Appendix B - ATtiny828 Specification at 125°C - Complete

ATtiny828
8-bit AVR Microcontroller
with 8K Bytes In-System Programmable Flash
DATASHEET APPENDIX B
Appendix B – ATtiny828 Specification at 125C
This document contains information specific to devices operating at temperatures up to
125C. Only deviations are covered in this appendix, all other information can be found
in the complete datasheet. The complete datasheet can be found at www.atmel.com.
8371A–AVR–02/2013
1.
Memories
The EEPROM has an endurance of at least 50,000 write/erase cycles.
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
2
2.
Electrical Characteristics
2.1
Absolute Maximum Ratings*
Operating Temperature . . . . . . . . . . . -55C to +125C
*NOTICE:
Storage Temperature . . . . . . . . . . . . . -65C to +150C
Voltage on any Pin except RESET
with respect to Ground. . . . . . . . . . -0.5V to VCC+0.5V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these
or other conditions beyond those indicated in
the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Voltage on RESET with respect to Ground-0.5V to +13.0V
Maximum Operating Voltage . . . . . . . . . . . . . . . . 6.0V
DC Current per I/O Pin. . . . . . . . . . . . . . . . . . 40.0 mA
DC Current VCC and GND Pins . . . . . . . . . . 200.0 mA
2.2
DC Characteristics
Table 1.
DC Characteristics. T = -40C to +125C
Symbol
Parameter
Condition
Min
VIL
Input Low Voltage
VCC = 1.8V – 2.4V
VCC = 2.4V – 5.5V
Input High-voltage
Except RESET pin
Input High-voltage
RESET pin
VIH
(4)
Output Low Voltage
RESET pin as I/O (6)
Max
Units
-0.5
0.2VCC(3)
0.3VCC(3)
V
VCC = 1.8V – 2.4V
VCC = 2.4V – 5.5V
0.7VCC(2)
0.6VCC(2)
VCC +0.5
V
VCC = 1.8V to 5.5V
0.9VCC(2)
VCC +0.5
V
VCC = 5V, IOL = 2 mA (5)
0.6
VCC = 3V, IOL = 1 mA(5)
0.5
VCC = 1.8V, IOL = 0.4mA(5)
0.4
VCC = 5V, IOL = 10 mA (5)
0.6
(4)
Output Low Voltage
Standard Sink I/O Pin (7)
VOL
Output Low Voltage (4)
High Sink I/O Pin (8)
VCC = 3V, IOL = 5 mA
(5)
0.5
VCC = 1.8V, IOL = 2mA (5)
0.4
VCC = 5V, IOL = 20 mA (5)
0.7
VCC = 3V, IOL = 10 mA(5)
0.6
V
(5)
0.5
VCC = 5V, IOL = 20 mA (5)
0.7
VCC = 3V, IOL = 20 mA (5)
0.7
VCC = 1.8V, IOL = 8mA(5)
0.6
VCC = 1.8V, IOL = 4mA
Output Low Voltage (4)
Extra High Sink I/O Pin (9)
Typ (1)
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
3
Symbol
Parameter
Condition
VCC = 5V, IOH = -10 mA
(4)
VOH
Output High-voltage
Except RESET pin(6)
Min
(5)
Typ (1)
Max
Units
4.3
VCC = 3V, IOH = -5 mA (5)
2.5
VCC = 1.8V, IOH = -2 mA (5)
1.4
V
ILIL
Input Leakage Current,
I/O Pin (absolute value)
VCC = 5.5V, pin low
<0.05
1
µA
ILIH
Input Leakage Current,
I/O Pin (absolute value)
VCC = 5.5V, pin high
<0.05
1
µA
ILIAC
Input Leakage Current,
Analog Comparator
VCC = 5V
VIN = VCC/2
-50
50
nA
RRST
Reset Pull-up Resistor
VCC = 5.5V, input low
30
60
k
RPU
I/O Pin Pull-up Resistor
VCC = 5.5V, input low
20
50
k
Power Supply Current(10)
ICC
Power-down mode(11)
Active 1 MHz, VCC = 2V
0.2
0.4
mA
Active 4 MHz, VCC = 3V
1.2
2
mA
Active 8 MHz, VCC = 5V
3.9
5
mA
Idle 1 MHz, VCC = 2V
0.03
0.1
mA
Idle 4 MHz, VCC = 3V
0.2
0.4
mA
Idle 8 MHz, VCC = 5V
0.9
1.5
mA
WDT enabled, VCC = 3V
1.8
15
µA
WDT disabled, VCC = 3V
0.1
10
µA
Notes: 1. Typical values at 25C.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. “Max” means the highest value where the pin is guaranteed to be read as low.
4. Under steady-state (non-transient) conditions I/O ports can sink/source more current than the test conditions, however, the sum current of PORTA and PORTB mustn’t exceed 100mA. Also, the sum current of PORTC and PORTD
mustn’t exceed 120mA. VOL/VOH is not guaranteed to meet specifications if pin or port currents exceed the limits
given.
5. Pins are not guaranteed to sink/source currents greater than those listed at the given supply voltage.
6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See “Reset Pin as I/O” on page 27, and “Reset
Pin as I/O” on page 33.
7. Ports with standard sink strength: PORTD0, PORTD3.
8. Ports with high sink strength: PORTA[7:0], PORTB[7:0], PORTC[7:0], PORTD1.
9. Ports with extra high strength: PORTC[7:0].
10. Results obtained using external clock and methods described in “Minimizing Power Consumption”. Power reduction
fully enabled (PRR = 0xFF) and with no I/O drive.
11. BOD Disabled.
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
4
2.3
Speed
The maximum operating frequency of the device is dependent on supply voltage, VCC . The relationship between supply
voltage and maximum operating frequency is piecewise linear, as shown in Figure 1.
Figure 1.
Maximum Operating Frequency vs. Supply Voltage
16 MHz
10 MHz
4 MHz
1.8V
2.4
Clock Characteristics
2.4.1
Accuracy of Calibrated Internal Oscillator
4.5V
5.5V
Calibration Accuracy of Internal 8MHz Oscillator
Table 2.
Calibration
Method
Factory
Calibration
User
Calibration (3)
Notes: 1.
2.4.2
2.7V
Target Frequency
VCC
Temperature
Accuracy (1)
8.0 MHz
3V
25C
±2% (2)
±10% (2)
Within:
7.3 – 8.1 MHz
Within:
1.8V – 5.5V
Within:
-40C to +125C
±1%
Accuracy of oscillator frequency at calibration point (fixed temperature and voltage).
2.
See device ordering codes on page 45 for alternatives.
3.
Not available in ATtiny828R devices.
Accuracy of Calibrated 32kHz Oscillator
Table 3.
Calibration
Method
Factory
Calibration
Calibration Accuracy of Internal 32kHz Oscillator
Target Frequency
VCC
Temperature
Accuracy
32kHz
1.8 – 5.5V
-40C to +125C
±35%
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
5
2.4.3
External Clock Drive
External Clock Drive Characteristics
Table 4.
VCC = 1.8 – 5.5V
VCC = 4.5–5.5V
Symbol
Parameter
1/tCLCL
Clock Frequency
tCLCL
Clock Period
250
125
83
ns
tCHCX
High Time
100
40
20
ns
tCLCX
Low Time
100
40
20
ns
tCLCH
Rise Time
2.0
1.6
0.5
s
tCHCL
Fall Time
2.0
1.6
0.5
s
tCLCL
Period change from one clock cycle to next
2
2
2
%
2.5
System and Reset Characteristics
2.5.1
Power-On Reset
Min.
Max.
Min.
Max.
Min.
Max.
Unit
0
4
0
8
0
12
MHz
Characteristics of Enhanced Power-On Reset. TA = -40 to +125C
Table 5.
Symbol
Parameter
(2)
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
1.3
1.7
V
VPOR
Release threshold of power-on reset
VPOA
Activation threshold of power-on reset (3)
0.6
SRON
Power-On Slope Rate
0.01
Note:
2.6
VCC = 2.7–5.5V
V/ms
1.
Values are guidelines, only
2.
Threshold where device is released from reset when voltage is rising
3.
The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)
Temperature Sensor
Accuracy of Temperature Sensor at Factory Calibration
Table 6.
Symbol
Parameter
Condition
ATS
Accuracy
VCC = 4.0, TA = 25C – 125C
Note:
Min
Typ
Max
Units
C
10
1.
Firmware calculates temperature based on factory calibration value.
2.
Min and max values are not guaranteed. Contact your local Atmel sales office if higher accuracy is required.
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
6
2.7
ADC Characteristics
Table 7.
Symbol
ADC Characteristics. T = -40C to +125C. VCC = 1.8 – 5.5V
Parameter
Condition
Min
Typ
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and
Offset Errors)
RAIN
Units
10
Bits
VREF = VCC = 4V,
ADC clock = 200 kHz
2
LSB
VREF = VCC = 4V,
ADC clock = 1 MHz
3
LSB
VREF = VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.5
LSB
VREF = VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.5
LSB
Integral Non-Linearity
(INL)
(Accuracy after Offset
and Gain Calibration)
VREF = VCC = 4V,
ADC clock = 200 kHz
1
LSB
Differential Non-linearity
(DNL)
VREF = VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = VCC = 4V,
ADC clock = 200 kHz
2.5
LSB
Offset Error
VREF = VCC = 4V,
ADC clock = 200 kHz
1.5
LSB
Conversion Time
Free Running Conversion
Clock Frequency
VIN
Max
Input Voltage
13
260
µs
50
1000
kHz
GND
VREF
V
Input Bandwidth
38.5
kHz
Analog Input Resistance
100
M
ADC Conversion Output
0
1023
LSB
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
7
2.8
Analog Comparator Characteristics
Analog Comparator Characteristics, T = -40C to +125C
Table 8.
Symbol
Parameter
Condition
VAIO
Input Offset Voltage
VCC = 5V, VIN = VCC / 2
ILAC
Input Leakage Current
VCC = 5V, VIN = VCC / 2
Analog Propagation Delay
(from saturation to slight overdrive)
VCC = 2.7V
750
VCC = 4.0V
500
Analog Propagation Delay
(large step change)
VCC = 2.7V
100
VCC = 4.0V
75
Digital Propagation Delay
VCC = 1.8V – 5.5
1
tAPD
tDPD
2.9
Min
Typ
Max
Units
< 10
40
mV
50
nA
-50
ns
2
CLK
Serial Programming Characteristics
Serial Programming Characteristics, T = -40°C to +125C, VCC = 1.8 – 5.5V (Unless Otherwise
Noted)
Table 9.
Symbol
1/tCLCL
tCLCL
Parameter
Min
Oscillator Frequency
0
Oscillator Period
Typ
Max
Units
4
MHz
250
ns
1/tCLCL
Oscillator Freq. (VCC = 4.5V - 5.5V)
0
tCLCL
Oscillator Period (VCC = 4.5V - 5.5V)
62.5
ns
tSHSL
SCK Pulse Width High
2 tCLCL(1)
ns
tSLSH
SCK Pulse Width Low
tCLCL(1)
ns
tOVSH
MOSI Setup to SCK High
tCLCL
ns
tSHOX
MOSI Hold after SCK High
2 tCLCL
ns
Note:
1.
2
16
MHz
2 tCLCL for fck < 12MHz, 3 tCLCL for fck >= 12 MHz
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
8
3.
Typical Characteristics
3.1
Current Consumption in Active Mode
Figure 2.
Active Supply Current vs. Frequency (1 - 16 MHz)
8
5.5 V
7
5.0 V
6
4.5 V
5
ICC [mA]
4.0 V
4
3
3.3 V
2
2.7 V
1
1.8 V
0
0
2
4
6
8
10
12
14
16
Frequency [MHz]
Active Supply Current vs. VCC (Internal Oscillator, 8 MHz)
5
-40
25
85
125
4,5
4
3,5
3
ICC [mA]
Figure 3.
2,5
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
9
Figure 4.
Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)
1,2
-40
25
85
125
1
ICC [mA]
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Active Supply Current vs. VCC (Internal Oscillator, 32kHz)
Figure 5.
0,04
125
-40
25
85
0,035
0,03
ICC [mA]
0,025
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
10
Current Consumption in Idle Mode
Figure 6.
Idle Supply Current vs. Frequency (1 - 16 MHz)
2,5
5.5 V
2
5.0 V
4.5 V
ICC [mA]
1,5
4.0 V
1
3.3 V
0,5
2.7 V
1.8 V
0
0
2
4
6
8
10
12
14
16
Frequency [MHz]
Figure 7.
Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)
1,2
125
85
25
-40
1
0,8
ICC [mA]
3.2
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
11
Figure 8.
Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz)
0,3
125
85
25
-40
0,25
ICC [mA]
0,2
0,15
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Idle Supply Current vs. VCC (Internal Oscillator, 32kHz)
0,014
125
0,012
0,01
-40
25
85
ICC [mA]
Figure 9.
0,008
0,006
0,004
0,002
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
12
Current Consumption in Power-down Mode
Figure 10.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
4,5
125
4
3,5
3
ICC [uA]
2,5
2
1,5
1
85
0,5
25
-40
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 11.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
10
125
9
8
7
6
ICC [uA]
3.3
-40
85
25
5
4
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
13
Current Consumption in Reset
Figure 12.
Reset Current vs. Frequency (1 – 16MHz, Excluding Pull-Up Current)
2
5.5 V
5.0 V
1,5
ICC [mA]
4.5 V
1
4.0 V
3.3 V
0,5
2.7 V
1.8 V
0
0
2
4
6
8
10
12
14
16
Frequency [MHz]
Figure 13.
Reset Current vs. VCC (No Clock, excluding Reset Pull-Up Current)
0,01
0,008
125
0,006
ICC [mA]
3.4
-40
25
85
0,004
0,002
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
14
Current Consumption of Peripheral Units
Figure 14.
Watchdog Timer Current vs. VCC
0,006
-40
125
0,005
25
85
ICCWDT [mA]
0,004
0,003
0,002
0,001
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 15.
Brownout Detector Current vs. VCC
0,03
125
85
0,025
25
-40
0,02
ICC [mA]
3.5
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
15
Figure 16.
Sampled Brownout Detector Current vs. VCC
0,008
-40
0,007
85
125
25
0,006
ICC [mA]
0,005
0,004
0,003
0,002
0,001
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
3.6
Pull-up Resistors
3.6.1
I/O Pins
I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
60
25 50
85
125
-40
40
IOP [uA]
Figure 17.
30
20
10
0
0
0,4
0,8
1,2
1 ,6
2
VOP [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
16
Figure 18.
I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V)
80
25
85
125
-40 70
60
IOP [uA]
50
40
30
20
10
0
0
0,5
1
1,5
2
2,5
3
VOP [V]
I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
160
25
85
125
-40
120
IOP [uA]
Figure 19.
80
40
0
0
1
3
2
4
5
VOP [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
17
Reset Pin
Figure 20.
Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
40
25
85
125
-40
35
30
IRESET [uA]
25
20
15
10
5
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET [V]
Figure 21.
Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
60
25
85
125
-40
50
40
IRESET [uA]
3.6.2
30
20
10
0
0
0,5
1
1,5
2
2,5
3
VRESET [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
18
Figure 22.
Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
120
25
85
125 100
-40
IRESET [uA]
80
60
40
20
0
0
1
2
3
4
5
VRESET [V]
3.7
Input Thresholds
3.7.1
I/O Pins
VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)
3,5
3
2,5
Threshold [V]
Figure 23.
2
1,5
1
125
85
25
-40
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
19
Figure 24.
VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
2,5
Threshold [V]
2
1,5
1
125
85
25
-40
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
4
4,5
5
5,5
VCC [V]
VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
1
0,9
0,8
0,7
Hysteresis [V]
Figure 25.
0,6
-40
0,5
25
0,4
85
125
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
20
TWI Pins
Figure 26.
VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)
3,5
125
85
25
-40
3
Threshold [V]
2,5
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Figure 27.
VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
3
2,5
125
85
25
-40
2
Threshold [V]
3.7.2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
21
Figure 28.
VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
1
0,9
125
85
25
-40
0,8
0,7
Hysteresis [V]
0,6
0,5
0,4
0,3
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
5
5,5
VCC [V]
Reset Pin as I/O
Figure 29.
VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)
3
2,5
2
Threshold [V]
3.7.3
1,5
1
125
85
25
-40
0,5
0
1,5
2
2,5
3
3,5
4
4,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
22
Figure 30.
VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)
3
2,5
Threshold [V]
2
1,5
125
85
25
-40
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)
1
0,8
Hysteresis [V]
Figure 31.
0,6
125
85
25
-40
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
23
Reset Pin
Figure 32.
VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)
2,5
2
Threshold [V]
1,5
-40
25
1
85
125
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
4,5
5
5,5
VCC [V]
Figure 33.
VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)
2,5
2
1,5
Threshold [V]
3.7.4
1
125
85
25
-40
0,5
0
1,5
2
2,5
3
3,5
4
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
24
Figure 34.
VIH-VIL: Input Hysteresis vs. VCC (Reset Pin )
1
0,8
Hysteresis [V]
0,6
-40
0,4
25
0,2
85
125
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
-0,2
VCC [V]
3.8
Current Source Strength
3.8.1
I/O Pins
VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)
2
1,8
1,6
1,4
1,2
VOH [V]
Figure 35.
-40
1
0,8
25
0,6
85
125
0,4
0,2
0
0
1
3
2
4
5
IOH [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
25
Figure 36.
VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)
3
-40
25
85
125
2,5
VOH [V]
2
1,5
1
0,5
0
0
1
2
3
4
5
6
7
8
9
10
IOH [mA]
VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
5
-40
25
85
125
4
3
VOH [V]
Figure 37.
2
1
0
0
2
4
6
8
10
12
14
16
18
20
IOH [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
26
Reset Pin as I/O
Figure 38.
VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V
2
VOH [V]
1,5
1
0,5
-40
25
85
125
0
0
0,2
0,4
0,8
0,6
1
IOH [mA]
Figure 39.
VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V
2,5
2
1,5
-40
25
VOH [V]
3.8.2
1
0,5
85
125
0
0
0,2
0,4
0,6
0,8
1
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
27
Figure 40.
VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V
5
4
-40
25
VOH [V]
3
2
1
85
125
0
0
0,2
0,4
0,6
0,8
1
IOH [mA]
3.9
Current Sink Capability
3.9.1
I/O Pins with Standard Sink Capability
VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 1.8V)
1
125
0,8
85
0,6
VOL [V]
Figure 41.
25
0,4
-40
0,2
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
28
Figure 42.
VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 3V)
1
0,8
125
0,6
VOL [V]
85
25
0,4
-40
0,2
0
0
2
4
6
8
10
IOL [mA]
VOL: Output Voltage vs. Sink Current (Standard I/O Pin, VCC = 5V)
1
125
85
0,8
25
0,6
-40
VOL [V]
Figure 43.
0,4
0,2
0
0
2
4
6
8
10
12
14
16
18
20
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
29
I/O Pins with High Sink Capability
Figure 44.
VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 1.8V)
1
125
0,8
85
VOL [V]
0,6
25
0,4
-40
0,2
0
0
1
2
3
4
5
6
7
8
9
10
IOL [mA]
Figure 45.
VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 3V)
1
0,8
125
85
0,6
VOL [V]
3.9.2
25
-40
0,4
0,2
0
0
5
10
15
20
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
30
Figure 46.
VOL: Output Voltage vs. Sink Current (High Sink I/O Pin, VCC = 5V)
1
0,8
VOL [V]
0,6
125
85
0,4
25
-40
0,2
0
0
2
4
6
8
10
12
14
16
18
20
IOL [mA]
I/O Pins with Extra High Sink Capability
Figure 47.
VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 1.8V)
1
125
0,8
85
0,6
VOL [V]
3.9.3
25
0,4
-40
0,2
0
0
3
6
9
12
15
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
31
Figure 48.
VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 3V)
1
0,8
VOL [V]
0,6
125
85
0,4
25
-40
0,2
0
0
5
15
10
20
IOL [mA]
VOL: Output Voltage vs. Sink Current (Extra High Sink I/O Pin, VCC = 5V)
1
0,8
0,6
VOL [V]
Figure 49.
0,4
125
85
25
-40
0,2
0
0
2
4
6
8
10
12
14
16
18
20
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
32
Reset Pin as I/O
Figure 50.
VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V)
125
85
1
0,9
0,8
0,7
25
VOL [V]
0,6
0,5
-40
0,4
0,3
0,2
0,1
0
0
Figure 51.
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)
125
1
0,9
0,8
0,7
85
0,6
VOL [V]
3.9.4
0,5
25
0,4
-40
0,3
0,2
0,1
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
IOL [mA]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
33
Figure 52.
VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)
1
85
0,8
25
0,6
VOL [V]
-40
0,4
0,2
0
0
1
2
4
3
5
IOL [mA]
BOD
Figure 53.
BOD Threshold vs Temperature (BODLEVEL = 4.3V)
4,36
VCC RISING
4,34
4,32
4,3
Threshold [V]
3.10
4,28
VCC FALLING
4,26
4,24
4,22
4,2
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
34
Figure 54.
BOD Threshold vs Temperature (BODLEVEL = 2.7V)
2,78
2,76
VCC RISING
Threshold [V]
2,74
2,72
2,7
VCC FALLING
2,68
2,66
2,64
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
BOD Threshold vs Temperature (BODLEVEL = 1.8V)
1,83
VCC RISING
1,82
1,81
Threshold [V]
Figure 55.
1,8
VCC FALLING
1,79
1,78
1,77
1,76
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
35
Figure 56.
Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V)
4,36
VCC RISING
4,35
VCC FALLING
Threshold [V]
4,34
4,33
4,32
4,31
4,3
4,29
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Figure 57.
Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V)
2,765
VCC RISING
2,76
VCC FALLING
2,755
Threshold [V]
2,75
2,745
2,74
2,735
2,73
2,725
2,72
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
36
Figure 58.
Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V)
1,83
VCC RISING
1,825
VCC FALLING
Threshold [V]
1,82
1,815
1,81
1,805
1,8
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature [C]
Bandgap Voltage
Figure 59.
Bandgap Voltage vs. Supply Voltage
1,12
1,11
125
85
25
Bandgap Voltage [V]
3.11
1,1
1,09
-40
1,08
1,07
1,5
2
2,5
3
3,5
4
4,5
5
5,5
Vcc [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
37
Figure 60.
Bandgap Voltage vs. Temperature (VCC = 1.8 / 3 / 5V)
1,1
Bandgap Voltage [V]
1,09
5
3
1,8
1,08
1,07
1,06
-40
-20
0
20
40
60
80
100
120
140
Temperature [°C]
Reset
Figure 61.
POR Trigger Levels
1,5
1,45
RISING
1,4
1,35
Threshold [V]
3.12
1,3
1,25
1,2
1,15
FALLING
1,1
-40
-20
0
20
40
60
80
100
120
140
Temperature
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
38
Figure 62.
Minimum Reset Pulse Width vs. VCC
3000
2500
Pulsewidth [ns]
2000
1500
1000
125
85
25
-40
500
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Analog Comparator Offset
Figure 63.
Analog Comparator Offset vs. VIN (VCC = 5V)
0,014
-40
0,012
0,01
0,008
Offset [V]
3.13
25
0,006
85
0,004
125
0,002
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
Vin [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
39
Figure 64.
Analog Comparator Offset vs. VCC (VIN = 1.1V)
0,008
0,007
0,006
-40
0,005
Offset [V]
25
0,004
85
125
0,003
0,002
0,001
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Analog Comparator Hysteresis vs. VIN (VCC = 5.0V)
0,12
0,1
-40
25
125
85
0,08
Hysteresis [V]
Figure 65.
0,06
0,04
0,02
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
Vin [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
40
3.14
Internal Oscillator Speed
3.14.1 8MHz Oscillator with CKDIV8 Enabled
Figure 66.
Calibrated Oscillator Frequency vs. VCC (One-point Calibration)
1,05
-40
1,04
25
1,03
1,02
Frequency [MHz]
85
1,01
125
1
0,99
0,98
0,97
0,96
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
Calibrated Oscillator Frequency vs. VCC (Two-point Calibration)
1,05
-40
1,04
25
1,03
85
1,02
Frequency [MHz]
Figure 67.
125
1,01
1
0,99
0,98
0,97
0,96
0,95
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
41
Figure 68.
Calibrated Oscillator Frequency vs. Temperature (One-point Calibration)
1,04
1,03
1,02
Frequency [MHz]
1,01
1
5.0 V
0,99
0,98
3.0 V
0,97
1.8 V
0,96
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
Temperature [°]
Calibrated Oscillator Frequency vs. Temperature (Two-point Calibration)
1,03
1,02
1,01
Frequency [MHz]
Figure 69.
1
5.0 V
0,99
0,98
3.0 V
0,97
1.8 V
0,96
-40
-20
0
20
40
60
80
100
120
140
Temperature [°]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
42
Figure 70.
Calibrated Oscillator Frequency vs. OSCCAL0 Value
2
1,8
-40
25
85
125
1,6
Frequency [MHz]
1,4
1,2
1
0,8
0,6
0,4
0,2
0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
OSCCAL [X1]
3.14.2 32kHz ULP Oscillator
Figure 71.
ULP Oscillator Frequency vs. VCC
0,033
-40
0,032
25
Frequency [MHz]
0,031
0,03
85
0,029
0,028
125
0,027
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC [V]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
43
Figure 72.
ULP Oscillator Frequency vs. Temperature
0,033
0,032
Frequency [MHz]
0,031
0,03
0,029
0,028
1.8 V
3.0 V
5.0 V
0,027
-40
-20
0
20
40
60
80
100
120
140
Temperature [°]
Figure 73.
ULP Oscillator Frequency vs. OSCCAL1 Value
45000
40000
3
30000
2
Frequency [Hz]
35000
1
25000
0
20000
-40
-20
0
20
40
60
80
100
120
140
Temperature [°C]
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
44
4.
Ordering Information
4.1
ATtiny828
Speed (MHz) (1)
Supply Voltage (V) (1)
Temperature Range
Package (2)
Accuracy (3)
Ordering Code (4)
±10%
ATtiny828-AF
±2%
ATtiny828R-AF
±10%
ATtiny828-AFR
±2%
ATtiny828R-AFR
±10%
ATtiny828-MF
±2%
ATtiny828R-MF
±10%
ATtiny828-MFR
±2%
ATtiny828R-MFR
32A
16 MHz
1.8 – 5.5V
Industrial (5)
(-40C to +125C)
32M1-A
Notes: 1. For speed vs. supply voltage, see section “Speed” on page 5.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of
Hazardous Substances (RoHS).
3. Indicates accuracy of internal oscillator. See “Accuracy of Calibrated Internal Oscillator” on page 5.
4. Code indicators:

F: matte tin

R: tape & reel
5. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.
Package Type
32A
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32M1-A
32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm, Quad Flat No-Lead (QFN)
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
45
5.
Revision History
Revision
8371A: Appendix B – 02/2013
Comments
Initial document release.
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
46
ATtiny828 [DATASHEET APPENDIX B]
8371A–AVR–02/2013
47
Atmel Corporation
1600 Technology Drive
Atmel Asia Limited
Unit 01-5 & 16, 19F
Atmel Munich GmbH
Business Campus
Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg
San Jose, CA 95110
BEA Tower, Millennium City 5
Parkring 4
1-6-4 Osaki, Shinagawa-ku
USA
418 Kwun Tong Roa
D-85748 Garching b. Munich
Tokyo 141-0032
Tel: (+1) (408) 441-0311
Kwun Tong, Kowloon
GERMANY
JAPAN
Fax: (+1) (408) 487-2600
HONG KONG
Tel: (+49) 89-31970-0
Tel: (+81) (3) 6417-0300
www.atmel.com
Tel: (+852) 2245-6100
Fax: (+49) 89-3194621
Fax: (+81) (3) 6417-0370
Fax: (+852) 2722-1369
© 2013 Atmel Corporation. All rights reserved. / Rev.: 8371A–AVR–02/2013
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.