Si9113DB Vishay Siliconix Si9113 Demonstration Board ISDN-NT Input Voltage Range 28 V to 99 V Non-Polar Input 3.3-V/120-mA, 40-V/12-mA Outputs With Up To 80% Efficiency Up to 68% Efficiency at 80-mW Load 40 V Isolated By 3 kV From Input And 3.3-V Output – Si9113D1 3.3 V, 40 V Isolated By 1.5 kV From Input/Each Other – Si9113D2 Current Mode Control, 0.6-V Fast Over-Current Protection Max 50% Duty Cycle Operation 1.3-MHz Error Amp Soft-Start <10-A Supply Current for +VIN <18 V Programmed Start/Stop Internal Start-Up Circuit Power_Good Output As discussed in application note, AN728, the Si9113 power supply controller is an ideal choice for ISDN terminal equipment, where high efficiency at a low power level is one of most important criteria. Therefore, Vishay Siliconix has developed versions of a dual output flyback application demonstration boards, the Si9113D1 and the Si9113D2, which use different regulation schemes. These readily available demo boards are configured to deliver approximately 800 mW at 3.3-V, and40-V. These outputs and can be easily modified for other output voltages at approximately same power level. The flyback converters are designed to operate from a wide input voltage range of 28 V to 99 V and are polarity protected by a diode bridge. The Si9113D1 and Si9113D2, both operate at 20-kHz switching frequency to achieve the best possible efficiency. The transformer is selected to be slightly larger in this application so that the same area product would be good enough for an even lower window utilization factor (w.u.f.) transformer in order to meet the stringent requirements of clearance and creepage distances. The Si9113D2 uses the auxiliary output (VCC bootstrap winding) for sensing. Both VOUT1 (3.3 V) and VOUT2 (40 V) follow the auxiliary output, residing on one core and sharing the same flux. Both the outputs are isolated from the input as well as from each other by 1.5 kV and moderately regulated to 5%. The Si9113D1 senses and tightly regulates the main output VOUT1 (3.3 V), which has the common ground as input and the secondary output VOUT2 (40 V) is regulated to within 10% at Included in this document are the Bill-Of-Materials, Schematics, PCB Layout of the Demo Boards and actual waveforms/graphs. 10% to100% load range, including the set point accuracy. Correspondingly. the transformer must be specified with tight tolerance to achieve the given set point accuracy. The 40-V output is isolated from both the input and 3.3-V output by minimum 3 kVrms isolation. Each demonstration board uses all surface mount components except the high voltage electrolyte capacitor and are fully assembled and tested for quick evaluation. Test points are provided for the power_good signal and the closed loop response measurement. The demonstration board layout is available in Gerber file format. Please contact your Vishay Siliconix sales representative or distributor for a copy. Si9113D1— VOUT1 (3.3 V) Tightly regulated, non-isolated VOUT2 (40 V) Loosely regulated, 3 kV isolated Si9113D2— VOUT1 (3.3 V) Moderately regulated, 1.5 kV isolated VOUT2 (40 V) Moderately regulated, 1.5 kV isolated Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 1 Si9113DB Vishay Siliconix POWER UP CHECK LIST AND OPERATION The Si9113D1 and Si9113D2 are designed to operate in discontinuous mode at nominal line and load conditions. Both demo boards use the same operational procedure, as follows: 4 Connect the voltmeter precisely across VOUT1 – Com1 and VOUT2 – Com2 for the output voltage measurement. Connect the oscilloscope ground to C1 negative while the probe to Q1 drain to observe the switching waveforms. 1 Visually inspect the PCB to be sure that all the components are intact and no foreign substance is lying on the board. 5 2 Solder the leads at C1 negative and MOSFET Q1 drain to monitor the drain waveform on the oscilloscope. Slowly increase the input voltage while monitoring the input current meter. Note the input current is less than 10 A at 18 VIN and continue to increase the voltage further till the circuit turns on at approximately 24 V. 3 Reduce the source voltage to zero and connect it through the dc ammeter at VIN + and VIN –. Connect the dc voltmeter precisely across VIN + and VIN –. For the application where input is of fixed polarity, the diode bridge BR1 can be eliminated by shorting pin 1 to 4 and pin 2 to 3 to achieve even higher efficiency. 6 Set the input voltage to 48 V nominal and monitor the drain waveform, switching frequency, input and output ripple and noise. 7 The efficiency, line, load and cross regulation can be measured by varing the line between 28 to 99 V, and the load between 10% and 100%. ACTUAL WAVEFORMS AND PERFORMANCE Drain Voltage and Current The circuit is designed to operate in discontinuous mode at nominal line and full load. The transformer is cleverly designed to reduce the leakage inductance. Refer to Figure 1 for the drain voltage and current waveforms. The current starting from zero indicates the discontinuous mode operation and absence of any leakage spike at drain shows the tight coupling between the windings. 44.00 43.00 42.00 V OUT2 (V) 41.00 40.00 3.3 V @ 120 mA 39.00 38.00 3.3 V @ 12 mA 37.00 36.00 0 VIN = 28 V Outputs – Full lLoad Ch1 – Primary Current (0.1A/div) Ch3 – Drain Voltage (20 V/div) FIGURE 1. Drain Voltage and Current Waveform – Si9113D2 www.Vishay Siliconix.com FaxBack 408-970-5600 2 3.00 6.00 9.00 12.00 15.00 IOUT2 (mA) FIGURE 2. VOUT2 (40 V) Load/cross Regulation – Si9113D1 Document Number: 71117 29-Feb-00 Si9113DB Vishay Siliconix Output Regulation output voltages are essentially constant with respect to any variation of input voltage in case of both demo boards. The output regulation of slave outputs depend upon the loading condition of main output. In Si9113D1, the VOUT1 (3.3 V) is tightly regulated to within 1%, while VOUT2 (40 V) follows the main output. Figure 2 depicts the typical load regulation of 40 V output, when the main output is at 10% and at full load condition. In Si9113D2, the VOUT1 and VOUT2 are both moderately regulated. Figures 3 and 4 show the 3.3-V and 40-V regulation with the outputs loaded at 10% to100% of the rated load. The Output Ripple and Noise The tantalum chip capacitors are used for lower ESR and higher ripple current capability. Low cost aluminium capacitors can also be used where form fator and/or output ripple are of secondary importance. Also, a small additional LC filter can be added at 3.3-V output for further attenuation of ac component by even five to ten times. The Si9113D1 – Figure 5 and Si9113D2 – Figure 6 show the ripple at a full load and 48-V input. 3.460 42.00 3.420 41.50 3.380 41.00 40 V @ 12 mA 40.50 3.300 Vout2 (V) V OUT1 (V) 3.340 40 V @ 1.2 mA 3.260 40.00 3.220 39.00 3.180 38.50 3.140 3.3 V @ 120 mA 39.50 3.3 V @ 12 mA 38.00 0 25 50 75 100 125 150 IOUT1 (mA) 0 3.00 6.00 9.00 12.00 15.00 IOUT2 (mA) FIGURE 3. VOUT1 (3.3 V) Load/cross Regulation – Si9113D2 FIGURE 4. VOUT2 (40 V) Load/Cross Regulation – Si9113D2 VIN = 48 V Outputs = At Full Load Ch1 = 3.3 V (20 mV/div)) Ch3 = 40 V (100 mV/div) VIN = 48 V Outputs = At Full Load Ch1 = 3.3 V (20 mV/div)) Ch3 = 40 V (100 mV/div) FIGURE 5. Output Ripple and Noise – Si9113D1 FIGURE 6. Output Ripple and Noise – Si9113D2 Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 3 Si9113DB Vishay Siliconix 90.00 90.00 80.00 80.00 70.00 VIN = 28 V 60.00 Efficiency % Efficiency % 70.00 VIN = 48 V VIN = 48 V 50.00 VIN = 99 V 40.00 50.00 VIN = 99 V 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 VIN = 28 V 60.00 0.00 0 200 400 600 800 1000 0 200 400 600 800 1000 WO (mW) WO (mW) FIGURE 7. Converter Output Load vs Efficiency – Si9113D1 FIGURE 8. Converter Output Load vs Efficiency – Si9113D2 The closed loop response is observed at 48 VIN and full load at both outputs on the venable by applying the error across R8 and measuring the gain, phase change encountered by the 60 180 50 150 40 120 30 0 –10 –30 –20 –60 –30 –90 –40 –120 –50 –150 100 1,000 10,000 –180 50,000 FIGURE 9. Measured Close Loop Response – Si9113D1 www.Vishay Siliconix.com FaxBack 408-970-5600 Gain (dB) Gain 90 60 Gain Phase Gain (dB) 40 30 0 Phase 20 30 0 0 –20 –30 –40 –60 –60 –90 –80 10 100 1000 Phase 10 120 60 60 Frequency (Hz) 4 80 90 Phase 20 –60 10 signal at both ends of R8. Refer to Figures 9 and 10 for the actual response. –120 10000 Frequency (Hz) FIGURE 10. Measured Closed Loop Response–Si9113D2 Document Number: 71117 29-Feb-00 Si9113DB Vishay Siliconix Dynamic Load Response The step load is applied at 1A/S slew rate at one output, while keeping the other output at rated load. Refer to Figures 11 through 14. VIN = 48 V VOUT1 = Step –12 to 120 mA Ch1 = VOUT1 (3.3 V) Ch4 = Load (50 mA/div) Slew Rate = 1A/sec FIGURE 11. VOUT1 (3.3 V) Transient Load Response – Si9113D1 VIN = 48 V VOUT2 = Step Load 1.2 to 12 mA VOUT1 = At Full Load Ch1 = VOUT2 (40 V) Ch4 = Load (10 mA/div) Slew Rate = 1A/sec FIGURE 12. VOUT2 (40 V) Transient Load Response – Si9113D1 VIN = 48 V VOUT1 = Step Load 12 mA – 120 mA VOUT2 = At Full Load Ch1 = VOUT1 (3.3 V) Ch4 = 100 mA/div Slew Rate = 1A/sec VIN = 48 V VOUT2 = Step Load 1.2 mA – 12 mA VOUT1 = At Full Load Ch1 = VOUT2 (40 V) Ch4 = 10 mA/div Slew Rate = 1A/sec FIGURE 13. VOUT1 (3.3 V) Transient Load Response—Si9113D2 FIGURE 14. VOUT2 (40 V) Transient Load Response—Si9113D2 Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 5 Si9113DB Vishay Siliconix SCHEMATIC, PCB LAYOUT AND BILL OF MATERIAL (SI9113D1) P1 VIN T1 XFMR_LPE9080 D2 1 BR1 4 3 P2 GND AC + AC – 1 C2 0.1 mF 160 V (NU) + C1 22 mF 160 V 2 DF02S 3 D5* BZX84C15 P3 3.3 V C4 1 mF R13 D1 2.7 W ESIG C12 0.1 mF C5 0.1 mF NS3 51 W R9 20 kW R1 R10 13 kW 1 MW C7 8 7 OSCOUT 0.1 mF 12 B130LB 8 R6 5 5.1 W 1 (Q1) 3 (Q01) Q1 BSP89 (NU) Q01 Si3420DV 3 (Q1) 4 (Q01) PWR_G FB ICS COMP VIN START STOP 13 3 R11 2 1 kW C9 0.01 mF 1 C3 220 pF Si9113 C13 100 pF 1 5 4 VREF 14 R2 C8 300 kW 0.01 mF D4* BZX84C43 2, 4 (Q1) 1, 2, 5, 6, (Q01) 6 GND SS 9 3 + P6 COM2 NP P5 COM1 DR 10 11 C10 2.2 mF 50 V VCC OSCIN 9 0.001 mF C6 R12 5.1 kW (NU) C10 NS2 2.2 mF 50 V 3 7 D3 R8 ESIG 6 1 TP2 P3 40 V R7 2W 1/ W 2 R3 5.1 MW R4 1 MW R5 3.96 MW *Optional TP1 PWR_GD Dual Output Flyback Converter with Tightly Regulated Main Output FIGURE 15. Demo Board—Si9113D1 www.Vishay Siliconix.com FaxBack 408-970-5600 6 Document Number: 71117 29-Feb-00 Si9113DB Vishay Siliconix FIGURE 16. Silk Screen—Si9113D1 FIGURE 17. Top Layer—Si9113D1 FIGURE 18. Bottom Layer—Si9113D1 Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 7 Si9113DB Vishay Siliconix TABLE 1. BILLĆOFĆMATERIALSĊSi9113D1 Item Qty Designator Part Type Description Footprint Vendor Part # Manufacturer 1 2 “R1, R4” 1 MW “RES, 1%, 1/8 W” 0805 CRCW08051004FRT1 Vishay Dale 2 1 R2 300 kW “RES, 1%, 1/8 W” 0805 CRCW08053003FRT1 Vishay Dale 3 1 R3 5.1 MW “RES, 1%, 1/8 W” 0805 CRCW08055104FRT1 Vishay Dale 1/ W” 8 0805 CRCW08053964FRT1 Vishay Dale RES, 5%, 1/8 W” 0805 CRCW080551JRT1 Vishay Dale Vishay Dale 4 1 R5 3.96 MW 5 1 R6 5.1 W RES, 1%, 6 1 R7 2W 2010 WSC-1/2 7 1 R8 51 W “RES, 5%, 1/8 W” 0805 CRCW0805510JRT1 Vishay Dale 8 1 R9 20 kW “RES, 1%, 1/8 W” 0805 CRCW08052002FRT1 Vishay Dale 1/ W” 8 “RES, 1%, 1/ W, 2 PWR Metal” 9 1 R10 13 kW “RES, 1%, 0805 CRCW08051302FRT1 Vishay Dale 10 1 R11 1 kW “RES, 1%, 1/8 W” 0805 CRCW08051001FRT1 Vishay Dale 11 1 R12 (NU) 5.1 kW “RES, 1%, 1/8 W (NU)” 0805 CRCW08055101FRT1 Vishay Dale 0805 CRCW080527JRT1 Vishay Dale UVR2C220MEA Nichicon 12 1 R13 2.7 W 13 1 C1 22 mF “CAP, ELEC, 160 V, VR ” RB.2/.4 14 1 C2 (NU) 0.1 mF “CAP, CER, 200 V” 1206 VJ1210Y104KXC Vishay Vitramon 15 1 C3 220 pF “CAP, CER” 0805 VJ0805Y221KXXAT Vishay Vitramon 16 1 C4 1 mF “CAP, CER, 25 V” 1210 VJ1210U105ZXAA Vishay Vitramon 17 3 “C5, C6, C12” 0.1 mF “CAP, CER” 0805 VJ0805Y104KXXAT Vishay Vitramon 18 1 C7 0.001 mF “CAP, CER” 0805 VJ0805Y102KXXAT Vishay Vitramon 19 2 “C8, C9” 0.01 mF “CAP, CER” 0805 VJ0805Y103KXXAT Vishay Vitramon 20 1 C10 2.2 mF “CAP, TAN, 50 V” 595D_C 595D225X0050C2T Vishay Sprague 21 1 C11 220 mF “CAP, TAN, 6.3 V” 594D_C 594D227X06R3C2T Vishay Sprague 22 1 C13 100 pF “CAP, CER” 0805 VJ0805Y101KXXAT Vishay Vitramon 23 2 “D1, D2” ES1G “Diode, 1 A” SMA ES1G Vishay Liteon 24 1 D3 B130LB “Schottky Diode, 1 A” SMB B130LB Vishay Liteon 25 1 D4* BZX84C43 “Zener Diode, 41 V” SOT-23 BZX84C43 Vishay Liteon 26 1 D5 BZX84C15 Zener Diode SOT-23 BZX84C15 Vishay Dale 27 1 T1 LPE-9080-A413 Transformer XFMR_LPE9080 LPE-9080-A413 Vishay Liteon 28 1 BR1 DF04S Bridge BR1 Vishay Liteon 29 1 Q1 (NU) BSP89 N–Channel DMOSFET (NU) SOT-223 BSP89 Philips Semiconductors 30 1 Q01 Si3420DV N–Channel MOSFET TSOP-6 Si3420DV Vishay Siliconix 31 1 U1 Si9113 Power IC SO–14 Si9113 Vishay Siliconix 32 2 “TP1, TP2” Test Point 1-Pin Header TP1 Multi-Source 33 6 P1 TO P6 “PWR, GND” 1-Pin Header TP1 Multi-Source “RES, 5%, 1/ W” 8 *Optional www.Vishay Siliconix.com FaxBack 408-970-5600 8 Document Number: 71117 29-Feb-00 Si9113DB Vishay Siliconix SCHEMATIC, PCB LAYOUT AND BILL OF MATERIAL (SI9113D2) P1 VIN T1 LPE9080 4 BR1 4 3 P2 GND AC + AC – P3 40 V D2 1 + C1 22 mF 160 V 2 ESIG DF02S R13 R8 51 W 2.7 W D1 5 NS3 7 NP R1 1 MW C7 VCC OSCIN 1 6 9 OSCOUT 10 11 0.1 mF 12 5 5.1 W 3 (Q01) 1 (Q1) R12 5.1 kW (NU) C12 0.1 mF P5 COM 1 3 (Q1) 4 (Q01) PWR_G FB ICS COMP VIN START STOP 13 3 R11 2 1 kW C9 0.01 mF 1 C3 470 pF Si9113 C2 100 pF + Q1 BSP89(NU) Q01 Si3420DV 4 VREF 14 R2 C8 300 kW 0.01 mF R6 GND SS 0.001 mF C6 6 DR C11 220 mF 10 V 1, 2, 5, 6, (Q01) 2, 4 (Q1) C5 0.1 mF P4 3.3 V B130LB 9 12.7 kW 7 1 D4* BZX84C43 P6C OM2 D3 2 NS1 R9 89 kW R10 8 3 + ESIG 8 C4 1 mF TP2 C10 NS2 2.2 mF 50 V 3 R7 2W 1/ W 2 R3 5.1 MW R4 1 MW R5 3.96 MW *Optional TP1 PWR_GD Dual Output Flyback Converter with Moderately Regulated Outputs FIGURE 19. Demo Board—Si9113D2 Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 9 Si9113DB Vishay Siliconix FIGURE 20. Silk Screen—Si9113D2 FIGURE 21. Top Layer—Si9113D2 FIGURE 22. Bottom Layer—Si9113D2 www.Vishay Siliconix.com FaxBack 408-970-5600 10 Document Number: 71117 29-Feb-00 Si9113DB Vishay Siliconix TABLE 2. BILLĆOFĆMATERIALSĊSi9113D2 Item Qty Designator Part Type Description “RES, 1%, Footprint Vendor Part # Manufacturer 1/ W” 8 1 2 “R1, R4” 1 MW 0805 CRCW08051004FRT1 Vishay Dale 2 1 R2 300 kW “RES, 1%, 1/8 W” 0805 CRCW08053003FRT1 Vishay Dale 1/ W” 8 3 1 R3 5.1 MW “RES, 1%, 0805 CRCW08055104FRT1 Vishay Dale 4 1 R5 3.96 MW “RES, 1%, 1/8 W” 0805 CRCW08053964FRT1 Vishay Dale 5 1 R6 5.1 W “RES, 5%, 1/8 W” 0805 CRCW080551JRT1 Vishay Dale Vishay Dale 6 1 R7 2W 7 1 R8 51 W 2010 WSC-1/2 “RES, 5%, 1/8 W” 0805 CRCW0805510JRT1 Vishay Dale 1/ W” 8 “RES, 1%, 1/ W, PWR Metal” 2 8 1 R9 89 kW 0805 CRCW08058902FRT1 Vishay Dale 9 1 R10 12.7 kW “RES, 1%, “RES, 1%, 1/8 W” 0805 CRCW08051272FRT1 Vishay Dale 10 1 R11 1 kW “RES, 1%, 1/8 W” 0805 CRCW08051001FRT1 Vishay Dale 1/ W” 8 11 1 R12 5.1 kW “RES, 1%, 0805 CRCW08055101FRT1 Vishay Dale 12 1 R13 2.7 W “RES, 5%, 1/8 W” 0805 CRCW080527JRT1 Vishay Dale 13 1 C1 22 mF “CAP, ELEC, 160 V, VR” RB.2/.4 UVR2C220MEA Nichicon 14 1 C2 100 pF “CAP, CER” 0805 VJ0805Y101KXXAT Vishay Vitramon 15 1 C3 470 pF “CAP, CER” 0805 VJ0805Y471KXXAT Vishay Vitramon 16 1 C4 1 mF “CAP, CER, 25 V” 1210 VJ1210U105ZXAA Vishay Vitramon 17 3 “C5, C6, C12” 0.1 mF “CAP, CER” 0805 VJ0805Y104KXXAT Vishay Vitramon 18 1 C7 0.001 mF “CAP, CER” 0805 VJ0805Y102KXXAT Vishay Vitramon 19 2 “C8, C9” 0.01 mF “CAP, CER” 0805 VJ0805Y103KXXAT Vishay Vitramon 20 1 C10 2.2 mF “CAP, TAN, 50 V” 595D_C 595D225X0050C2T Vishay Sprague 21 1 C11 220 mF “CAP, TAN, 6.3 V” 594D_C 594D227X06R3C2T Vishay Sprague 22 2 “D1, D2” ES1G “Diode, 1 A” SMA ES1G Vishay Liteon 23 1 D3 B130LB “Schottky Diode, 1 A” SMB B130LB Vishay Liteon 24 1 D4* BZX84C43 “Zener Diode, 41 V” SOT–23 BZX84C43 Vishay Liteon 25 1 T1 LPE-9080-A414 Transformer XFMR_LPE908 0 LPE-9080-A414 Vishay Dale 26 1 BR1 DF04S Bridge BR1 Vishay Liteon 27 1 Q1 (NU) BSP89 N–Channel DMOSFET (NU) SOT-223 BSP89 Philips Semicoductors 28 1 Q01 Si3420DV N–Channel MOSFET TSOP-6 Si2320DS Vishay Siliconix 29 1 U1 Si9113 Power IC SO-14 Si9113 Vishay Siliconix 30 2 “TP1, TP2” Test Point 1-Pin Header TP1 Multi-Source 31 6 P1 TO P6 “PWR, GND” 1-Pin Header TP1 Multi-Source *Optional Document Number: 71117 29-Feb-00 www.siliconix.com FaxBack 408-970-5600 11