ATtiny828 8-bit AVR Microcontroller with 8K Bytes In-System Programmable Flash DATASHEET APPENDIX B Appendix B – ATtiny828 Specification at 125C This document contains information specific to devices operating at temperatures up to 125C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8371A–AVR–02/2013 1. Memories The EEPROM has an endurance of at least 50,000 write/erase cycles. ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 2 2. Electrical Characteristics 2.1 Absolute Maximum Ratings* Operating Temperature . . . . . . . . . . . -55C to +125C *NOTICE: Storage Temperature . . . . . . . . . . . . . -65C to +150C Voltage on any Pin except RESET with respect to Ground. . . . . . . . . . -0.5V to VCC+0.5V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Voltage on RESET with respect to Ground-0.5V to +13.0V Maximum Operating Voltage . . . . . . . . . . . . . . . . 6.0V DC Current per I/O Pin. . . . . . . . . . . . . . . . . . 40.0 mA DC Current VCC and GND Pins . . . . . . . . . . 200.0 mA 2.2 DC Characteristics Table 1. DC Characteristics. T = -40C to +125C Symbol Parameter Condition Min VIL Input Low Voltage VCC = 1.8V – 2.4V VCC = 2.4V – 5.5V Input High-voltage Except RESET pin Input High-voltage RESET pin VIH (4) Output Low Voltage RESET pin as I/O (6) Max Units -0.5 0.2VCC(3) 0.3VCC(3) V VCC = 1.8V – 2.4V VCC = 2.4V – 5.5V 0.7VCC(2) 0.6VCC(2) VCC +0.5 V VCC = 1.8V to 5.5V 0.9VCC(2) VCC +0.5 V VCC = 5V, IOL = 2 mA (5) 0.6 VCC = 3V, IOL = 1 mA(5) 0.5 VCC = 1.8V, IOL = 0.4mA(5) 0.4 VCC = 5V, IOL = 10 mA (5) 0.6 (4) Output Low Voltage Standard Sink I/O Pin (7) VOL Output Low Voltage (4) High Sink I/O Pin (8) VCC = 3V, IOL = 5 mA (5) 0.5 VCC = 1.8V, IOL = 2mA (5) 0.4 VCC = 5V, IOL = 20 mA (5) 0.7 VCC = 3V, IOL = 10 mA(5) 0.6 V (5) 0.5 VCC = 5V, IOL = 20 mA (5) 0.7 VCC = 3V, IOL = 20 mA (5) 0.7 VCC = 1.8V, IOL = 8mA(5) 0.6 VCC = 1.8V, IOL = 4mA Output Low Voltage (4) Extra High Sink I/O Pin (9) Typ (1) ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 3 Symbol Parameter Condition VCC = 5V, IOH = -10 mA (4) VOH Output High-voltage Except RESET pin(6) Min (5) Typ (1) Max Units 4.3 VCC = 3V, IOH = -5 mA (5) 2.5 VCC = 1.8V, IOH = -2 mA (5) 1.4 V ILIL Input Leakage Current, I/O Pin (absolute value) VCC = 5.5V, pin low <0.05 1 µA ILIH Input Leakage Current, I/O Pin (absolute value) VCC = 5.5V, pin high <0.05 1 µA ILIAC Input Leakage Current, Analog Comparator VCC = 5V VIN = VCC/2 -50 50 nA RRST Reset Pull-up Resistor VCC = 5.5V, input low 30 60 k RPU I/O Pin Pull-up Resistor VCC = 5.5V, input low 20 50 k Power Supply Current(10) ICC Power-down mode(11) Active 1 MHz, VCC = 2V 0.2 0.4 mA Active 4 MHz, VCC = 3V 1.2 2 mA Active 8 MHz, VCC = 5V 3.9 5 mA Idle 1 MHz, VCC = 2V 0.03 0.1 mA Idle 4 MHz, VCC = 3V 0.2 0.4 mA Idle 8 MHz, VCC = 5V 0.9 1.5 mA WDT enabled, VCC = 3V 1.8 15 µA WDT disabled, VCC = 3V 0.1 10 µA Notes: 1. Typical values at 25C. 2. “Min” means the lowest value where the pin is guaranteed to be read as high. 3. “Max” means the highest value where the pin is guaranteed to be read as low. 4. Under steady-state (non-transient) conditions I/O ports can sink/source more current than the test conditions, however, the sum current of PORTA and PORTB mustn’t exceed 100mA. Also, the sum current of PORTC and PORTD mustn’t exceed 120mA. VOL/VOH is not guaranteed to meet specifications if pin or port currents exceed the limits given. 5. Pins are not guaranteed to sink/source currents greater than those listed at the given supply voltage. 6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See “Reset Pin as I/O” on page 27, and “Reset Pin as I/O” on page 33. 7. Ports with standard sink strength: PORTD0, PORTD3. 8. Ports with high sink strength: PORTA[7:0], PORTB[7:0], PORTC[7:0], PORTD1. 9. Ports with extra high strength: PORTC[7:0]. 10. Results obtained using external clock and methods described in “Minimizing Power Consumption”. Power reduction fully enabled (PRR = 0xFF) and with no I/O drive. 11. BOD Disabled. ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 4 2.3 Speed The maximum operating frequency of the device is dependent on supply voltage, VCC . The relationship between supply voltage and maximum operating frequency is piecewise linear, as shown in Figure 1. Figure 1. Maximum Operating Frequency vs. Supply Voltage 16 MHz 10 MHz 4 MHz 1.8V 2.4 Clock Characteristics 2.4.1 Accuracy of Calibrated Internal Oscillator 4.5V 5.5V Calibration Accuracy of Internal 8MHz Oscillator Table 2. Calibration Method Factory Calibration User Calibration (3) Notes: 1. 2.4.2 2.7V Target Frequency VCC Temperature Accuracy (1) 8.0 MHz 3V 25C ±2% (2) ±10% (2) Within: 7.3 – 8.1 MHz Within: 1.8V – 5.5V Within: -40C to +125C ±1% Accuracy of oscillator frequency at calibration point (fixed temperature and voltage). 2. See device ordering codes on page 45 for alternatives. 3. Not available in ATtiny828R devices. Accuracy of Calibrated 32kHz Oscillator Table 3. Calibration Method Factory Calibration Calibration Accuracy of Internal 32kHz Oscillator Target Frequency VCC Temperature Accuracy 32kHz 1.8 – 5.5V -40C to +125C ±35% ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 5 2.4.3 External Clock Drive External Clock Drive Characteristics Table 4. VCC = 1.8 – 5.5V VCC = 4.5–5.5V Symbol Parameter 1/tCLCL Clock Frequency tCLCL Clock Period 250 125 83 ns tCHCX High Time 100 40 20 ns tCLCX Low Time 100 40 20 ns tCLCH Rise Time 2.0 1.6 0.5 s tCHCL Fall Time 2.0 1.6 0.5 s tCLCL Period change from one clock cycle to next 2 2 2 % 2.5 System and Reset Characteristics 2.5.1 Power-On Reset Min. Max. Min. Max. Min. Max. Unit 0 4 0 8 0 12 MHz Characteristics of Enhanced Power-On Reset. TA = -40 to +125C Table 5. Symbol Parameter (2) Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 1.3 1.7 V VPOR Release threshold of power-on reset VPOA Activation threshold of power-on reset (3) 0.6 SRON Power-On Slope Rate 0.01 Note: 2.6 VCC = 2.7–5.5V V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling) Temperature Sensor Accuracy of Temperature Sensor at Factory Calibration Table 6. Symbol Parameter Condition ATS Accuracy VCC = 4.0, TA = 25C – 125C Note: Min Typ Max Units C 10 1. Firmware calculates temperature based on factory calibration value. 2. Min and max values are not guaranteed. Contact your local Atmel sales office if higher accuracy is required. ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 6 2.7 ADC Characteristics Table 7. Symbol ADC Characteristics. T = -40C to +125C. VCC = 1.8 – 5.5V Parameter Condition Min Typ Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) RAIN Units 10 Bits VREF = VCC = 4V, ADC clock = 200 kHz 2 LSB VREF = VCC = 4V, ADC clock = 1 MHz 3 LSB VREF = VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.5 LSB Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) VREF = VCC = 4V, ADC clock = 200 kHz 1 LSB Differential Non-linearity (DNL) VREF = VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = VCC = 4V, ADC clock = 200 kHz 2.5 LSB Offset Error VREF = VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion Clock Frequency VIN Max Input Voltage 13 260 µs 50 1000 kHz GND VREF V Input Bandwidth 38.5 kHz Analog Input Resistance 100 M ADC Conversion Output 0 1023 LSB ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 7 2.8 Analog Comparator Characteristics Analog Comparator Characteristics, T = -40C to +125C Table 8. Symbol Parameter Condition VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 Analog Propagation Delay (from saturation to slight overdrive) VCC = 2.7V 750 VCC = 4.0V 500 Analog Propagation Delay (large step change) VCC = 2.7V 100 VCC = 4.0V 75 Digital Propagation Delay VCC = 1.8V – 5.5 1 tAPD tDPD 2.9 Min Typ Max Units < 10 40 mV 50 nA -50 ns 2 CLK Serial Programming Characteristics Serial Programming Characteristics, T = -40°C to +125C, VCC = 1.8 – 5.5V (Unless Otherwise Noted) Table 9. Symbol 1/tCLCL tCLCL Parameter Min Oscillator Frequency 0 Oscillator Period Typ Max Units 4 MHz 250 ns 1/tCLCL Oscillator Freq. (VCC = 4.5V - 5.5V) 0 tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 62.5 ns tSHSL SCK Pulse Width High 2 tCLCL(1) ns tSLSH SCK Pulse Width Low tCLCL(1) ns tOVSH MOSI Setup to SCK High tCLCL ns tSHOX MOSI Hold after SCK High 2 tCLCL ns Note: 1. 2 16 MHz 2 tCLCL for fck < 12MHz, 3 tCLCL for fck >= 12 MHz ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 8 3. Typical Characteristics 3.1 Current Consumption in Active Mode Figure 2. Active Supply Current vs. Frequency (1 - 16 MHz) 8 5.5 V 7 5.0 V 6 4.5 V 5 ICC [mA] 4.0 V 4 3 3.3 V 2 2.7 V 1 1.8 V 0 0 2 4 6 8 10 12 14 16 Frequency [MHz] Active Supply Current vs. VCC (Internal Oscillator, 8 MHz) 5 -40 25 85 125 4,5 4 3,5 3 ICC [mA] Figure 3. 2,5 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 9 Figure 4. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz) 1,2 -40 25 85 125 1 ICC [mA] 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Active Supply Current vs. VCC (Internal Oscillator, 32kHz) Figure 5. 0,04 125 -40 25 85 0,035 0,03 ICC [mA] 0,025 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 10 Current Consumption in Idle Mode Figure 6. Idle Supply Current vs. Frequency (1 - 16 MHz) 2,5 5.5 V 2 5.0 V 4.5 V ICC [mA] 1,5 4.0 V 1 3.3 V 0,5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 Frequency [MHz] Figure 7. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz) 1,2 125 85 25 -40 1 0,8 ICC [mA] 3.2 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 11 Figure 8. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz) 0,3 125 85 25 -40 0,25 ICC [mA] 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Idle Supply Current vs. VCC (Internal Oscillator, 32kHz) 0,014 125 0,012 0,01 -40 25 85 ICC [mA] Figure 9. 0,008 0,006 0,004 0,002 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 12 Current Consumption in Power-down Mode Figure 10. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 4,5 125 4 3,5 3 ICC [uA] 2,5 2 1,5 1 85 0,5 25 -40 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 11. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 10 125 9 8 7 6 ICC [uA] 3.3 -40 85 25 5 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 13 Current Consumption in Reset Figure 12. Reset Current vs. Frequency (1 – 16MHz, Excluding Pull-Up Current) 2 5.5 V 5.0 V 1,5 ICC [mA] 4.5 V 1 4.0 V 3.3 V 0,5 2.7 V 1.8 V 0 0 2 4 6 8 10 12 14 16 Frequency [MHz] Figure 13. Reset Current vs. VCC (No Clock, excluding Reset Pull-Up Current) 0,01 0,008 125 0,006 ICC [mA] 3.4 -40 25 85 0,004 0,002 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 14 Current Consumption of Peripheral Units Figure 14. Watchdog Timer Current vs. VCC 0,006 -40 125 0,005 25 85 ICCWDT [mA] 0,004 0,003 0,002 0,001 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 15. Brownout Detector Current vs. VCC 0,03 125 85 0,025 25 -40 0,02 ICC [mA] 3.5 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 15 Figure 16. Sampled Brownout Detector Current vs. VCC 0,008 -40 0,007 85 125 25 0,006 ICC [mA] 0,005 0,004 0,003 0,002 0,001 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] 3.6 Pull-up Resistors 3.6.1 I/O Pins I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) 60 25 50 85 125 -40 40 IOP [uA] Figure 17. 30 20 10 0 0 0,4 0,8 1,2 1 ,6 2 VOP [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 16 Figure 18. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V) 80 25 85 125 -40 70 60 IOP [uA] 50 40 30 20 10 0 0 0,5 1 1,5 2 2,5 3 VOP [V] I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) 160 25 85 125 -40 120 IOP [uA] Figure 19. 80 40 0 0 1 3 2 4 5 VOP [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 17 Reset Pin Figure 20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 25 85 125 -40 35 30 IRESET [uA] 25 20 15 10 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET [V] Figure 21. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 60 25 85 125 -40 50 40 IRESET [uA] 3.6.2 30 20 10 0 0 0,5 1 1,5 2 2,5 3 VRESET [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 18 Figure 22. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 25 85 125 100 -40 IRESET [uA] 80 60 40 20 0 0 1 2 3 4 5 VRESET [V] 3.7 Input Thresholds 3.7.1 I/O Pins VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’) 3,5 3 2,5 Threshold [V] Figure 23. 2 1,5 1 125 85 25 -40 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 19 Figure 24. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 2,5 Threshold [V] 2 1,5 1 125 85 25 -40 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC [V] VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 1 0,9 0,8 0,7 Hysteresis [V] Figure 25. 0,6 -40 0,5 25 0,4 85 125 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 20 TWI Pins Figure 26. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’) 3,5 125 85 25 -40 3 Threshold [V] 2,5 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Figure 27. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 3 2,5 125 85 25 -40 2 Threshold [V] 3.7.2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 21 Figure 28. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 1 0,9 125 85 25 -40 0,8 0,7 Hysteresis [V] 0,6 0,5 0,4 0,3 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 5 5,5 VCC [V] Reset Pin as I/O Figure 29. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’) 3 2,5 2 Threshold [V] 3.7.3 1,5 1 125 85 25 -40 0,5 0 1,5 2 2,5 3 3,5 4 4,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 22 Figure 30. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’) 3 2,5 Threshold [V] 2 1,5 125 85 25 -40 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O) 1 0,8 Hysteresis [V] Figure 31. 0,6 125 85 25 -40 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 23 Reset Pin Figure 32. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’) 2,5 2 Threshold [V] 1,5 -40 25 1 85 125 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4,5 5 5,5 VCC [V] Figure 33. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’) 2,5 2 1,5 Threshold [V] 3.7.4 1 125 85 25 -40 0,5 0 1,5 2 2,5 3 3,5 4 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 24 Figure 34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin ) 1 0,8 Hysteresis [V] 0,6 -40 0,4 25 0,2 85 125 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 -0,2 VCC [V] 3.8 Current Source Strength 3.8.1 I/O Pins VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V) 2 1,8 1,6 1,4 1,2 VOH [V] Figure 35. -40 1 0,8 25 0,6 85 125 0,4 0,2 0 0 1 3 2 4 5 IOH [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 25 Figure 36. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V) 3 -40 25 85 125 2,5 VOH [V] 2 1,5 1 0,5 0 0 1 2 3 4 5 6 7 8 9 10 IOH [mA] VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V) 5 -40 25 85 125 4 3 VOH [V] Figure 37. 2 1 0 0 2 4 6 8 10 12 14 16 18 20 IOH [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 26 Reset Pin as I/O Figure 38. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V 2 VOH [V] 1,5 1 0,5 -40 25 85 125 0 0 0,2 0,4 0,8 0,6 1 IOH [mA] Figure 39. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V 2,5 2 1,5 -40 25 VOH [V] 3.8.2 1 0,5 85 125 0 0 0,2 0,4 0,6 0,8 1 ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 27 Figure 40. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V 5 4 -40 25 VOH [V] 3 2 1 85 125 0 0 0,2 0,4 0,6 0,8 1 IOH [mA] 3.9 Current Sink Capability 3.9.1 I/O Pins with Standard Sink Capability VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 1.8V) 1 125 0,8 85 0,6 VOL [V] Figure 41. 25 0,4 -40 0,2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 28 Figure 42. VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 3V) 1 0,8 125 0,6 VOL [V] 85 25 0,4 -40 0,2 0 0 2 4 6 8 10 IOL [mA] VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 5V) 1 125 85 0,8 25 0,6 -40 VOL [V] Figure 43. 0,4 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 29 I/O Pins with High Sink Capability Figure 44. VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 1.8V) 1 125 0,8 85 VOL [V] 0,6 25 0,4 -40 0,2 0 0 1 2 3 4 5 6 7 8 9 10 IOL [mA] Figure 45. VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 3V) 1 0,8 125 85 0,6 VOL [V] 3.9.2 25 -40 0,4 0,2 0 0 5 10 15 20 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 30 Figure 46. VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 5V) 1 0,8 VOL [V] 0,6 125 85 0,4 25 -40 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL [mA] I/O Pins with Extra High Sink Capability Figure 47. VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 1.8V) 1 125 0,8 85 0,6 VOL [V] 3.9.3 25 0,4 -40 0,2 0 0 3 6 9 12 15 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 31 Figure 48. VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 3V) 1 0,8 VOL [V] 0,6 125 85 0,4 25 -40 0,2 0 0 5 15 10 20 IOL [mA] VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 5V) 1 0,8 0,6 VOL [V] Figure 49. 0,4 125 85 25 -40 0,2 0 0 2 4 6 8 10 12 14 16 18 20 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 32 Reset Pin as I/O Figure 50. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V) 125 85 1 0,9 0,8 0,7 25 VOL [V] 0,6 0,5 -40 0,4 0,3 0,2 0,1 0 0 Figure 51. 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V) 125 1 0,9 0,8 0,7 85 0,6 VOL [V] 3.9.4 0,5 25 0,4 -40 0,3 0,2 0,1 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 IOL [mA] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 33 Figure 52. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V) 1 85 0,8 25 0,6 VOL [V] -40 0,4 0,2 0 0 1 2 4 3 5 IOL [mA] BOD Figure 53. BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,36 VCC RISING 4,34 4,32 4,3 Threshold [V] 3.10 4,28 VCC FALLING 4,26 4,24 4,22 4,2 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 34 Figure 54. BOD Threshold vs Temperature (BODLEVEL = 2.7V) 2,78 2,76 VCC RISING Threshold [V] 2,74 2,72 2,7 VCC FALLING 2,68 2,66 2,64 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] BOD Threshold vs Temperature (BODLEVEL = 1.8V) 1,83 VCC RISING 1,82 1,81 Threshold [V] Figure 55. 1,8 VCC FALLING 1,79 1,78 1,77 1,76 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 35 Figure 56. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,36 VCC RISING 4,35 VCC FALLING Threshold [V] 4,34 4,33 4,32 4,31 4,3 4,29 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Figure 57. Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V) 2,765 VCC RISING 2,76 VCC FALLING 2,755 Threshold [V] 2,75 2,745 2,74 2,735 2,73 2,725 2,72 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 36 Figure 58. Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V) 1,83 VCC RISING 1,825 VCC FALLING Threshold [V] 1,82 1,815 1,81 1,805 1,8 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature [C] Bandgap Voltage Figure 59. Bandgap Voltage vs. Supply Voltage 1,12 1,11 125 85 25 Bandgap Voltage [V] 3.11 1,1 1,09 -40 1,08 1,07 1,5 2 2,5 3 3,5 4 4,5 5 5,5 Vcc [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 37 Figure 60. Bandgap Voltage vs. Temperature (VCC = 1.8 / 3 / 5V) 1,1 Bandgap Voltage [V] 1,09 5 3 1,8 1,08 1,07 1,06 -40 -20 0 20 40 60 80 100 120 140 Temperature [°C] Reset Figure 61. POR Trigger Levels 1,5 1,45 RISING 1,4 1,35 Threshold [V] 3.12 1,3 1,25 1,2 1,15 FALLING 1,1 -40 -20 0 20 40 60 80 100 120 140 Temperature ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 38 Figure 62. Minimum Reset Pulse Width vs. VCC 3000 2500 Pulsewidth [ns] 2000 1500 1000 125 85 25 -40 500 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Analog Comparator Offset Figure 63. Analog Comparator Offset vs. VIN (VCC = 5V) 0,014 -40 0,012 0,01 0,008 Offset [V] 3.13 25 0,006 85 0,004 125 0,002 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 Vin [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 39 Figure 64. Analog Comparator Offset vs. VCC (VIN = 1.1V) 0,008 0,007 0,006 -40 0,005 Offset [V] 25 0,004 85 125 0,003 0,002 0,001 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Analog Comparator Hysteresis vs. VIN (VCC = 5.0V) 0,12 0,1 -40 25 125 85 0,08 Hysteresis [V] Figure 65. 0,06 0,04 0,02 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 Vin [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 40 3.14 Internal Oscillator Speed 3.14.1 8MHz Oscillator with CKDIV8 Enabled Figure 66. Calibrated Oscillator Frequency vs. VCC (One-point Calibration) 1,05 -40 1,04 25 1,03 1,02 Frequency [MHz] 85 1,01 125 1 0,99 0,98 0,97 0,96 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] Calibrated Oscillator Frequency vs. VCC (Two-point Calibration) 1,05 -40 1,04 25 1,03 85 1,02 Frequency [MHz] Figure 67. 125 1,01 1 0,99 0,98 0,97 0,96 0,95 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 41 Figure 68. Calibrated Oscillator Frequency vs. Temperature (One-point Calibration) 1,04 1,03 1,02 Frequency [MHz] 1,01 1 5.0 V 0,99 0,98 3.0 V 0,97 1.8 V 0,96 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Temperature [°] Calibrated Oscillator Frequency vs. Temperature (Two-point Calibration) 1,03 1,02 1,01 Frequency [MHz] Figure 69. 1 5.0 V 0,99 0,98 3.0 V 0,97 1.8 V 0,96 -40 -20 0 20 40 60 80 100 120 140 Temperature [°] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 42 Figure 70. Calibrated Oscillator Frequency vs. OSCCAL0 Value 2 1,8 -40 25 85 125 1,6 Frequency [MHz] 1,4 1,2 1 0,8 0,6 0,4 0,2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL [X1] 3.14.2 32kHz ULP Oscillator Figure 71. ULP Oscillator Frequency vs. VCC 0,033 -40 0,032 25 Frequency [MHz] 0,031 0,03 85 0,029 0,028 125 0,027 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC [V] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 43 Figure 72. ULP Oscillator Frequency vs. Temperature 0,033 0,032 Frequency [MHz] 0,031 0,03 0,029 0,028 1.8 V 3.0 V 5.0 V 0,027 -40 -20 0 20 40 60 80 100 120 140 Temperature [°] Figure 73. ULP Oscillator Frequency vs. OSCCAL1 Value 45000 40000 3 30000 2 Frequency [Hz] 35000 1 25000 0 20000 -40 -20 0 20 40 60 80 100 120 140 Temperature [°C] ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 44 4. Ordering Information 4.1 ATtiny828 Speed (MHz) (1) Supply Voltage (V) (1) Temperature Range Package (2) Accuracy (3) Ordering Code (4) ±10% ATtiny828-AF ±2% ATtiny828R-AF ±10% ATtiny828-AFR ±2% ATtiny828R-AFR ±10% ATtiny828-MF ±2% ATtiny828R-MF ±10% ATtiny828-MFR ±2% ATtiny828R-MFR 32A 16 MHz 1.8 – 5.5V Industrial (5) (-40C to +125C) 32M1-A Notes: 1. For speed vs. supply voltage, see section “Speed” on page 5. 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Indicates accuracy of internal oscillator. See “Accuracy of Calibrated Internal Oscillator” on page 5. 4. Code indicators: F: matte tin R: tape & reel 5. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. Package Type 32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN) ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 45 5. Revision History Revision 8371A: Appendix B – 02/2013 Comments Initial document release. ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 46 ATtiny828 [DATASHEET APPENDIX B] 8371A–AVR–02/2013 47 Atmel Corporation 1600 Technology Drive Atmel Asia Limited Unit 01-5 & 16, 19F Atmel Munich GmbH Business Campus Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2013 Atmel Corporation. All rights reserved. / Rev.: 8371A–AVR–02/2013 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.