ATtiny1634 8-bit AVR® Microcontroller with 16K Bytes In-System Programmable Flash DATASHEET APPENDIX B Appendix B – ATtiny1634 Specification at 125C This document contains information specific to devices operating at temperatures up to 125C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8303D–AVR–02/2013 1. Memories The EEPROM has an endurance of at least 50,000 write/erase cycles. EEPROM may not be programmed at supply voltages below 2V. ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 2 2. Lock Bits, Fuse Bits and Device Signature Fuse bits may not be programmed at supply voltages below 2V. ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 3 3. Electrical Characteristics 3.1 Absolute Maximum Ratings* Operating Temperature . . . . . . . . . . . -55C to +125C *NOTICE: Storage Temperature . . . . . . . . . . . . . -65C to +150C Voltage on any Pin except RESET with respect to Ground. . . . . . . . . . -0.5V to VCC+0.5V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Voltage on RESET with respect to Ground-0.5V to +13.0V Maximum Operating Voltage . . . . . . . . . . . . . . . . 6.0V DC Current per I/O Pin. . . . . . . . . . . . . . . . . . 40.0 mA DC Current VCC and GND Pins . . . . . . . . . . 200.0 mA 3.2 DC Characteristics Table 3-1. Symbol DC Characteristics. TA = -40 to +125C Parameter Input Low Voltage VIL Input Low Voltage, RESET Pin as Reset (4) Input High-voltage Except RESET pin VIH Input High-voltage RESET pin as Reset (4) Condition Min VCC = 1.8 - 2.4V Typ (1) Max Units -0.5 0.2VCC (2) V VCC = 2.4 - 5.5V -0.5 0.3VCC (2) V VCC = 1.8 - 5.5V -0.5 0.2VCC (2) VCC = 1.8 - 2.4V 0.7VCC(3) VCC +0.5 V VCC = 2.4 - 5.5V 0.6VCC(3) VCC +0.5 V VCC = 1.8 - 5.5V 0.9VCC(3) VCC +0.5 V 0.6 V 0.5 V Standard I/O: IOL = 10 mA, VCC = 5V (5) VOL Output Low Voltage Except RESET pin(7) High-sink I/O: IOL = 20 mA, VCC = 5V Standard I/O: IOL = 5 mA, VCC = 3V High-sink I/O: IOL = 10 mA, VCC = 3V IOH = -10 mA, VCC = 5V 4.3 V IOH = -5 mA, VCC = 3V 2.5 V VOH Output High-voltage(6) Except RESET pin(7) ILIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) < 0.05 1 (8) µA ILIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) < 0.05 1 (8) µA ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 4 Symbol RPU Parameter Condition Pull-up Resistor, I/O Pin VCC = 5.5V, input low Pull-up Resistor, Reset Pin VCC = 5.5V, input low Supply Current, Active Mode (9) ICC Supply Current, Idle Mode (9) Supply Current, Power-Down Mode(10) Min Typ (1) Max Units 20 50 k 30 60 k f = 1MHz, VCC = 2V 0.23 0.4 mA f = 4MHz, VCC = 3V 1.3 1.7 mA f = 8MHz, VCC = 5V 4.3 6 mA f = 1MHz, VCC = 2V 0.04 0.1 mA f = 4MHz, VCC = 3V 0.26 0.4 mA f = 8MHz, VCC = 5V 1.1 1.7 mA WDT enabled, VCC = 3V 1.7 12 µA WDT disabled, VCC = 3V 0.1 8 µA Notes: 1. Typical values at +25C. 2. “Max” means the highest value where the pin is guaranteed to be read as low. 3. “Min” means the lowest value where the pin is guaranteed to be read as high. 4. Not tested in production. 5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 100 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 100 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See “Output Driver Strength” on page 20. 8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower. 9. Values are with external clock using methods described in “Minimizing Power Consumption” on page 39. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 10. Bod Disabled. ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 5 3.3 Speed The maximum operating frequency of the device is dependent on supply voltage, VCC . The relationship between supply voltage and maximum operating frequency is piecewise linear, as shown in Figure 3-1. Figure 3-1. Maximum Frequency vs. VCC 8 MHz 6 MHz 2 MHz 1.8V 3.4 2.7V 4.5V 5.5V Clock Table 3-2. Calibration Method Accuracy of Calibrated 8MHz Oscillator Target Frequency VCC Temperature Accuracy Factory Calibration 8.0MHz 2.7 – 4V 25C to +85C ±10% (1) User Calibration Within: 7.3 – 8.1MHz Within: 1.8 – 5.5V Within: -40C to +85C ±1% (2) Notes: 1. 2. Table 3-3. Calibration Method Factory Calibration See device ordering codes on page 37 for alternatives. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). Accuracy of Calibrated 32kHz Oscillator Target Frequency VCC Temperature Accuracy 32kHz 1.8 – 5.5V -40C to +85C ±35% ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 6 Table 3-4. 3.5 External Clock Drive VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V Min. Max. Min. Max. Min. Max. Units 0 2 0 8 0 10 MHz Symbol Parameter 1/tCLCL Clock Frequency tCLCL Clock Period 500 125 100 ns tCHCX High Time 200 40 20 ns tCLCX Low Time 200 40 20 ns tCLCH Rise Time 2.0 1.6 0.5 s tCHCL Fall Time 2.0 1.6 0.5 s tCLCL Change in period from one clock cycle to next 2 2 2 % System and Reset Table 3-5. Symbol Enhanced Power-On Reset Parameter (2) Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 1.3 1.7 V VPOR Release threshold of power-on reset VPOA Activation threshold of power-on reset (3) 0.6 SRON Power-On Slope Rate 0.01 Note: 1. V/ms Values are guidelines only. 2. Threshold where device is released from reset when voltage is rising. 3. The Power-on Reset will not work unless the supply voltage has been below VPOA. ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 7 4. Typical Characteristics 4.1 Current Consumption in Active Mode Figure 4-1. Active Supply Current vs. VCC (Internal Oscillator, 8 MHz) 6 125 85 25 -40 5 ICC [mA] 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-2. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz) 1,4 125 85 25 -40 1,2 1 ICC [mA] 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 8 Figure 4-3. Active Supply Current vs. VCC (Internal Oscillator, 32kHz) 0,045 0,04 125 -40 25 85 0,035 ICC [mA] 0,03 0,025 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Current Consumption in Idle Mode Figure 4-4. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz) 1,4 125 85 25 -40 1,2 1 0,8 ICC [mA] 4.2 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 9 Figure 4-5. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz) 0,5 125 85 25 -40 0,4 ICC [mA] 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-6. Idle Supply Current vs. VCC (Internal Oscillator, 32kHz) 0,05 0,04 125 -40 25 85 ICC 0,03 0,02 0,01 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 10 Current Consumption in Power-down Mode Figure 4-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 4,5 125 4 3,5 ICC [uA] 3 2,5 2 1,5 1 85 0,5 25 -40 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 12 125 10 8 ICC [uA] 4.3 6 -40 85 25 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 11 4.4 Current Consumption in Reset Figure 4-9. Reset Current vs. VCC (No Clock, excluding Reset Pull-Up Current) 2 125 -40 25 85 ICC [mA] 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Current Consumption of Peripheral Units Figure 4-10. Watchdog Timer Current vs. VCC 0,007 125 0,006 -40 25 0,005 85 0,004 IccWDT 4.5 0,003 0,002 0,001 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 12 Figure 4-11. Brownout Detector Current vs. VCC 25 125 85 25 -40 20 ICC [uA] 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-12. Sampled Brownout Detector Current vs. VCC 8 -40 7 25 6 85 ICC [uA] 5 4 125 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 13 Figure 4-13. AREF External Reference Pin Current (VCC = 5V) 160 125 85 25 -40 140 AREF pin current [uA] 120 100 80 60 40 20 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 AREF [V] Pull-up Resistors Figure 4-14. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) 50 25 85 -40 125 40 30 IOP [uA] 4.6 20 10 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 14 Figure 4-15. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V) 80 25 85 -40 125 IOP [uA] 60 40 20 0 0 0,5 1 1,5 2 2,5 3 VOP [V] Figure 4-16. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) 140 25 85 -40 125 120 100 IOP [uA] 80 60 40 20 0 0 1 2 3 4 5 6 VOP [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 15 Figure 4-17. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 25 85 -40 125 IRESET [uA] 30 20 10 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET [V] Figure 4-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 60 25 85 -40 125 50 IRESET [uA] 40 30 20 10 0 0 0,5 1 1,5 2 2,5 3 VRESET [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 16 Figure 4-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 25 85 -40 125 100 IRESET [uA] 80 60 40 20 0 0 1 2 3 4 5 6 VRESET [V] Input Thresholds Figure 4-20. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’) 3 125 85 25 -40 2,5 2 Threshold [V] 4.7 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 17 Figure 4-21. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 3 2,5 125 85 25 -40 Threshold [V] 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-22. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 0,6 125 85 25 0,5 Hysteris VIL VIH IO 0,4 -40 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 18 Figure 4-23. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’) 3 125 85 25 -40 2,5 Threshold [V] 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-24. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’) 3 2,5 125 -40 85 25 Threshold [V] 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 19 Figure 4-25. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O) 0,9 0,8 Hysteresis Reset IO VIL VIH 0,7 125 85 25 -40 0,6 0,5 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC Output Driver Strength Figure 4-26. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V) 2 1,5 VOH [V] 4.8 1 -40 25 0,5 85 125 0 0 1 2 3 4 5 IOH [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 20 Figure 4-27. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V) 3 -40 25 85 125 2,5 VOH [V] 2 1,5 1 0,5 0 0 2 4 6 8 10 IOH [mA] Figure 4-28. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V) 5 -40 25 85 125 4 VOH [V] 3 2 1 0 0 5 10 15 20 IOH [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 21 Figure 4-29. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V) 1 125 0,8 85 VOL [V] 0,6 25 0,4 -40 0,2 0 0 1 2 3 4 5 IOL [mA] Figure 4-30. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V) 1 0,8 125 85 VOL [V] 0,6 25 0,4 -40 0,2 0 0 2 4 6 8 10 IOL [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 22 Figure 4-31. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V) 1 125 85 0,8 25 0,6 VOL [V] -40 0,4 0,2 0 0 5 10 15 20 IOL [mA] Figure 4-32. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V 2 VOH [V] 1,5 1 0,5 -40 25 85 125 0 0 0,2 0,4 0,6 0,8 1 IOH [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 23 Figure 4-33. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V 3 2,5 VOH [V] 2 1,5 -40 25 85 125 1 0,5 0 0 0,2 0,4 0,6 0,8 1 IOH [mA] Figure 4-34. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V 5 4 -40 25 85 125 VOH [V] 3 2 1 0 0 0,2 0,4 0,6 0,8 1 IOH [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 24 Figure 4-35. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V) 1 125 85 0,8 25 VOL [V] 0,6 -40 0,4 0,2 0 0 0,2 0,4 0,8 0,6 1 IOL [mA] Figure 4-36. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V) 1 0,8 125 85 VOL [V] 0,6 25 0,4 -40 0,2 0 0 0,5 1 1,5 2 IOL [mA] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 25 Figure 4-37. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V) 1 125 0,8 85 25 VOL [V] 0,6 -40 0,4 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 IOL [mA] BOD Figure 4-38. BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,34 4,32 VCC RISING 4,3 4,28 Threshold [V] 4.9 4,26 VCC FALLING 4,24 4,22 4,2 4,18 4,16 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 26 Figure 4-39. BOD Threshold vs Temperature (BODLEVEL = 2.7V) 2,76 VCC RISING 2,74 Threshold [V] 2,72 2,7 VCC FALLING 2,68 2,66 2,64 2,62 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Figure 4-40. BOD Threshold vs Temperature (BODLEVEL = 1.8V) 1,82 VCC RISING 1,81 1,8 Threshold [V] VCC FALLING 1,79 1,78 1,77 1,76 1,75 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 27 Figure 4-41. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,33 VCC RISING 4,32 VCC FALLING 4,31 Threshold [V] 4,3 4,29 4,28 4,27 4,26 4,25 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Figure 4-42. Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V) 2,76 2,75 VCC RISING Threshold [V] 2,74 2,73 VCC FALLING 2,72 2,71 2,7 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 28 Figure 4-43. Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V) 1,8 1,795 Threshold [V] 1,79 VCC RISING 1,785 1,78 1,775 VCC FALLING 1,77 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Bandgap Voltage Figure 4-44. Bandgap Voltage vs. Supply Voltage 1,085 1,08 105 85 1,075 1,07 Bandgap [V] 4.10 25 1,065 1,06 1,055 1,05 -40 1,045 1,04 1,5 2 2,5 3 3,5 4 4,5 5 5,5 Vcc [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 29 Figure 4-45. Bandgap Voltage vs. Temperature (VCC = 3.3V) 1,07 1,065 Bandgap Voltage [V] 1,06 1,055 1,05 1,045 1,04 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Reset Figure 4-46. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’) 3 125 85 25 -40 2,5 2 Threshold [V] 4.11 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 30 Figure 4-47. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’) 3 2,5 125 -40 85 25 Threshold [V] 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-48. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin ) 0,7 -40 0,6 Hysteresis [V] 0,5 25 0,4 0,3 85 0,2 125 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 31 Figure 4-49. Minimum Reset Pulse Width vs. VCC 2500 Pulsewidth [ns] 2000 1500 1000 500 125 85 25 -40 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Analog Comparator Offset Figure 4-50. Analog Comparator Offset vs. VIN (VCC = 5V) 80 -40 70 60 25 125 85 50 Offset [mV] 4.12 40 30 20 10 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VIN [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 32 Figure 4-51. Analog Comparator Offset vs. VCC (VIN = 1.1V) 8 7 6 Offset [mV] 5 4 -40 25 85 125 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-52. Analog Comparator Hysteresis vs. VIN (VCC = 5.0V) 45 -40 40 35 25 125 85 Hysteresis [mV] 30 25 20 15 10 5 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VIN [V] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 33 Internal Oscillator Speed Figure 4-53. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. VCC 8,4 8,3 Frequency [MHz] 25 85 125 8,2 -40 8,1 8 7,9 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-54. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. Temperature 8,2 8,15 5.0 V 8,1 Frequency [MHz] 4.13 8,05 8 3.0 V 7,95 7,9 -40 -20 0 20 40 60 80 100 120 140 Temperature [°] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 34 Figure 4-55. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. VCC 1,05 1,04 25 85 125 -40 1,03 Frequency [MHz] 1,02 1,01 1 0,99 0,98 0,97 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-56. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. Temperature 1030000 1020000 5.0 V Frequency 1010000 1000000 3.0 V 990000 1.8 V 980000 970000 -40 -20 0 20 40 60 80 100 120 140 Temperature [°] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 35 Figure 4-57. ULP Oscillator Frequency (Nominal = 32kHz) vs. VCC 33000 32000 -40 FRC [Hz] 31000 25 30000 85 29000 28000 125 27000 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 4-58. ULP Oscillator Frequency (Nominal = 32kHz) vs. Temperature 33000 32000 FRC [Hz] 31000 30000 29000 28000 27000 -40 -20 0 20 40 60 80 100 120 140 Temperature [°] ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 36 5. Ordering Information 5.1 ATtiny1634 Speed (MHz) (1) Supply Voltage (V) Temperature Range Package (2) 12 1.8 – 5.5 Industrial (-40C to +125C) (5) 20M1 Accuracy (3) Ordering Code (4) ±10% ATtiny1634-MF ±10% ATtiny1634-MFR Notes: 1. For speed vs. supply voltage, see section 3.3 “Speed” on page 6. 2. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Denotes accuracy of the internal oscillator. See Table 3-2 on page 6. 4. Code indicators: F: matte tin R: tape & reel 5. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities. Package Type 20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead / Micro Lead Frame Package (QFN/MLF) ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 37 6. Datasheet Revision History Revision History 8303D: Appendix B – 10/12 Initial revision ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 38 ATtiny1634 [DATASHEET APPENDIX B] 8303D–AVR–02/2013 39 Atmel Corporation 1600 Technology Drive Atmel Asia Limited Unit 01-5 & 16, 19F Atmel Munich GmbH Business Campus Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2013 Atmel Corporation. All rights reserved. / Rev.: 8303D–AVR–02/2013 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.