Freescale Semiconductor Technical Data Document Number: MRF6V12250H Rev. 2, 4/2010 RF Power Field Effect Transistors MRF6V12250HR3 MRF6V12250HSR3 N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 960 and 1215 MHz. These devices are suitable for use in pulsed applications. • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 275 Watts Peak (27.5 Watts Avg.), f = 1030 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 20.3 dB Drain Efficiency — 65.5% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 275 Watts Peak Power • Typical Broadband Performance: VDD = 50 Volts, IDQ = 100 mA, Pout = 250 Watts Peak (25 Watts Avg.), f = 960--1215 MHz, Pulse Width = 128 μsec, Duty Cycle = 10% Power Gain — 19.8 dB Drain Efficiency — 58% Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 960--1215 MHz, 275 W, 50 V PULSED LATERAL N--CHANNEL RF POWER MOSFETs CASE 465--06, STYLE 1 NI--780 MRF6V12250HR3 CASE 465A--06, STYLE 1 NI--780S MRF6V12250HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +100 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Symbol Value (2,3) Unit ZθJC 0.08 °C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 275 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2009--2010. All rights reserved. RF Device Data Freescale Semiconductor MRF6V12250HR3 MRF6V12250HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 (Minimum) Machine Model (per EIA/JESD22--A115) B (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 10 μAdc 110 — — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 90 Vdc, VGS = 0 Vdc) IDSS — — 100 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 662 μAdc) VGS(th) 0.9 1.7 2.4 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 1.7 2.4 3.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.6 Adc) VDS(on) — 0.25 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.46 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 352 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 695 — pF On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak (27.5 W Avg.), f = 1030 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Gps 19 20.3 22 dB Drain Efficiency ηD 63 65.5 — % Input Return Loss IRL — --14 --9 dB Typical Broadband Performance — 960--1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.), f = 960--1215 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Gps — 19.8 — dB Drain Efficiency ηD — 58 — % 1. Part internally matched both on input and output. MRF6V12250HR3 MRF6V12250HSR3 2 RF Device Data Freescale Semiconductor R4 VBIAS R3 C12 C8 C7 VSUPPLY + + C14 C15 C13 C6 Z14 Z11 RF INPUT Z13 Z16 Z17 Z18 Z19 Z20 Z21 Z22 C5 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 DUT C4 R1 C9 Z10 C1 Z15 Z12 R2 C10 C2 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11, Z12 Z23 RF OUTPUT C11 C3 1.055″ x 0.082″ Microstrip 0.100″ x 0.082″ Microstrip 0.084″ x 0.395″ Microstrip 0.419″ x 0.040″ Microstrip 0.498″ x 0.466″ Microstrip 0.110″ x 1.060″ Microstrip 0.050″ x 1.300″ Microstrip 0.092″ x 1.300″ Microstrip 0.219″ x 1.420″ Microstrip 0.087″ x 1.420″ Microstrip 0.187″ x 0.050″ Microstrip Z13 Z14, Z15 Z16 Z17 Z18 Z19 Z20 Z21 Z22 Z23 PCB 0.190″ x 1.250″ Microstrip 0.517″ x 0.080″ Microstrip 0.225″ x 1.250″ Microstrip 0.860″ x 0.975″ Microstrip 0.140″ x 0.950″ Microstrip 0.028″ x 0.110″ Microstrip 0.397″ x 0.040″ Microstrip 0.264″ x 0.480″ Microstrip 0.100″ x 0.082″ Microstrip 0.521″ x 0.082″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55 Figure 1. MRF6V12250HR3(HSR3) Test Circuit Schematic Table 5. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C4, C5 1.5 pF Chip Capacitors ATC100B1R5BT500XT ATC C2, C7, C11, C13 2.2 μF, 100 V Chip Capacitors G2225X7R225KT3AB ATC C3, C6, C10, C12 33 pF Chip Capacitors ATC100B330JT500XT ATC C8 22 μF, 25 V Chip Capacitor TPSD226M025R0200 AVX C9 9.1 pF Chip Capacitor ATC100B9R1CT500XT ATC C14, C15 470 μF, 63 V Electrolytic Capacitors MCGPA63V477M13X26--RH Multicomp R1, R2, R3, R4 0 Ω, 3.5 A Chip Resistors CRCW12060000Z0EA Vishay MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 3 R4 C8 MRF6V12250H Rev. 0 C7 C13 R3 C14 C15 C6 C5 C12 C9 C4 C3 CUT OUT AREA C1 C10 R2 C11 R1 C2 Figure 2. MRF6V12250HR3(HSR3) Test Circuit Component Layout MRF6V12250HR3 MRF6V12250HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 160 Coss Ciss 100 MAXIMUM OPERATING Tcase (°C) C, CAPACITANCE (pF) 1000 10 1 Crss Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0.1 0 10 20 30 140 120 Pout = 250 W 100 Pout = 275 W 80 Pout = 200 W 60 40 VDD = 50 Vdc, IDQ = 100 mA f = 1030 MHz, Pulse Width = 128 μsec 20 0 40 0 50 5 25 30 35 Figure 3. Capacitance versus Drain--Source Voltage Figure 4. Safe Operating Area Gps 20 50 ηD 40 18 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 16 50 Pout, OUTPUT POWER (dBm) 60 ηD, DRAIN EFFICIENCY (%) 22 P1dB = 54.76 dBm (299 W) 57 56 55 54 53 Actual 52 51 50 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 48 28 400 Ideal P3dB = 55.29 dBm (338 W) 49 30 100 30 32 34 36 38 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 6. Pulsed Output Power versus Input Power 22 22 IDQ = 400 mA 20 100 mA 200 mA 21 Gps, POWER GAIN (dB) 21 300 mA 19 18 17 50 100 400 40 IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec Duty Cycle = 10% 20 19 18 17 16 VDD = 50 Vdc, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 40 60 70 59 58 Gps, POWER GAIN (dB) 20 DUTY CYCLE (%) 24 Gps, POWER GAIN (dB) 15 10 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 15 50 VDD = 30 V 35 V 40 V 45 V 100 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power Figure 8. Pulsed Power Gain versus Output Power 50 V 400 MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 25_C 55_C 85_C 300 200 100 Gps 22 0 1 2 3 4 5 55_C 25_C 20 60 48 85_C 55_C 36 18 VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% ηD 6 85_C 25_C TC = --30_C VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz Pulse Width = 128 μsec, Duty Cycle = 10% 0 72 --30_C 16 50 100 Pin, INPUT POWER (WATTS) PULSED ηD, DRAIN EFFICIENCY (%) 24 TC = --30_C Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PULSED 400 24 400 Pout, OUTPUT POWER (WATTS) PULSED Figure 9. Pulsed Output Power versus Input Power Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 275 W Peak, Pulse Width = 128 μsec, Duty Cycle = 10%, and ηD = 65.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 11. MTTF versus Junction Temperature MRF6V12250HR3 MRF6V12250HSR3 6 RF Device Data Freescale Semiconductor Zo = 5 Ω Zload f = 1030 MHz Zsource f = 1030 MHz VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak f MHz Zsource Ω Zload Ω 1030 2.30 -- j3.51 4.0 -- j2.14 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 12. Series Equivalent Source and Load Impedance MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 7 C8 C6 C12 C10 C4 C2 R1 C14 C13 MRF6V12250H 960--1215 MHz Rev. 0 C3 CUT OUT AREA C1 C11 C5 C9 C7 R2 Figure 13. MRF6V12250HR3(HSR3) Test Circuit Component Layout — 960--1215 MHz Table 6. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values — 960--1215 MHz Part Description Part Number Manufacturer C1 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C2, C3, C4, C5 33 pF Chip Capacitors ATC100B330JT500XT ATC C6, C7 1000 pF Chip Capacitors ATC100B102JT50XT ATC C8, C9, C10 2.2 μF, 100 V Chip Capacitors G2225X7R225KT3AB ATC C11 9.1 pF Chip Capacitor ATC100B9R1CT500XT ATC C12 22 μF, 25 V Tantalum Capacitor TPSD226M025R0200 AVX C13, C14 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp R1, R2 47 Ω, 1/4 W Chip Resistors CRCW120647R0FKEA Vishay PCB 0.030″, εr = 2.55 AD255A Arlon MRF6V12250HR3 MRF6V12250HSR3 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 960--1215 MHz Gps, POWER GAIN (dB) 24 22 70 f = 1215 MHz VDD = 50 Vdc IDQ = 100 mA Pulse Width = 128 μsec Duty Cycle = 10% 1150 MHz 60 960 MHz 1030 MHz 50 ηD 1215 MHz 1150 MHz 20 Gps 960 MHz 18 40 30 ηD, DRAIN EFFICIENCY (%) 26 1030 MHz 16 0 50 150 100 200 250 300 20 350 Pout, OUTPUT POWER (WATTS) PULSED Figure 14. Pulsed Power Gain and Drain Efficiency versus Output Power Gps, POWER GAIN (dB) 19 18 66 Gps 64 ηD 17 62 60 16 58 15 0 14 13 12 11 950 IRL --5 --10 VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.) Pulse Width = 128 μsec, Duty Cycle = 10% --15 --20 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 IRL, INPUT RETURN LOSS (dB) 20 ηD, DRAIN EFFICIENCY (%) 68 21 f, FREQUENCY (MHz) Figure 15. Broadband Performance @ Pout = 250 Watts Peak MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 9 Zo = 10 Ω Zload f = 960 MHz f = 1215 MHz f = 1215 MHz f = 960 MHz VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak Zsource VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak f MHz Zsource Ω Zload Ω f MHz Zsource Ω Zload Ω 960 4.00 -- j4.14 3.96 -- j1.70 1100 5.49 -- j3.04 3.32 -- j1.43 970 4.05 -- j3.99 3.90 -- j1.67 1110 5.47 -- j3.07 3.31 -- j1.42 980 4.16 -- j3.86 3.83 -- j1.66 1120 5.52 -- j3.09 3.24 -- j1.40 990 4.33 -- j3.71 3.75 -- j1.66 1130 5.68 -- j3.13 3.12 -- j1.39 1000 4.49 -- j3.57 3.70 -- j1.65 1140 5.89 -- j3.20 2.99 -- j1.36 1010 4.61 -- j3.43 3.68 -- j1.62 1150 6.06 -- j3.32 2.88 -- j1.30 1020 4.66 -- j3.33 3.69 -- j1.59 1160 6.09 -- j3.47 2.83 -- j1.23 1030 4.68 -- j3.26 3.69 -- j1.54 1170 5.98 -- j3.60 2.83 -- j1.19 1040 4.72 -- j3.20 3.67 -- j1.52 1180 5.85 -- j3.69 2.80 -- j1.15 1050 4.83 -- j3.13 3.59 -- j1.53 1190 5.78 -- j3.76 2.75 -- j1.11 1060 5.02 -- j3.06 3.48 -- j1.53 1200 5.81 -- j3.87 2.65 -- j1.07 1070 5.24 -- j2.99 3.38 -- j1.53 1210 5.89 -- j4.02 2.52 -- j1.01 1080 5.42 -- j2.96 3.32 -- j1.51 1215 5.91 -- j4.11 2.47 -- j0.97 1090 5.51 -- j2.99 3.30 -- j1.47 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 16. Series Equivalent Source and Load Impedance — 960--1215 MHz MRF6V12250HR3 MRF6V12250HSR3 10 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS B G Q bbb 2X 1 M T A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 3 B K 2 (FLANGE) D bbb T A M B M M M bbb N M T A M B ccc M M T A M T A M B aaa M M T A (LID) B M S (LID) ccc H R (INSULATOR) B M M (INSULATOR) M C F E A SEATING PLANE T A DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE (FLANGE) CASE 465--06 ISSUE G NI--780 MRF6V12250HR3 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M--1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N (LID) ccc M M T A M B R M ccc M T A S (INSULATOR) bbb M T A M M B M aaa M T A M (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 -----0.040 -----0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 -----1.02 -----0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE (FLANGE) CASE 465A--06 ISSUE H NI--780S MRF6V12250HSR3 MRF6V12250HR3 MRF6V12250HSR3 RF Device Data Freescale Semiconductor 11 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2009 • Initial Release of Data Sheet 1 July 2009 • Updated Typical Broadband Performance bullet to include VDD, IDQ and Pulsed information. Provided specific values for Power Gain and Drain Efficiency, p. 1 • Added Typical Performance table for 960--1215 MHz application, p. 2 • Changed “EKMG630ELL471MK25S” part number to “MCGPA63V477M13X26--RH”, Table 5, Test Circuit Component Designations and Values, p. 3 • Added Fig. 5, Safe Operating Area, p. 5 • Added Fig. 13, Test Circuit Component Layout -- 960--1215 MHz and Table 6, Test Circuit Component Designations and Values -- 960--1215 MHz, p. 8 • Added Fig. 14, Power Gain and Drain Efficiency versus Output Power -- 960--1215 MHz, p. 9 • Added Fig 15, Broadband Performance @ Pout = 250 Watts Peak -- 960--1215 MHz, p. 9 • Added Fig. 16, Series Equivalent Source and Load Impedance -- 960--1215 MHz, p. 10 2 Apr. 2010 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 1 • Added RF High Power Model availability to Product Software, p. 12 MRF6V12250HR3 MRF6V12250HSR3 12 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009--2010. All rights reserved. MRF6V12250HR3 MRF6V12250HSR3 Document Number: RF Device Data MRF6V12250H Rev. 2, 4/2010 Freescale Semiconductor 13