AT28LV010 - Complete

Features
• Single 3.3V ± 10% Supply
• Fast Read Access Time – 200 ns
• Automatic Page Write Operation
•
•
•
•
•
•
•
•
– Internal Address and Data Latches for 128 Bytes
– Internal Control Timer
Fast Write Cycle Time
– Page Write Cycle Time – 10 ms Maximum
– 1 to 128-Byte Page Write Operation
Low Power Dissipation
– 15 mA Active Current
– 20 µA CMOS Standby Current
Hardware and Software Data Protection
DATA Polling for End of Write Detection
High Reliability CMOS Technology
– Endurance: 105 Cycles
– Data Retention: 10 Years
JEDEC Approved Byte-Wide Pinout
Industrial Temperature Range
Green (Pb/Halide-free) Packaging Option Only
1-Megabit
(128K x 8)
Low Voltage
Paged Parallel
EEPROMs
AT28LV010
1. Description
The AT28LV010 is a high-performance 3-volt only Electrically Erasable and Programmable Read-Only Memory. Its 1 megabit of memory is organized as 131,072 words by
8 bits. Manufactured with Atmel’s advanced nonvolatile CMOS technology, the device
offers access times to 200 ns with power dissipation of just 54 mW. When the device
is deselected, the CMOS standby current is less than 20 µA.
The AT28LV010 is accessed like a Static RAM for the read or write cycle without the
need for external components. The device contains a 128-byte page register to allow
writing of up to 128 bytes simultaneously. During a write cycle, the address and 1 to
128 bytes of data are internally latched, freeing the address and data bus for other
operations. Following the initiation of a write cycle, the device will automatically write
the latched data using an internal control timer. The end of a write cycle can be
detected by DATA polling of I/O7. Once the end of a write cycle has been detected a
new access for a read or write can begin.
Atmel’s 28LV010 has additional features to ensure high quality and manufacturability.
The device utilizes internal error correction for extended endurance and improved
data retention characteristics. Software data protection is implemented to guard
against inadvertent writes. The device also includes an extra 128 bytes of EEPROM
for device identification or tracking.
0395F–PEEPR–08/09
AT28LV010
2. Pin Configurations
2.2
Function
A0 - A16
Addresses
CE
Chip Enable
OE
Output Enable
WE
Write Enable
I/O0 - I/O7
Data Inputs/Outputs
NC
No Connect
DC
Don’t Connect
2.1
32-lead PLCC Top View
A11
A9
A8
A13
A14
NC
WE
VCC
NC
A16
A15
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0
A1
A2
A3
29
28
27
26
25
24
23
22
21
14
15
16
17
18
19
20
5
6
7
8
9
10
11
12
13
A14
A13
A8
A9
A11
OE
A10
CE
I/O7
I/O1
I/O2
GND
I/O3
I/O4
I/O5
I/O6
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
4
3
2
1
32
31
30
A12
A15
A16
DC
VCC
WE
NC
Pin Name
32-lead TSOP Top View
2
0395F–PEEPR–08/09
AT28LV010
3. Block Diagram
4. Device Operation
4.1
Read
The AT28LV010 is accessed like a Static RAM. When CE and OE are low and WE is high, the
data stored at the memory location determined by the address pins is asserted on the outputs.
The outputs are put in the high impedance state when either CE or OE is high. This dual-line
control gives designers flexibility in preventing bus contention in their system.
4.2
Write
The write operation of the AT28LV010 allows 1 to 128 bytes of data to be written into the
device during a single internal programming period. Each write operation must be preceded by
the software data protection (SDP) command sequence. This sequence is a series of three
unique write command operations that enable the internal write circuitry. The command
sequence and the data to be written must conform to the software protected write cycle timing.
Addresses are latched on the falling edge of WE or CE, whichever occurs last and data is
latched on the rising edge of WE or CE, whichever occurs first. Each successive byte must be
written within 150 µs (tBLC) of the previous byte. If the tBLC limit is exceeded the AT28LV010
will cease accepting data and commence the internal programming operation. If more than
one data byte is to be written during a single programming operation, they must reside on the
same page as defined by the state of the A7 - A16 inputs. For each WE high to low transition
during the page write operation, A7 - A16 must be the same.
The A0 to A6 inputs are used to specify which bytes within the page are to be written. The
bytes may be loaded in any order and may be altered within the same load period. Only bytes
which are specified for writing will be written; unnecessary cycling of other bytes within the
page does not occur.
3
0395F–PEEPR–08/09
4.3
DATA Polling
The AT28LV010 features DATA Polling to indicate the end of a write cycle. During a byte or
page write cycle an attempted read of the last byte written will result in the complement of the
written data to be presented on I/O7. Once the write cycle has been completed, true data is
valid on all outputs, and the next write cycle may begin. DATA Polling may begin at anytime
during the write cycle.
4.4
Toggle Bit
In addition to DATA Polling the AT28LV010 provides another method for determining the end
of a write cycle. During the write operation, successive attempts to read data from the device
will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop
toggling and valid data will be read. Reading the toggle bit may begin at any time during the
write cycle.
4.5
Data Protection
If precautions are not taken, inadvertent writes may occur during transitions of the host system
power supply. Atmel® has incorporated both hardware and software features that will protect
the memory against inadvertent writes.
4.5.1
Hardware Protection
Hardware features protect against inadvertent writes to the AT28LV010 in the following ways:
(a) VCC power-on delay – once VCC has reached 2.0V (typical) the device will automatically
time out 5 ms (typical) before allowing a write; (b) write inhibit – holding any one of OE low, CE
high or WE high inhibits write cycles; and (c) noise filter – pulses of less than 15 ns (typical) on
the WE or CE inputs will not initiate a write cycle.
4.5.2
Software Data Protection
The AT28LV010 incorporates the industry standard software data protection (SDP) function.
Unlike standard 5-volt only EEPROM’s, the AT28LV010 has SDP enabled at all times. Therefore, all write operations must be preceded by the SDP command sequence.
The data in the 3-byte command sequence is not written to the device; the addresses in the
command sequence can be utilized just like any other location in the device. Any attempt to
write to the device without the 3-byte sequence will start the internal timers. No data will be
written to the device. However, for the duration of tWC, read operations will effectively be polling operations.
4
AT28LV010
0395F–PEEPR–08/09
AT28LV010
5. DC and AC Operating Range
Operating
Temperature (Case)
AT28LV010-20
AT28LV010-25
-40°C - 85°C
-40°C - 85°C
3.3V ± 5%
3.3V ± 10%
Ind.
VCC Power Supply
6. Operating Modes
Mode
CE
OE
WE
I/O
Read
VIL
VIL
VIH
DOUT
Write(2)
VIL
VIH
VIL
DIN
High Z
Standby/Write Inhibit
(1)
VIH
X
X
Write Inhibit
X
X
VIH
Write Inhibit
X
VIL
X
Output Disable
X
VIH
X
Notes:
High Z
1. X can be VIL or VIH.
2. Refer to AC Programming Waveforms.
7. Absolute Maximum Ratings*
Temperature Under Bias................................ -55°C to +125°C
*NOTICE:
Storage Temperature ..................................... -65°C to +150°C
All Input Voltages (including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to VCC + 0.6V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability
Voltage on OE and A9
with Respect to Ground ...................................-0.6V to +13.5V
8. DC Characteristics
Symbol
Parameter
Condition
ILI
Input Load Current
ILO
Min
Max
Units
VIN = 0V to VCC
1
µA
Output Leakage Current
VI/O = 0V to VCC
1
µA
ISB
VCC Standby Current CMOS
CE = VCC - 0.3V to VCC + 1V
50
µA
ICC
VCC Active Current
f = 5 MHz; IOUT = 0 mA; VCC = 3.6V
15
mA
VIL
Input Low Voltage
0.8
V
VIH
Input High Voltage
VOL
Output Low Voltage
IOL = 1.6 mA; VCC = 3.0V
VOH
Output High Voltage
IOH = -100 μA; VCC = 3.0V
Ind.
2.0
V
0.45
2.4
V
V
5
0395F–PEEPR–08/09
9. AC Read Characteristics
AT28LV010-20
Symbol
Parameter
tACC
Min
Max
Units
Address to Output Delay
200
ns
tCE(1)
CE to Output Delay
200
ns
tOE(2)
OE to Output Delay
0
80
ns
tDF(3)(4)
CE or OE to Output Float
0
55
ns
tOH
Output Hold from OE, CE or Address, Whichever Occurred First
0
ns
tCEPH(5)
CE Pulse High Time
50
ns
10. AC Read Waveforms(1)(2)(3)(4)
tCEPH
Notes:
1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC.
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change
without impact on tACC.
3. tDF is specified from OE or CE whichever occurs first (CL = 5 pF).
4. This parameter is characterized and is not 100% tested.
5. If CE is de-asserted, it must remain de-asserted for at least 50ns during read operations otherwise incorrect data may be
read.
6
AT28LV010
0395F–PEEPR–08/09
AT28LV010
11. Input Test Waveforms and Measurement Level
tR, tF < 5 ns
12. Output Test Load
13. Pin Capacitance
f = 1 MHz, T = 25°C(1)
Symbol
CIN
COUT
Note:
Typ
Max
Units
Conditions
4
6
pF
VIN = 0V
8
12
pF
VOUT = 0V
1. This parameter is characterized and is not 100% tested.
7
0395F–PEEPR–08/09
14. AC Write Characteristics(1)
Symbol
Parameter
tAS, tOES
Address, OE Set-up Time
tAH
Address Hold Time
tCS
Min
Max
Units
0
ns
100
ns
Chip Select Set-up Time
0
ns
tCH
Chip Select Hold Time
0
ns
tWP
Write Pulse Width (WE or CE)
200
ns
tDS
Data Set-up Time
100
ns
Data, OE Hold Time
10
ns
tDH, tOEH
Note:
1. All write operations must be preceded by the SDP command sequence.
15. AC Write Waveforms
15.1
WE Controlled
15.2
CE Controlled
8
AT28LV010
0395F–PEEPR–08/09
AT28LV010
16. Software Protected Write Characteristics
Symbol
Parameter
tWC
Write Cycle Time
tAS
Address Set-up Time
tAH
Min
Max
Units
10
ms
0
ns
Address Hold Time
100
ns
tDS
Data Set-up Time
100
ns
tDH
Data Hold Time
10
ns
tWP
Write Pulse Width
200
ns
tBLC
Byte Load Cycle Time
tWPH
Write Pulse Width High
150
100
µs
ns
17. Programming Algorithm
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA 55
TO
ADDRESS 2AAA
LOAD DATA A0
TO
ADDRESS 5555
WRITES ENABLED(2)
LOAD DATA XX
TO
ANY ADDRESS(3)
LOAD LAST BYTE
TO
LAST ADDRESS(3)
Notes:
ENTER DATA
PROTECT STATE
1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex).
2. Data protect state will be re-activated at the end of program cycle.
3. 1 to 128 bytes of data are loaded.
18. Software Protected Program Cycle Waveforms(1)(2)(3)
Notes:
1. A0 - A14 must conform to the addressing sequence for the first three bytes as shown above.
2. After the command sequence has been issued and a page write operation follows, the page address inputs (A7 - A16) must
be the same for each high to low transition of WE (or CE).
3. OE must be high only when WE and CE are both low.
9
0395F–PEEPR–08/09
19. Data Polling Characteristics(1)
Symbol
Parameter
tDH
Data Hold Time
tOEH
OE Hold Time
Typ
Max
ns
10
ns
OE to Output Delay
tWR
Write Recovery Time
Units
10
(2)
tOE
Notes:
Min
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See AC Read Characteristics
20. Data Polling Waveforms
21. Toggle Bit Characteristics(1)
Symbol
Parameter
Min
tDH
Data Hold Time
10
ns
tOEH
OE Hold Time
10
ns
(2)
tOE
OE to Output Delay
tOEHP
OE High Pulse
tWR
Write Recovery Time
Notes:
Typ
Max
Units
ns
150
ns
0
ns
1. These parameters are characterized and not 100% tested.
2. See AC Read Characteristics
22. Toggle Bit Waveforms
Notes:
1. Toggling either OE or CE or both OE and CE will operate toggle bit.
2. Beginning and ending state of I/O6 will vary.
3. Any address location may be used but the address should not vary.
10
AT28LV010
0395F–PEEPR–08/09
AT28LV010
23. Ordering Information
23.1
Green Package Option (Pb/Halide-free)
tACC
(ns)
200
Note:
ICC (mA)
Active
15
Standby
0.05
Package
Operation Range
AT28LV010-20JU
Ordering Code
32J
AT28LV010-20TU
32T
Industrial
(-40° to 85° C)
To receive product with the SDP feature temporarily disabled, order with SL319.
Package Type
32J
32-lead, Plastic J-leaded Chip Carrier (PLCC)
32T
32-lead, Plastic Thin Small Outline Package (TSOP)
23.2
Die Products
Contact Atmel Sales for die sales options.
11
0395F–PEEPR–08/09
24. Packaging Information
24.1
32J – PLCC
1.14(0.045) X 45˚
PIN NO. 1
IDENTIFIER
1.14(0.045) X 45˚
0.318(0.0125)
0.191(0.0075)
E1
E
E2
B1
B
e
A2
D1
A1
D
A
0.51(0.020)MAX
45˚ MAX (3X)
COMMON DIMENSIONS
(Unit of Measure = mm)
D2
Notes:
1. This package conforms to JEDEC reference MS-016, Variation AE.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
SYMBOL
MIN
NOM
MAX
A
3.175
–
3.556
A1
1.524
–
2.413
A2
0.381
–
–
D
12.319
–
12.573
D1
11.354
–
11.506
D2
9.906
–
10.922
E
14.859
–
15.113
E1
13.894
–
14.046
E2
12.471
–
13.487
B
0.660
–
0.813
B1
0.330
–
0.533
e
NOTE
Note 2
Note 2
1.270 TYP
10/04/01
R
12
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)
DRAWING NO.
REV.
32J
B
AT28LV010
0395F–PEEPR–08/09
AT28LV010
24.2
32T – TSOP
PIN 1
0º ~ 8º
c
Pin 1 Identifier
D1 D
L
b
e
L1
A2
E
A
GAGE PLANE
SEATING PLANE
COMMON DIMENSIONS
(Unit of Measure = mm)
A1
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
19.80
20.00
20.20
D1
18.30
18.40
18.50
Note 2
E
7.90
8.00
8.10
Note 2
L
0.50
0.60
0.70
SYMBOL
Notes:
1. This package conforms to JEDEC reference MO-142, Variation BD.
2. Dimensions D1 and E do not include mold protrusion. Allowable
protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
3. Lead coplanarity is 0.10 mm maximum.
L1
0.25 BASIC
b
0.17
0.22
0.27
c
0.10
–
0.21
e
NOTE
0.50 BASIC
10/18/01
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32T, 32-lead (8 x 20 mm Package) Plastic Thin Small Outline
Package, Type I (TSOP)
DRAWING NO.
REV.
32T
B
13
0395F–PEEPR–08/09
Revision History
14
Doc. Rev.
Date
Comments
0395F
08/2009
Implemented Revision History and updated AC Characterisitics and
ordering information.
0395F
07/2009
Add a revision history page and update this version ‘F’ with the
changes.
Update AC Characateristics.
AT28LV010
0395F–PEEPR–08/09
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
0395F–PEEPR–08/09