Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1304N
Rev. 0, 12/2013
RF Power LDMOS Transistors
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
RF power transistors suitable for both narrowband and broadband CW or
pulse applications operating at frequencies from 1.8 to 2000 MHz, such as
military radio communications and radar. These devices are fabricated using
Freescale’s enhanced ruggedness platform and are suitable for use in
applications where high VSWRs are encountered.
Typical Performance: VDD = 50 Vdc
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
IMD (1)
(dBc)
1.8 to 30 (2,6)
Two--Tone
(10 kHz spacing)
25 PEP
25
51
--30
30--512 (3,6)
Two--Tone
(200 kHz spacing)
25 PEP
17.1
30.1
--32
512 (4)
Pulse (100 sec,
20% Duty Cycle)
25 Peak
25.4
74.5
—
512 (4)
CW
25
25.5
74.7
—
CW
25
22.5
60
—
1030
(5)
MMRF1304NR1
MMRF1304GNR1
1.8--2000 MHz, 25 W, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
TO--270--2
PLASTIC
MMRF1304NR1
Load Mismatch/Ruggedness
Frequency
(MHz)
Signal Type
VSWR
Pin
(W)
Test
Voltage
30 (2)
CW
>65:1
at all Phase
Angles
0.23
(3 dB
Overdrive)
50
512 (3)
CW
1.6
(3 dB
Overdrive)
512 (4)
Pulse
(100 sec, 20%
Duty Cycle)
0.14 Peak
(3 dB
Overdrive)
512 (4)
CW
0.14
(3 dB
Overdrive
1030 (5)
CW
0.34
(3 dB
Overdrive
1.
2.
3.
4.
5.
6.
TO--270G--2
PLASTIC
MMRF1304GNR1
Result
No Device
Degradation
Distortion products are referenced to one of two tones.
Measured in 1.8--30 MHz broadband reference circuit.
Measured in 30--512 MHz broadband reference circuit.
Measured in 512 MHz narrowband test circuit.
Measured in 1030 MHz narrowband test circuit.
The values shown are the minimum measured performance numbers across the
indicated frequency range.
Gate 2
1 Drain
(Top View)
Note: The backside of the package is the
source terminal for the transistor.
Figure 1. Pin Connections
Features







Wide Operating Frequency Range
Extreme Ruggedness
Unmatched, Capable of Very Broadband Operation
Integrated Stability Enhancements
Low Thermal Resistance
Extended ESD Protection Circuit
In Tape and Reel. R1 Suffix = 500 Units, 24 mm Tape Width, 13--inch Reel.
 Freescale Semiconductor, Inc., 2013. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1304NR1 MMRF1304GNR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +133
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
--65 to +150
C
Case Operating Temperature
TC
--40 to +150
C
Operating Junction Temperature (1)
TJ
--40 to +225
C
Symbol
Value (2)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 80C, 25 W CW, 50 Vdc, IDQ = 10 mA, 512 MHz
RJC
1.2
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 77C, 25 W Peak, 100 sec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ = 10 mA, 512 MHz
ZJC
0.29
C/W
Table 2. Thermal Characteristics
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
400
nAdc
133
142
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
2
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
7
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 85 Adc)
VGS(th)
1.5
2.0
2.5
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test)
VGS(Q)
2.0
2.4
3.0
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 210 mAdc)
VDS(on)
—
0.28
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.26
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
14.2
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
39.2
—
pF
On Characteristics
Dynamic Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
(continued)
MMRF1304NR1 MMRF1304GNR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak (5 W Avg.), f = 512 MHz,
100 sec Pulse Width, 20% Duty Cycle
Gps
24.0
25.4
Drain Efficiency
D
70.0
74.5
—
%
Input Return Loss
IRL
—
--16
--10
dB
Power Gain
27.0
dB
Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ = 10 mA
Frequency
(MHz)
Signal
Type
VSWR
Pin
(W)
512
Pulse
(100 sec, 20% Duty Cycle)
>65:1
at all Phase Angles
0.14 Peak
(3 dB Overdrive)
CW
Test Voltage, VDD
Result
50
No Device Degradation
0.14
(3 dB Overdrive)
1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
1.06
100
Ciss
IDQ = 10 mA
1.04
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
Coss
10
1
VDD = 50 Vdc
1.02
1
100 mA
0.98
150 mA
Crss
0.96
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0.1
0
10
20
30
40
0.94
--40
60
50
50 mA
--20
0
20
40
60
80
100
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
TC, CASE TEMPERATURE (C)
Figure 2. Capacitance versus Drain--Source Voltage
Figure 3. Normalized VGS and Quiescent Current
versus Case Temperature
IDQ (mA)
Slope (mV/C)
10
--2.160
50
--1.790
100
--1.760
150
--1.680
108
VDD = 50 Vdc
ID = 0.6 Amps
MTTF (HOURS)
107
0.7 Amps
106
0.9 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 4. MTTF versus Junction Temperature -- CW
MMRF1304NR1 MMRF1304GNR1
4
RF Device Data
Freescale Semiconductor, Inc.
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
C1
C13
B2
C14
B1
C2 C3
L3
C4
C5*
L1
C7
L2
C8
CUT OUT AREA
C6
C15
C12
C10*
C11
C9*
*C5, C9 and C10 are mounted vertically.
Figure 5. MMRF1304NR1 Narrowband Test Circuit Component Layout — 512 MHz
Table 6. MMRF1304NR1 Narrowband Test Circuit Component Designations and Values — 512 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Long Ferrite Beads
2743021447
Fair-Rite
C1
22 F, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C2, C13
0.1 F Chip Capacitors
CDR33BX104AKWY
AVX
C3, C14
0.01 F Chip Capacitors
C0805C103K5RAC
Kemet
C4, C11, C12
180 pF Chip Capacitors
ATC100B181JT300XT
ATC
C5
18 pF Chip Capacitor
ATC100B180JT500XT
ATC
C6
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C7
15 pF Chip Capacitor
ATC100B150JT500XT
ATC
C8
36 pF Chip Capacitor
ATC100B360JT500XT
ATC
C9
4.3 pF Chip Capacitor
ATC100B4R3CT500XT
ATC
C10
13 pF Chip Capacitor
ATC100B130JT500XT
ATC
C15
470 F, 63 V Electrolytic Capacitor
MCGPR63V477M13X26-RH
Multicomp
L1
33 nH Inductor
1812SMS-33NJLC
Coilcraft
L2
12.5 nH Inductor
A04TJLC
Coilcraft
L3
82 nH Inductor
1812SMS-82NJLC
Coilcraft
PCB
0.030, r = 2.55
AD255A
Arlon
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
5
L3
B2
B1
VBIAS
C12
+
C1
C2
C3
C4
C13
C14
C15
L2
L1
RF
INPUT
Z11
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z12
Z13 Z14 Z15 Z16
C5
C7
C8
Z17 Z18
Z19
RF
OUTPUT
C11
Z10
C9
C6
VSUPPLY
+
C10
DUT
Figure 6. MMRF1304NR1 Narrowband Test Circuit Schematic — 512 MHz
Table 7. MMRF1304NR1 Narrowband Test Circuit Microstrips — 512 MHz
Microstrip
Description
Microstrip
Description
Z1
0.235  0.082 Microstrip
Z11
0.475  0.270 Microstrip
Z2
0.042  0.082 Microstrip
Z12
0.091  0.082 Microstrip
Z3
0.682  0.082 Microstrip
Z13
0.170  0.082 Microstrip
Z4*
0.200  0.060 Microstrip
Z14*
0.670  0.082 Microstrip
Z5
0.324  0.060 Microstrip
Z15
0.280  0.082 Microstrip
Z6*
0.200  0.060 Microstrip
Z16*
0.413  0.082 Microstrip
Z7
0.067  0.082 Microstrip
Z17*
0.259  0.082 Microstrip
Z8
0.142  0.082 Microstrip
Z18
0.761  0.082 Microstrip
Z9
0.481  0.082 Microstrip
Z19
0.341  0.082 Microstrip
Z10
0.190  0.270 Microstrip
* Line length includes microstrip bends
MMRF1304NR1 MMRF1304GNR1
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 512 MHz
50
VDD = 50 Vdc
Pin = 0.07 W
f = 512 MHz
30
25
20
15
10
5
0
0
1
VDD = 50 Vdc
IDQ = 10 mA
f = 512 MHz
45
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS)
35
2
3
40
35
30
25
20
15
4
0
5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
10
15
20
25
Pin, INPUT POWER (dBm)
Figure 7. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
f
(MHz)
P1dB
(W)
P3dB
(W)
512
27.8
31.4
Figure 8. CW Output Power versus Input Power
27
25
80
25_C
Gps
24
60
23
22
21
85_C
TC = --30_C
D
30
20
20
19
0.3
50
40
85_C
25_C
70
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
26
90
--30_C
VDD = 50 Vdc
IDQ = 10 mA
f = 512 MHz
10
1
10
50
Pout, OUTPUT POWER (WATTS)
Figure 9. Power Gain and Drain Efficiency
versus CW Output Power
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
7
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak
f
MHz
Zsource

Zload

512
1.56 + j11.6
9.5 + j18.3
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50 
Zload
Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz
MMRF1304NR1 MMRF1304GNR1
8
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
9
MMRF1304NR1 MMRF1304GNR1
10
RF Device Data
Freescale Semiconductor, Inc.
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
11
MMRF1304NR1 MMRF1304GNR1
12
RF Device Data
Freescale Semiconductor, Inc.
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
13
MMRF1304NR1 MMRF1304GNR1
14
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
 AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
 EB38: Measuring the Intermodulation Distortion of Linear Amplifiers
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Dec. 2013
Description
 Initial Release of Data Sheet
MMRF1304NR1 MMRF1304GNR1
RF Device Data
Freescale Semiconductor, Inc.
15
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2013 Freescale Semiconductor, Inc.
MMRF1304NR1 MMRF1304GNR1
Document Number: MMRF1304N
Rev.
16 0, 12/2013
RF Device Data
Freescale Semiconductor, Inc.