering Code (4)
±10%
ATtiny1634-MF
±10%
ATtiny1634-MFR
Notes: 1. For speed vs. supply voltage, see section 3.3 “Speed” on page 6.
2. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of
Hazardous Substances (RoHS).
3. Denotes accuracy of the internal oscillator. See Table 3-2 on page 6.
4. Code indicators:

F: matte tin

R: tape & reel
5. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum
quantities.
Package Type
20M1
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead / Micro Lead Frame Package (QFN/MLF)
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
37
6.
Datasheet Revision History
Revision
History
8303D: Appendix B – 10/12
Initial revision
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
38
ATtiny1634 [DATASHEET APPENDIX B]
8303D–AVR–02/2013
39
Atmel Corporation
1600 Technology Drive
Atmel Asia Limited
Unit 01-5 & 16, 19F
Atmel Munich GmbH
Business Campus
Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg
San Jose, CA 95110
BEA Tower, Millennium City 5
Parkring 4
1-6-4 Osaki, Shinagawa-ku
USA
418 Kwun Tong Roa
D-85748 Garching b. Munich
Tokyo 141-0032
Tel: (+1) (408) 441-0311
Kwun Tong, Kowloon
GERMANY
JAPAN
Fax: (+1) (408) 487-2600
HONG KONG
Tel: (+49) 89-31970-0
Tel: (+81) (3) 6417-0300
www.atmel.com
Tel: (+852) 2245-6100
Fax: (+49) 89-3194621
Fax: (+81) (3) 6417-0370
Fax: (+852) 2722-1369
© 2013 Atmel Corporation. All rights reserved. / Rev.: 8303D–AVR–02/2013
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.