1N4678...1N4717 Vishay Telefunken Silicon Epitaxial Planar Z–Diodes Features D D D D Zener voltage specified at 50 mA Maximum delta VZ given from 10 mA to 100 mA Very high stability Low noise Applications 94 9367 Voltage stabilization Absolute Maximum Ratings Tj = 25_C Parameter Power dissipation Z–current Junction temperature Storage temperature range Test Conditions l=4mm, TL=25°C Type Symbol PV IZ Tj Tstg Value 500 PV/VZ 175 –65...+175 Unit mW mA °C °C Maximum Thermal Resistance Tj = 25_C Parameter Junction ambient Test Conditions l=4mm, TL=constant Symbol RthJA Value 300 Unit K/W Electrical Characteristics Tj = 25_C Parameter Forward voltage Document Number 85586 Rev. 2, 01-Apr-99 Test Conditions IF=100mA Type Symbol VF Min Typ Max 1.5 Unit V www.vishay.de • FaxBack +1-408-970-5600 1 (6) 1N4678...1N4717 Vishay Telefunken Type 1) Zener Voltage VZ @ IZ = 50mA 1N4678 1N4679 1N4680 1N4681 1N4682 1N4683 1N4684 1N4685 1N4686 1N4687 1N4688 1N4689 1N4690 1N4691 1N4692 1N4693 1N4694 1N4695 1N4696 1N4697 1N4698 1N4699 1N4700 1N4701 1N4702 1N4703 1N4704 1N4705 1N4706 1N4707 1N4708 1N4709 1N4710 1N4711 1N4712 1N4713 1N4714 1N4715 1N4716 1N4717 Typ. 1) V 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 8.7 9.1 10 11 12 13 14 15 16 17 18 19 20 22 24 25 27 28 30 33 36 39 43 www.vishay.de • FaxBack +1-408-970-5600 2 (6) Min. V 1.710 1.900 2.090 2.280 2.565 2.850 3.135 3.420 3.705 4.085 4.465 4.845 5.320 5.890 6.460 7.125 7.790 8.265 8.645 9.500 10.45 11.40 12.35 13.30 14.25 15.20 16.15 17.10 18.05 19.00 20.90 22.80 23.75 25.65 26.60 28.50 31.35 34.20 37.05 40.85 Max. V 1.890 2.100 2.310 2.520 2.835 3.150 3.465 3.780 4.095 4.515 4.935 5.355 5.880 6.510 7.140 7.875 8.610 9.135 9.555 10.50 11.55 12.60 13.65 14.70 15.75 16.80 17.85 18.90 19.95 21.00 23.10 25.20 26.25 28.35 29.40 31.50 34.65 37.80 40.95 45.15 Max. Reverse Current IR 3) mA 7.5 5.0 4.0 2.0 1.0 0.8 7.5 7.5 5.0 4.0 10 10 10 10 10 10 1.0 1.0 1.0 1.0 0,05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Test Voltage VR 3) V 1.0 1.0 1.0 1.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 4.0 5.0 5.1 5.7 6.2 6.6 6.9 7.6 8.4 9.1 9.8 10.6 11.4 12.1 12.9 13.6 14.4 15.2 16.7 18.2 19.0 20.4 21.2 22.8 25.0 27.3 29.6 32.6 Max. Zener Current IZM 2) mA 120 110 100 95 90 85 80 75 70 65 60 55 50 45 35 31.8 29.0 27.4 26.2 24.8 21.6 20.4 19.0 17.5 16.3 15.4 14.5 13.2 12.5 11.9 10.8 9.9 9.5 8.8 8.5 7.9 7.2 6.6 6.1 5.5 Max. Voltage Change DVZ 4) V 0.70 0.70 0.75 0.80 0.85 0.90 0.95 0.95 0.97 0.99 0.99 0.97 0.96 0.95 0.90 0.75 0.50 0.10 0.08 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 0.25 0.27 0.28 0.30 0.33 0.36 0.39 0.43 Document Number 85586 Rev. 2, 01-Apr-99 1N4678...1N4717 Vishay Telefunken 1.) Toleranzing and voltage designation (VZ). The type numbers shown have a standard tolerance of ± 5% on the nominal zener voltage. 2.) Maximum zener current ratings (IZM). Maximum zener current ratings are based on maximum zener voltage of the individual units. 3.) Reverse leakage current (IR). Reverse leakage currents are guaranteed and measured at VR as shown on the table. 4.) Maximum voltage change (DVZ). Voltage change is equal to the difference between VZ at 100mA and VZ at 10mA. Characteristics (Tj = 25_C unless otherwise specified) 1.3 VZtn=VZt/VZ(25°C) VZtn – Relative Voltage Change Ptot – Total Power Dissipation ( mW ) 600 500 400 300 200 100 1.2 80 120 160 IZ=5mA 10 DVZ – Voltage Change ( mV ) Tj = 25°C 100 1 95 9598 5 10 15 20 25 VZ – Z-Voltage ( V ) Figure 2. Typical Change of Working Voltage under Operating Conditions at Tamb=25°C Document Number 85586 Rev. 2, 01-Apr-99 10–4/K 10–4/K 10–4/K 0.8 –60 0 60 120 180 240 Tj – Junction Temperature ( °C ) Figure 3. Typical Change of Working Voltage vs. Junction Temperature 1000 0 4 2 –4 95 9599 Figure 1. Total Power Dissipation vs. Ambient Temperature 10–4/K 10–4/K 0.9 200 Tamb – Ambient Temperature ( °C ) 95 9602 8 6 0 –2 10–4/K 1.0 TK VZ – Temperature Coefficient of VZ ( 10 –4 /K ) 40 10–4/K 1.1 0 0 TKVZ=10 15 10 5 IZ=5mA 0 –5 0 95 9600 10 20 30 40 50 VZ – Z-Voltage ( V ) Figure 4. Temperature Coefficient of Vz vs. Z–Voltage www.vishay.de • FaxBack +1-408-970-5600 3 (6) 1N4678...1N4717 Vishay Telefunken 50 150 VR = 2V Tj = 25°C 100 50 30 20 10 0 0 0 5 10 20 15 25 VZ – Z-Voltage ( V ) 95 9601 15 20 25 35 30 VZ – Z-Voltage ( V ) 95 9607 Figure 5. Diode Capacitance vs. Z–Voltage Figure 8. Z–Current vs. Z–Voltage 100 1000 r Z – Differential Z-Resistance ( W ) IF – Forward Current ( mA ) Ptot=500mW Tamb=25°C 40 IZ – Z-Current ( mA ) C D – Diode Capacitance ( pF ) 200 10 Tj = 25°C 1 0.1 0.01 IZ=1mA 100 0.001 0 0.2 0.4 0.6 0.8 10 10mA Tj = 25°C 1 1.0 0 VF – Forward Voltage ( V ) 95 9605 5mA 95 9606 5 10 15 20 25 VZ – Z-Voltage ( V ) Figure 6. Forward Current vs. Forward Voltage Figure 9. Differential Z–Resistance vs. Z–Voltage IZ – Z-Current ( mA ) 100 80 Ptot=500mW Tamb=25°C 60 40 20 0 0 95 9604 4 8 12 16 20 VZ – Z-Voltage ( V ) Figure 7. Z–Current vs. Z–Voltage www.vishay.de • FaxBack +1-408-970-5600 4 (6) Document Number 85586 Rev. 2, 01-Apr-99 1N4678...1N4717 Z thp – Thermal Resistance for Pulse Cond. (K/W) Vishay Telefunken 1000 tp/T=0.5 100 tp/T=0.2 Single Pulse RthJA=300K/W DT=Tjmax–Tamb 10 tp/T=0.01 tp/T=0.1 tp/T=0.02 iZM=(–VZ+(VZ2+4rzj tp/T=0.05 1 10–1 100 101 DT/Zthp)1/2)/(2rzj) 102 tp – Pulse Length ( ms ) 95 9603 Figure 10. Thermal Response Dimensions in mm Cathode Identification ∅ 0.55 max. technical drawings according to DIN specifications 94 9366 ∅ 1.7 max. Standard Glass Case 54 A 2 DIN 41880 JEDEC DO 35 Weight max. 0.3 g Document Number 85586 Rev. 2, 01-Apr-99 26 min. 3.9 max. 26 min. www.vishay.de • FaxBack +1-408-970-5600 5 (6) 1N4678...1N4717 Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 www.vishay.de • FaxBack +1-408-970-5600 6 (6) Document Number 85586 Rev. 2, 01-Apr-99