VISHAY 1N4716

1N4678...1N4717
Vishay Telefunken
Silicon Epitaxial Planar Z–Diodes
Features
D
D
D
D
Zener voltage specified at 50 mA
Maximum delta VZ given from 10 mA to 100 mA
Very high stability
Low noise
Applications
94 9367
Voltage stabilization
Absolute Maximum Ratings
Tj = 25_C
Parameter
Power dissipation
Z–current
Junction temperature
Storage temperature range
Test Conditions
l=4mm, TL=25°C
Type
Symbol
PV
IZ
Tj
Tstg
Value
500
PV/VZ
175
–65...+175
Unit
mW
mA
°C
°C
Maximum Thermal Resistance
Tj = 25_C
Parameter
Junction ambient
Test Conditions
l=4mm, TL=constant
Symbol
RthJA
Value
300
Unit
K/W
Electrical Characteristics
Tj = 25_C
Parameter
Forward voltage
Document Number 85586
Rev. 2, 01-Apr-99
Test Conditions
IF=100mA
Type
Symbol
VF
Min
Typ
Max
1.5
Unit
V
www.vishay.de • FaxBack +1-408-970-5600
1 (6)
1N4678...1N4717
Vishay Telefunken
Type 1)
Zener Voltage VZ @ IZ = 50mA
1N4678
1N4679
1N4680
1N4681
1N4682
1N4683
1N4684
1N4685
1N4686
1N4687
1N4688
1N4689
1N4690
1N4691
1N4692
1N4693
1N4694
1N4695
1N4696
1N4697
1N4698
1N4699
1N4700
1N4701
1N4702
1N4703
1N4704
1N4705
1N4706
1N4707
1N4708
1N4709
1N4710
1N4711
1N4712
1N4713
1N4714
1N4715
1N4716
1N4717
Typ. 1)
V
1.8
2.0
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
www.vishay.de • FaxBack +1-408-970-5600
2 (6)
Min.
V
1.710
1.900
2.090
2.280
2.565
2.850
3.135
3.420
3.705
4.085
4.465
4.845
5.320
5.890
6.460
7.125
7.790
8.265
8.645
9.500
10.45
11.40
12.35
13.30
14.25
15.20
16.15
17.10
18.05
19.00
20.90
22.80
23.75
25.65
26.60
28.50
31.35
34.20
37.05
40.85
Max.
V
1.890
2.100
2.310
2.520
2.835
3.150
3.465
3.780
4.095
4.515
4.935
5.355
5.880
6.510
7.140
7.875
8.610
9.135
9.555
10.50
11.55
12.60
13.65
14.70
15.75
16.80
17.85
18.90
19.95
21.00
23.10
25.20
26.25
28.35
29.40
31.50
34.65
37.80
40.95
45.15
Max.
Reverse
Current
IR 3)
mA
7.5
5.0
4.0
2.0
1.0
0.8
7.5
7.5
5.0
4.0
10
10
10
10
10
10
1.0
1.0
1.0
1.0
0,05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
Test
Voltage
VR 3)
V
1.0
1.0
1.0
1.0
1.0
1.0
1.5
2.0
2.0
2.0
3.0
3.0
4.0
5.0
5.1
5.7
6.2
6.6
6.9
7.6
8.4
9.1
9.8
10.6
11.4
12.1
12.9
13.6
14.4
15.2
16.7
18.2
19.0
20.4
21.2
22.8
25.0
27.3
29.6
32.6
Max.
Zener
Current
IZM 2)
mA
120
110
100
95
90
85
80
75
70
65
60
55
50
45
35
31.8
29.0
27.4
26.2
24.8
21.6
20.4
19.0
17.5
16.3
15.4
14.5
13.2
12.5
11.9
10.8
9.9
9.5
8.8
8.5
7.9
7.2
6.6
6.1
5.5
Max.
Voltage
Change
DVZ 4)
V
0.70
0.70
0.75
0.80
0.85
0.90
0.95
0.95
0.97
0.99
0.99
0.97
0.96
0.95
0.90
0.75
0.50
0.10
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.22
0.24
0.25
0.27
0.28
0.30
0.33
0.36
0.39
0.43
Document Number 85586
Rev. 2, 01-Apr-99
1N4678...1N4717
Vishay Telefunken
1.) Toleranzing and voltage designation (VZ).
The type numbers shown have a standard tolerance of ± 5% on the nominal zener voltage.
2.) Maximum zener current ratings (IZM).
Maximum zener current ratings are based on maximum zener voltage of the individual units.
3.) Reverse leakage current (IR).
Reverse leakage currents are guaranteed and measured at VR as shown on the table.
4.) Maximum voltage change (DVZ).
Voltage change is equal to the difference between VZ at 100mA and VZ at 10mA.
Characteristics (Tj = 25_C unless otherwise specified)
1.3
VZtn=VZt/VZ(25°C)
VZtn – Relative Voltage Change
Ptot – Total Power Dissipation ( mW )
600
500
400
300
200
100
1.2
80
120
160
IZ=5mA
10
DVZ
– Voltage Change ( mV )
Tj = 25°C
100
1
95 9598
5
10
15
20
25
VZ – Z-Voltage ( V )
Figure 2. Typical Change of Working Voltage
under Operating Conditions at Tamb=25°C
Document Number 85586
Rev. 2, 01-Apr-99
10–4/K
10–4/K
10–4/K
0.8
–60
0
60
120
180
240
Tj – Junction Temperature ( °C )
Figure 3. Typical Change of Working Voltage vs.
Junction Temperature
1000
0
4
2
–4
95 9599
Figure 1. Total Power Dissipation vs.
Ambient Temperature
10–4/K
10–4/K
0.9
200
Tamb – Ambient Temperature ( °C )
95 9602
8
6
0
–2 10–4/K
1.0
TK VZ – Temperature Coefficient of VZ ( 10 –4 /K )
40
10–4/K
1.1
0
0
TKVZ=10
15
10
5
IZ=5mA
0
–5
0
95 9600
10
20
30
40
50
VZ – Z-Voltage ( V )
Figure 4. Temperature Coefficient of Vz vs.
Z–Voltage
www.vishay.de • FaxBack +1-408-970-5600
3 (6)
1N4678...1N4717
Vishay Telefunken
50
150
VR = 2V
Tj = 25°C
100
50
30
20
10
0
0
0
5
10
20
15
25
VZ – Z-Voltage ( V )
95 9601
15
20
25
35
30
VZ – Z-Voltage ( V )
95 9607
Figure 5. Diode Capacitance vs. Z–Voltage
Figure 8. Z–Current vs. Z–Voltage
100
1000
r Z – Differential Z-Resistance ( W )
IF – Forward Current ( mA )
Ptot=500mW
Tamb=25°C
40
IZ – Z-Current ( mA )
C D – Diode Capacitance ( pF )
200
10
Tj = 25°C
1
0.1
0.01
IZ=1mA
100
0.001
0
0.2
0.4
0.6
0.8
10 10mA
Tj = 25°C
1
1.0
0
VF – Forward Voltage ( V )
95 9605
5mA
95 9606
5
10
15
20
25
VZ – Z-Voltage ( V )
Figure 6. Forward Current vs. Forward Voltage
Figure 9. Differential Z–Resistance vs. Z–Voltage
IZ – Z-Current ( mA )
100
80
Ptot=500mW
Tamb=25°C
60
40
20
0
0
95 9604
4
8
12
16
20
VZ – Z-Voltage ( V )
Figure 7. Z–Current vs. Z–Voltage
www.vishay.de • FaxBack +1-408-970-5600
4 (6)
Document Number 85586
Rev. 2, 01-Apr-99
1N4678...1N4717
Z thp – Thermal Resistance for Pulse Cond. (K/W)
Vishay Telefunken
1000
tp/T=0.5
100
tp/T=0.2
Single Pulse
RthJA=300K/W
DT=Tjmax–Tamb
10
tp/T=0.01
tp/T=0.1
tp/T=0.02
iZM=(–VZ+(VZ2+4rzj
tp/T=0.05
1
10–1
100
101
DT/Zthp)1/2)/(2rzj)
102
tp – Pulse Length ( ms )
95 9603
Figure 10. Thermal Response
Dimensions in mm
Cathode Identification
∅ 0.55 max.
technical drawings
according to DIN
specifications
94 9366
∅ 1.7 max.
Standard Glass Case
54 A 2 DIN 41880
JEDEC DO 35
Weight max. 0.3 g
Document Number 85586
Rev. 2, 01-Apr-99
26 min.
3.9 max.
26 min.
www.vishay.de • FaxBack +1-408-970-5600
5 (6)
1N4678...1N4717
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
www.vishay.de • FaxBack +1-408-970-5600
6 (6)
Document Number 85586
Rev. 2, 01-Apr-99