Freescale Semiconductor Technical Data Document Number: MRFE6VS25L Rev. 0, 10/2012 RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET MRFE6VS25LR5 RF power transistor designed for both narrowband and broadband ISM, broadcast and aerospace applications operating at frequencies from 1.8 to 2000 MHz. This device is fabricated using Freescale’s enhanced ruggedness platform and is suitable for use in applications where high VSWRs are encountered. Typical Performance: VDD = 50 Volts Frequency (MHz) Signal Type Pout (W) Gps (dB) ηD (%) IMD (dBc) 1.8--30 (1,3) Two--Tone (10 kHz spacing) 25 PEP 25.0 50.0 --28 30--512 (2,3) Two--Tone (200 kHz spacing) 25 PEP 17.3 32.0 --32 512 (4) Pulse (100 μsec, 20% Duty Cycle) 25 Peak 25.9 74.0 — 512 (4) CW 25 26.0 75.0 — 1.8--2000 MHz, 25 W, 50 V WIDEBAND RF POWER LDMOS TRANSISTOR NI--360--2 Load Mismatch/Ruggedness Frequency (MHz) Signal Type VSWR Pin (W) Test Voltage 30 (1) CW >65:1 at all Phase Angles 0.11 (3 dB Overdrive) 50 512 (2) CW 0.95 (3 dB Overdrive) 512 (4) Pulse (100 μsec, 20% Duty Cycle) 0.14 Peak (3 dB Overdrive) 512 (4) CW 0.14 (3 dB Overdrive) Result No Device Degradation 2 Drain Gate 1 (Top View) Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections 1. Measured in 1.8--30 MHz broadband reference circuit. 2. Measured in 30--512 MHz broadband reference circuit. 3. The values shown are the minimum measured performance numbers across the indicated frequency range. 4. Measured in 512 MHz narrowband test circuit. Features • • • • • • • Wide Operating Frequency Range Extreme Ruggedness Unmatched, Capable of Very Broadband Operation Integrated Stability Enhancements Low Thermal Resistance Extended ESD Protection Circuit In Tape and Reel. R5 Suffix = 50 Units, 32 mm Tape Width, 13 inch Reel. © Freescale Semiconductor, Inc., 2012. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MRFE6VS25LR5 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +133 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg --65 to +150 °C Case Operating Temperature Range TC --40 to +150 °C (1,2) TJ --40 to +225 °C Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 81°C, 25 W CW, 50 Vdc, IDQ = 10 mA, 512 MHz RθJC 1.4 °C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 77°C, 25 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ = 10 mA, 512 MHz ZθJC 0.32 °C/W Operating Junction Temperature Range Table 2. Thermal Characteristics Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2000 V Machine Model (per EIA/JESD22--A115) B, passes 200 V Charge Device Model (per JESD22--C101) IV, passes 1200 V Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 400 nAdc 133 140 — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 2 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 7 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 85 μAdc) VGS(th) 1.5 2.0 2.5 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test) VGS(Q) 2.0 2.4 3.0 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 210 mAdc) VDS(on) — 0.23 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.17 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 14.7 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 39.0 — pF On Characteristics Dynamic Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. (continued) MRFE6VS25LR5 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Symbol Characteristic Min Typ Max Unit Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak (5 W Avg.), f = 512 MHz, Pulse, 100 μsec Pulse Width, 20% Duty Cycle Power Gain Gps 24.5 25.9 27.5 dB Drain Efficiency ηD 70.0 74.0 — % Input Return Loss IRL — --16 --10 dB Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ = 150 mA Frequency (MHz) Signal Type VSWR Pin (W) 512 Pulse (100 μsec, 20% Duty Cycle) >65:1 at all Phase Angles 0.14 Peak (3 dB Overdrive) CW Test Voltage, VDD Result 50 No Device Degradation 0.14 (3 dB Overdrive) MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS 100 Ciss NORMALIZED VGS(Q) C, CAPACITANCE (pF) Coss 10 1 Crss Measured with ±30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc 0.1 0 10 20 30 40 50 1.07 1.06 IDQ = 10 mA 1.05 50 mA 1.04 1.03 1.02 100 mA 1.01 150 mA 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 --50 --25 0 VDD = 50 Vdc 25 50 75 100 TC, CASE TEMPERATURE (°C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Figure 2. Capacitance versus Drain--Source Voltage IDQ (mA) Slope (mV/°C) 10 --2.16 50 --1.79 100 --1.76 150 --1.68 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 VDD = 50 Vdc ID = 0.55 Amps MTTF (HOURS) 107 0.69 Amps 106 0.83 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. NOTE: For pulse applications or CW conditions, use the MTTF calculator referenced above. Figure 4. MTTF versus Junction Temperature -- CW MRFE6VS25LR5 4 RF Device Data Freescale Semiconductor, Inc. 512 MHz NARROWBAND PRODUCTION TEST FIXTURE C1 C9 C10 C5 B1 C2 L3 C4 L1 C8 C6 C7 C14 C12 CUT OUT AREA C3 B2 L2 C13 C11 C15 MRFE6VS25L Rev. 3 Figure 5. MRFE6VS25LR5 Narrowband Test Circuit Component Layout — 512 MHz Table 5. MRFE6VS25LR5 Narrowband Test Circuit Component Designations and Values — 512 MHz Part Description Part Number Manufacturer B1, B2 Long Ferrite Beads 2743021447 Fair-Rite C1 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kemet C2, C9 0.1 μF Chip Capacitors CDR33BX104AKWS AVX C3, C10 0.01 μF Chip Capacitors C0805C103K5RAC Kemet C4, C12, C15 180 pF Chip Capacitors ATC100B181JT500XT ATC C5 18 pF Chip Capacitor ATC100B180JT500XT ATC C6 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C7 15 pF Chip Capacitor ATC100B150JT500XT ATC C8 36 pF Chip Capacitor ATC100B360JT500XT ATC C11 4.3 pF Chip Capacitor ATC100B4R3CT500XT ATC C13 13 pF Chip Capacitor ATC100B130JT500XT ATC C14 470 μF, 63 V Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp L1 33 nH Inductor 1812SMS-33NJLC Coilcraft L2 12.5 nH Inductor A04TJLC Coilcraft L3 82 nH Inductor 1812SMS-82NJLC Coilcraft PCB 0.030″, εr = 2.55 AD255A Arlon MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 5 L3 B1 VBIAS C9 C2 C3 VSUPPLY + C12 + C1 B2 C4 C10 C14 L2 L1 RF INPUT Z11 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z12 Z13 Z14 Z15 Z16 C6 C7 C8 Z19 C15 Z10 C11 C5 Z17 Z18 RF OUTPUT C13 DUT Figure 6. MRFE6VS25LR5 Narrowband Test Circuit Schematic — 512 MHz Table 6. MRFE6VS25LR5 Narrowband Test Circuit Microstrips — 512 MHz Microstrip Description Microstrip Description Z1 0.235″ × 0.082″ Microstrip Z11 0.475″ × 0.270″ Microstrip Z2 0.042″ × 0.082″ Microstrip Z12 0.091″ × 0.082″ Microstrip Z3 0.682″ × 0.082″ Microstrip Z13 0.170″ × 0.082″ Microstrip Z4* 0.200″ × 0.060″ Microstrip Z14* 0.670″ × 0.082″ Microstrip Z5 0.324″ × 0.060″ Microstrip Z15 0.280″ × 0.082″ Microstrip Z6* 0.200″ × 0.060″ Microstrip Z16* 0.413″ × 0.082″ Microstrip Z7 0.089″ × 0.082″ Microstrip Z17* 0.259″ × 0.082″ Microstrip Z8 0.120″ × 0.082″ Microstrip Z18 0.761″ × 0.082″ Microstrip Z9 0.411″ × 0.082″ Microstrip Z19 0.341″ × 0.082″ Microstrip Z10 0.260″ × 0.270″ Microstrip * Line length includes microstrip bends MRFE6VS25LR5 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 512 MHz Pout, OUTPUT POWER (WATTS) 32 VDD = 50 Vdc, f = 512 MHz 28 24 20 Pin = 0.035 W Pin = 0.07 W 16 12 8 4 0 0.5 0 1.5 1 2.5 2 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. CW Output Power versus Gate--Source Voltage at a Constant Input Power 30 VDD = 50 Vdc IDQ = 10 mA f = 512 MHz 42 29 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) 44 VDD = 50 Vdc, f = 512 MHz 40 38 36 34 10 mA IDQ = 150 mA 28 90 50 mA 80 ηD 70 100 mA 100 mA Gps 27 60 150 mA 50 mA 26 50 10 mA 25 40 30 24 32 10 12 14 18 16 20 23 22 ηD, DRAIN EFFICIENCY (%) 46 2 20 50 10 Pout, OUTPUT POWER (WATTS) Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 512 28.7 31.6 Figure 9. Power Gain and Drain Efficiency versus CW Output Power and Quescient Current Figure 8. CW Output Power versus Input Power 90 Gps, POWER GAIN (dB) 28 27 ηD --40_C 26 25 TC = --40_C 24 Gps 60 50 40 25_C 23 80 25_C 70 85_C 30 85_C 20 22 21 1 10 28 27 10 50 26 Gps, POWER GAIN (dB) VDD = 50 Vdc IDQ = 10 mA f = 512 MHz ηD, DRAIN EFFICIENCY (%) 29 25 24 23 22 21 20 50 V 45 V 40 V 35 V 30 V 19 IDQ = 10 mA, f = 512 MHz Pulse Width = 100 μsec 20% Duty Cycle 25 V 18 17 VDD = 20 V 16 0 5 10 15 20 25 30 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) PEAK Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power and Drain--Source Voltage 35 MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 7 512 MHz NARROWBAND PRODUCTION TEST FIXTURE VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak f MHz Zsource Ω Zload Ω 512 0.72 + j10.8 8.8 + j17.5 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50 Ω Zload Figure 12. Narrowband Series Equivalent Source and Load Impedance — 512 MHz MRFE6VS25LR5 8 RF Device Data Freescale Semiconductor, Inc. 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT Table 7. 1.8--30 MHz HF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ = 100 mA Signal Type Two-Tone (10 kHz spacing) Pout (W) f (MHz) Gps (dB) ηD (%) IMD (dBc) 25 PEP 1.8 25.8 51.5 --28.7 10 25.9 50.4 --33.9 30 25.0 50.7 --31.1 Table 8. Load Mismatch/Ruggedness (In Freescale Reference Circuit) Frequency (MHz) Signal Type VSWR 30 CW >65:1 at all Phase Angles Pin (W) 0.11 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 9 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT C2 C3 C4 C8 C6 C7 C5 + R1 L1, E1 C10 C9 C1* L2, E2 C11* CUT OUT AREA Q1 MRFE6VS25L/N Rev. 0 *C1 and C11 are mounted vertically. Figure 13. MRFE6VS25LR5 HF Broadband Reference Circuit Component Layout — 1.8--30 MHz Table 9. MRFE6VS25LR5 HF Broadband Reference Circuit Component Designations and Values — 1.8--30 MHz Part Description Part Number Manufacturer C1, C5, C6, C9, C11 20K pF Chip Capacitors ATC200B203KT50XT ATC C2 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C3 0.1 μF Chip Capacitor CDR33BX104AKWY AVX C4 2.2 μF Chip Capacitor C3225X7R1H225KT TDK C7 0.1 μF Chip Capacitor GRM319R72A104KA01D Murata C8 2.2 μF Chip Capacitor G2225X7R225KT3AB ATC C10 220 μF, 100 V Electolytic Capacitor MCGPR100V227M16X26-RH Multicomp E1 #43 Ferrite Toroid 5943001101 Fair--Rite E2 #61 Ferrite Toroid 5961001101 Fair--Rite L1 4 Turns, 22 AWG, Toroid Transformer with Ferrite E1 8077 Copper Magnetic Wire Belden L2 26 Turns, 22 AWG, Toroid Transformer with Ferrite E2 8077 Copper Magnetic Wire Belden Q1 RF Power LDMOS Transistor MRFE6VS25LR1 Freescale R1 1 kΩ, 3 W Chip Resistor CPF31K0000FKE14 Vishay PCB 0.030″, εr = 4.8 S1000 Shenzhen Multilayer PCB Technology MRFE6VS25LR5 10 RF Device Data Freescale Semiconductor, Inc. VBIAS Z4 L1, E1 R1 + C2 C3 C4 C5 Z8 Z3 + C6 C7 C8 VSUPPLY C10 C9 L2, E2 Z7 RF INPUT Z6 Z1 Z2 Z5 C1 Z9 Z10 RF OUTPUT C11 DUT Figure 14. MRFE6VS25LR5 HF Broadband Reference Circuit Schematic — 1.8--30 MHz Table 10. MRFE6VS25LR5 HF Broadband Reference Circuit Microstrips — 1.8--30 MHz Microstrip Description Microstrip Description Z1 0.141″ × 0.047″ Microstrip Z6 0.469″ × 0.263″ Microstrip Z2 0.625″ × 0.047″ Microstrip Z7 0.119″ × 0.063″ Microstrip Z3 0.119″ × 0.219″ Microstrip Z8 0.422″ × 0.241″ Microstrip Z4 0.422″ × 0.241″ Microstrip Z9 0.625″ × 0.047″ Microstrip Z5 0.469″ × 0.263″ Microstrip Z10 0.141″ × 0.047″ Microstrip MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 11 TYPICAL CHARACTERISTICS — 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT 30 110 100 90 Gps 22 20 18 80 70 60 40 30 20 ηD 16 14 12 10 8 6 Pout 10 0 5 10 15 20 25 35 30 0 ηD, DRAIN EFFICIENCY (%) 26 24 Pout, OUTPUT POWER (WATTS) 28 Gps, POWER GAIN (dB) 130 120 VDD = 50 Vdc, Pin = 0.15 W IDQ = 25 mA f, FREQUENCY (MHz) Figure 15. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power 35 VDD = 50 Vdc Pin = 0.1 W 30 1.8 MHz f = 10 MHz 20 10 30 MHz 1 f = 10 MHz 25 1.8 MHz 20 30 MHz 15 10 5 0 0 VDD = 50 Vdc Pin = 0.05 W 30 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) 40 2 3 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 16. CW Output Power versus Gate--Source Voltage at a Constant Input Power 0 0 1 2 3 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 17. CW Output Power versus Gate--Source Voltage at a Constant Input Power MRFE6VS25LR5 12 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT 48 Pout, OUTPUT POWER (dBm) VDD = 50 Vdc IDQ = 25 mA f = 10 MHz 44 1.8 MHz 40 30 MHz 36 32 8 16 12 24 20 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 1.8 21.9 26.4 10 24.0 28.4 30 23.9 29.1 Figure 18. CW Output Power versus Input Power 30 75 30 MHz 26 65 55 1.8 MHz 10 MHz 24 45 30 MHz 22 Gps 20 35 25 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 28 10 MHz f = 1.8 MHz VDD = 50 Vdc IDQ = 25 mA ηD 18 1 10 15 100 Pout, OUTPUT POWER (WATTS) Figure 19. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 13 TYPICAL CHARACTERISTICS — 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT — TWO--TONE (1) --20 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 VDD = 50 Vdc, IDQ = 100 mA f1 = 1.795 MHz, f2 = 1.805 MHz Two--Tone Measurements --25 --30 --35 --40 --45 3rd Order --50 --55 5th Order --60 --65 7th Order --70 30 10 2 VDD = 50 Vdc, IDQ = 100 mA f1 = 9.995 MHz, f2 = 10.005 MHz Two--Tone Measurements --25 --30 --35 --40 --45 3rd Order --50 --55 5th Order --60 --65 7th Order --70 10 2 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 20. Intermodulation Distortion Products versus Output Power — 1.8 MHz Figure 21. Intermodulation Distortion Products versus Output Power — 10 MHz 30 IMD, INTERMODULATION DISTORTION (dBc) --20 VDD = 50 Vdc, IDQ = 100 mA f1 = 29.995 MHz, f2 = 30.005 MHz Two--Tone Measurements --25 --30 --35 --40 3rd Order --45 --50 --55 5th Order --60 --65 7th Order --70 2 10 30 Pout, OUTPUT POWER (WATTS) PEP Figure 22. Intermodulation Distortion Products versus Output Power — 30 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone. MRFE6VS25LR5 14 RF Device Data Freescale Semiconductor, Inc. 1.8--30 MHz HF BROADBAND REFERENCE CIRCUIT Zo = 50 Ω f = 1.8 MHz Zsource f = 1.8 MHz f = 30 MHz Zload f = 30 MHz VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW f MHz Zsource Ω Zload Ω 1.8 42.4 + j9.5 47.1 - j1.6 5 44.3 + j3.0 46.8 - j1.2 10 44.2 + j0.4 47.2 - j2.1 15 44.4 - j0.5 47.5 - j3.2 20 44.6 - j1.3 47.7 - j4.3 25 44.8 - j2.0 47.8 - j5.2 30 44.9 - j2.5 47.7 - j6.1 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50 Ω Zload Figure 23. HF Broadband Series Equivalent Source and Load Impedance — 1.8--30 MHz MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 15 30--512 MHz BROADBAND REFERENCE CIRCUIT Table 11. 30--512 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ = 100 mA Signal Type Two-Tone (200 kHz spacing) Pout (W) f (MHz) Gps (dB) ηD (%) IMD (dBc) 25 PEP 30 20.9 34.2 --32.3 100 19.0 38.2 --31.5 512 17.3 32.0 --36.1 Table 12. Load Mismatch/Ruggedness (In Freescale Reference Circuit) Frequency (MHz) Signal Type VSWR 512 CW >65:1 at all Phase Angles Pin (W) 0.95 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VS25LR5 16 RF Device Data Freescale Semiconductor, Inc. 30--512 MHz BROADBAND REFERENCE TEST FIXTURE D1 C10 E2, L2 R3 R1 C5 C6 C9 C11 C8 T2 C7 E3 L1 R2 C2 C4 C3 C1 Q1 E4 E1 T1 T3 MRFE6VS25L/N Rev. 0 Note: See Figure 24a for a more detailed view of the semi--flex cables with shields and #61 multi--aperture cores. Figure 24. MRFE6VS25LR5 Broadband Reference Circuit Component Layout — 30--512 MHz Table 13. MRFE6VS25LR5 Broadband Reference Circuit Component Designations and Values — 30--512 MHz Part Description Part Number Manufacturer C1, C3, C6, C7, C8 1,000 pF Chip Capacitors ATC100B102JT50XT ATC C2 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C4 15 nF Chip Capacitor C3225CH2A153JT TDK C5, C9 10 nF Chip Capacitors GRM3195C1E103JA01 Murata C10 1 μF Chip Capacitor C3225JB2A105KT TDK C11 220 μF, 100 V Electrolytic Capacitor MCGPR100V227M16X26-RH Multicomp D1 8.2 V, 1 W Zener Diode 1N4738A Fairchild Semiconductor E1, E3, E4 #61 Multi-aperture Cores 2861001502 Fair-Rite E2 Ferrite Core Bead 21-201-J Ferronics L1 47 nH Inductor 1812SMS-47NJLC Coilcraft L2 4 Turns, 20 AWG, Toroid Transformer with Ferrite E2 8076 Copper Magnetic Wire Belden R1 5.6 KΩ, 1/4 W Chip Resistor CRCW12065K60FKEA Vishay R2 15 Ω, 1/4 W Chip Resistor CRCW120615R0FKEA Vishay R3 5 kΩ Potentiometer CMS Cermet Multi--turn 3224W-1-502E Bourns T1 25 Ω Semi-flex Cable, 0.945″ Shield Length D260-4118-0000 Microdot T2, T3 25 Ω Semi-flex Cables, 1.340″ Shield Length D260-4118-0000 Microdot PCB 0.030″, εr = 3.5 TC350 Arlon MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 17 Center conductor connection to PCB T2 E3 C2 Shield connection to PCB C3 C4 E1 T2 E3 S T1 Z12 T3 T3 E1 S T1 E4 S S E4 S NOT TO SCALE T3 S S = Shield Figure 24a. Detailed View of Semi--flex Cables with Shields and #61 Multi--aperture Cores + R1 L1 D1 C5 C6 Z8 Z2 Z3 Z4 Z6 T1 E1 C1 C2 C10 C11 E3 Z9 R2 Z1 C9 T2 C7 RF INPUT C8 L2, E2 R3 VSUPPLY Z12 Z10 Z7 Z11 T3 Z14 Z15 Z16 RF OUTPUT E4 C4 Z13 C3 DUT Z5 Figure 25. MRFE6VS25LR5 Broadband Reference Circuit Schematic — 30--512 MHz Table 14. MRFE6VS25LR5 Broadband Reference Circuit Microstrips — 30--512 MHz Microstrip Description Microstrip Description Z1 0.180″ × 0.080″ Microstrip Z9 0.080″ × 0.310″ Microstrip Z2 0.080″ × 0.190″ Microstrip Z10 0.260″ × 0.260″ Microstrip Z3 0.230″ × 0.190″ Microstrip Z11 0.140″ × 0.190″ Microstrip Z4 0.150″ × 0.190″ Microstrip Z12 0.170″ × 0.080″ Microstrip Z5 0.180″ × 0.190″ Microstrip Z13 0.210″ × 0.060″ Microstrip Z6 0.220″ × 0.190″ Microstrip Z14 0.420″ × 0.190″ Microstrip Z7 0.230″ × 0.260″ Microstrip Z15 0.070″ × 0.140″ Microstrip Z8 0.140″ × 0.150″ Microstrip Z16 0.190″ × 0.080″ Microstrip MRFE6VS25LR5 18 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT 110 100 18 90 Gps 16 14 12 10 80 70 60 50 ηD 40 8 6 4 2 0 30 20 Pout 0 50 100 150 200 250 300 350 400 450 ηD, DRAIN EFFICIENCY (%) 22 20 Gps, POWER GAIN (dB) 120 VDD = 50 Vdc, Pin = 0.8 W IDQ = 25 mA Pout, OUTPUT POWER (WATTS) 24 10 0 500 550 f, FREQUENCY (MHz) Figure 26. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power 40 VDD = 50 Vdc Pin = 0.65 W 40 f = 30 MHz Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 50 30 20 100 MHz 512 MHz 10 0 VDD = 50 Vdc Pin = 0.325 W f = 30 MHz 100 MHz 30 512 MHz 20 10 0 0 1 2 3 4 0 1 2 3 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 27. CW Output Power versus Gate--Source Voltage at a Constant Input Power Figure 28. CW Output Power versus Gate--Source Voltage at a Constant Input Power MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 19 TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT 48 100 MHz Pout, OUTPUT POWER (dBm) f = 30 MHz 512 MHz 44 40 36 VDD = 50 Vdc IDQ = 25 mA 32 28 16 24 20 32 28 36 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 30 33.4 40.2 100 35.6 44.6 512 32.7 37.7 Figure 29. CW Output Power versus Input Power 24 70 20 100 MHz 30 MHz 30 MHz 18 50 40 100 MHz 16 14 60 Gps 512 MHz 20 12 10 ηD 10 1 30 ηD, DRAIN EFFICIENCY (%) 22 Gps, POWER GAIN (dB) f = 512 MHz VDD = 50 Vdc IDQ = 25 mA 10 0 100 Pout, OUTPUT POWER (WATTS) Figure 30. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25LR5 20 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT — TWO--TONE (1) --20 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 3rd Order --30 --40 5th Order --50 --60 --70 7th Order --80 VDD = 50 Vdc, IDQ = 100 mA f1 = 29.9 MHz, f2 = 30.1 MHz Two--Tone Measurements 1 10 40 3rd Order --30 --40 --50 5th Order --60 VDD = 50 Vdc, IDQ = 100 mA f1 = 99.9 MHz, f2 = 100.1 MHz Two--Tone Measurements --70 7th Order --80 10 1 40 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 31. Intermodulation Distortion Products versus Output Power — 30 MHz Figure 32. Intermodulation Distortion Products versus Output Power — 100 MHz IMD, INTERMODULATION DISTORTION (dBc) --20 --26 3rd Order --32 --38 --44 --50 5th Order --56 --62 7th Order --68 --74 --80 1 VDD = 50 Vdc, IDQ = 100 mA f1 = 511.9 MHz, f2 = 512.1 MHz Two--Tone Measurements 10 40 Pout, OUTPUT POWER (WATTS) PEP Figure 33. Intermodulation Distortion Products versus Output Power — 512 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone. MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 21 30--512 MHz BROADBAND REFERENCE CIRCUIT Zo = 25 Ω f = 30 MHz f = 512 MHz Zload Zsource f = 512 MHz f = 30 MHz VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW f MHz Zsource Ω Zload Ω 30 7.2 - j0.6 15.4 + j8.1 64 8.2 - j1.7 18.1 + j5.4 88 8.9 + j1.9 19.0 + j3.9 98 9.2 + j2.2 19.3 + j3.9 100 9.2 + j2.2 19.4 + j4.0 108 9.4 + j2.4 19.8 + j4.1 144 9.3 + j1.9 19.1 + j2.8 170 9.8 + j2.2 20.0 + j2.6 230 8.9 + j2.1 18.6 + j2.0 352 7.8 + j3.5 19.2 + j2.6 450 7.0 + j3.1 19.2 + j3.5 512 6.7 + j5.0 20.5 + j5.3 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50 Ω Zload Figure 34. Broadband Series Equivalent Source and Load Impedance — 30--512 MHz MRFE6VS25LR5 22 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 23 MRFE6VS25LR5 24 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Oct. 2012 Description • Initial Release of Data Sheet MRFE6VS25LR5 RF Device Data Freescale Semiconductor, Inc. 25 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, AltiVec, C--5, CodeTest, CodeWarrior, ColdFire, C--Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2012 Freescale Semiconductor, Inc. MRFE6VS25LR5 Document Number: MRFE6VS25L Rev. 0, 10/2012 26 RF Device Data Freescale Semiconductor, Inc.