MCP48FXBXX Typical Performance Curves 1.0 TYPICAL PERFORMANCE CURVES Note 1: The following performance graphs are for the devices that are documented in the MCP48FEBXX data sheet (DS-20005429). This document allows the MCP48FEBXX data sheet’s functional description to be in PDF format with a file size smaller than the 10 MB limit of many email file servers. The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 2: For quick indexing of Characterization Graphs, expand the PDF bookmarks. Graphs related to all devices (IDD, IPD, VIH, VIL, VOH, VOL, VIHH, and VOUT drive) are before the device VOUT linearity graphs (Total Unadjusted Error, INL, and DNL). Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-1: Average Device Supply Active Current (IDDA) (at 5.5V and FSCK = 20 MHz) vs. Temperature and DAC Reference Voltage Mode. FIGURE 1-3: Average Device Supply Active Current (IDDA) (at 5.5V and FSCK = 1 MHz) vs. Temperature and DAC Reference Voltage Mode. FIGURE 1-2: Average Device Supply Active Current (IDDA) (at 5.5V and FSCK = 10 MHz) vs. Temperature and DAC Reference Voltage Mode. FIGURE 1-4: Average Device EEPROM Write Cycle Current (IWC) vs. Temperature and Voltage. (MCP48FEBXX only). 2015 Microchip Technology Inc. DS20005440A-page 1 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-5: Average Power-Down Current (IDDP) vs. Temperature and Voltage. FIGURE 1-6: Average Device Current with High Voltage Command Pin (HVC) = VIHH vs. Temperature and Voltage, SCK = VIH or VIL. DS20005440A-page 2 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-7: Average Device Supply Current - Active Interface (IDDA) (FSCK = 20 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD mode). FIGURE 1-10: Average Device Supply Current - Inactive Interface (IDD) (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD mode). FIGURE 1-8: Average Device Supply Current - Active Interface (IDDA) (FSCK = 10 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD mode). FIGURE 1-11: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD mode). FIGURE 1-9: Average Device Supply Current - Active Interface (IDDA) (FSCK = 1 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘00’ (VDD mode). 2015 Microchip Technology Inc. DS20005440A-page 3 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-12: Average Device Supply Current - Active Interface (IDDA) (FSCK = 20 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘01’ (Bandgap mode). FIGURE 1-15: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature, VRxB:VRxA = ‘01’, (Bandgap mode). FIGURE 1-13: Average Device Supply Current - Active Interface (IDDA) (FSCK = 10 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘01’ (Bandgap mode). FIGURE 1-14: Average Device Supply Current - Active Interface (IDDA) (FSCK = 1 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘01’ (Bandgap mode). DS20005440A-page 4 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-16: Average Device Supply Current - Active Interface (IDDA) (FSCK = 20 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘10’ (VREF Unbuffered mode). FIGURE 1-19: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature, VRxB:VRxA = ‘10’ (VREF Unbuffered mode). FIGURE 1-17: Average Device Supply Current - Active Interface (IDDA) (FSCK = 10 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘10’ (VREF Unbuffered mode). FIGURE 1-18: Average Device Supply Current - Active Interface (IDDA) (FSCK = 1 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘10’ (VREF Unbuffered mode). 2015 Microchip Technology Inc. DS20005440A-page 5 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-20: Average Device Supply Current - Active Interface (IDDA) (FSCK = 20 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered mode). FIGURE 1-23: Average Device Supply Current - Inactive Interface (IDD) (SCK = VIH or VIL) vs. Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered mode). FIGURE 1-21: Average Device Supply Current - Active Interface (IDDA) (FSCK = 10 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered mode). FIGURE 1-24: Average Device Supply Current vs. FSCK Frequency, Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered mode). FIGURE 1-22: Average Device Supply Current - Active Interface (IDDA) (FSCK = 1 MHz) vs. Voltage and Temperature, VRxB:VRxA = ‘11’ (VREF Buffered mode). DS20005440A-page 6 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-25: Average VIH and VIL (SDI, SCK, CS, and LAT pins) (VDD = 5.5V) vs. Temperature. FIGURE 1-28: Average VIH (SDI, SCK, CS, and LAT pins) vs. Voltage and Temperature. FIGURE 1-26: Average VIH and VIL (SDI, SCK, CS, and LAT pins) (VDD = 2.7V) vs. Temperature. FIGURE 1-29: Average VIL (SDI, SCK, CS, and LAT pins) vs. Voltage and Temperature. FIGURE 1-27: Average VIH and VIL (SDI, SCK, CS, and LAT pins) (VDD = 1.8V) vs. Temperature. 2015 Microchip Technology Inc. DS20005440A-page 7 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. FIGURE 1-30: Average VOH (SDO pin) vs. Voltage and Temperature. FIGURE 1-32: Average HVC pin High Voltage Entry Voltage (VIHHENTRY) vs. VDD Voltage and Temperature. FIGURE 1-31: Average VOL (SDO pin) vs. Voltage and Temperature. FIGURE 1-33: Average HVC pin High Voltage Exit Voltage (VIHHEXIT) vs. VDD Voltage and Temperature. DS20005440A-page 8 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. Typical Device FIGURE 1-34: VOUT Short-Circuit Current (ISC) vs. Voltage and Temperature. Typical Device FIGURE 1-37: VOUT vs. RLOAD and Voltage (at +25°C) (RLOAD 0 - 2500). Typical Device FIGURE 1-35: (at +25°C). VOUT vs. IOUT and Voltage FIGURE 1-38: Half-Scale Settling Time – 400h to C00h (MCP48FXB2X). Typical Device FIGURE 1-36: (at +25°C). VOUT vs. RLOAD and Voltage 2015 Microchip Technology Inc. FIGURE 1-39: Half-Scale Settling Time – C00h to 400h (MCP48FXB2X). DS20005440A-page 9 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-40: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-41: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-42: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 10 Typical Device FIGURE 1-43: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-44: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-45: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-46: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-47: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-48: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-49: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-50: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-51: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 11 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-52: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-53: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-54: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 12 Typical Device FIGURE 1-55: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-56: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-57: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-58: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-59: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-60: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-61: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-62: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-63: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 13 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-64: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-65: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-66: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 14 Typical Device FIGURE 1-67: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-68: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-69: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-70: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-71: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-72: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-73: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-74: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-75: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 15 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-76: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-77: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-78: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 16 Typical Device FIGURE 1-79: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-80: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-81: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-82: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-83: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-84: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-85: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-86: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-87: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 17 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-88: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-89: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-90: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 18 Typical Device FIGURE 1-91: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-92: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-93: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-94: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-95: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-96: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-97: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-98: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-99: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 19 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-100: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-101: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-102: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 20 Typical Device FIGURE 1-103: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-104: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-105: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-106: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-107: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-108: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-109: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-110: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-111: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 21 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-112: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-113: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-114: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 22 Typical Device FIGURE 1-115: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-116: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-117: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-118: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-119: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-120: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-121: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-122: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-123: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 23 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-124: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-125: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-126: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 24 Typical Device FIGURE 1-127: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-128: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-129: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-130: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-131: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-132: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-133: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-134: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-135: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 25 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-136: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-137: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-138: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 26 Typical Device FIGURE 1-139: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-140: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-141: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-142: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-143: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-144: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-145: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-146: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-147: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 27 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-148: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-149: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-150: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 28 Typical Device FIGURE 1-151: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-152: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-153: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-154: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-155: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-156: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-157: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-158: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-159: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 29 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-160: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-161: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-162: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 30 Typical Device FIGURE 1-163: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-164: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-165: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-166: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-167: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-168: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-169: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-170: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-171: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 31 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-172: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-173: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-174: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 32 Typical Device FIGURE 1-175: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-176: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-177: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-178: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-179: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-180: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-181: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-182: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-183: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 33 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-184: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-185: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-186: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 34 Typical Device FIGURE 1-187: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-188: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-189: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-190: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-191: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-192: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-193: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-194: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-195: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 35 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-196: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-197: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-198: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 36 Typical Device FIGURE 1-199: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-200: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-201: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-202: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-203: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-204: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-205: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-206: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-207: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 37 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device Typical Device FIGURE 1-208: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). FIGURE 1-211: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device Typical Device FIGURE 1-209: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). FIGURE 1-212: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device Typical Device FIGURE 1-210: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). FIGURE 1-213: INL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 38 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 12-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-214: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-215: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-216: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Single Channel - MCP48FXB21) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-217: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-218: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-219: DNL Error vs. DAC Code, and Temperature (Code 100 - 4000) (Dual Channel - MCP48FXB22) (12-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 39 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-220: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-221: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-222: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 40 Typical Device FIGURE 1-223: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-224: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-225: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-226: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-227: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-228: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-229: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-230: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-231: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 41 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-232: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-233: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-234: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 42 Typical Device FIGURE 1-235: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-236: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-237: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device Typical Device FIGURE 1-238: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). FIGURE 1-241: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-239: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-240: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-242: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-243: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 43 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-244: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-245: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-246: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 44 Typical Device FIGURE 1-247: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-248: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-249: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-250: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-251: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-252: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-253: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-254: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-255: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 45 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-256: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-257: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-258: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 46 Typical Device FIGURE 1-259: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-260: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-261: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-262: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-263: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-264: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-265: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-266: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-267: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 47 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-268: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-269: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-270: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 48 Typical Device FIGURE 1-271: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-272: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-273: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-274: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-275: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-276: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-277: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-278: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-279: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 49 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-280: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-281: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-282: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 50 Typical Device FIGURE 1-283: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-284: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-285: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-286: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-287: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-288: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-289: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-290: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-291: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 51 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-292: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-293: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-294: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 52 Typical Device FIGURE 1-295: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-296: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-297: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-298: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-299: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-301: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-302: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device Typical Device FIGURE 1-300: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-303: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 53 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-304: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-305: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-306: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 54 Typical Device FIGURE 1-307: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-308: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-309: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-310: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-311: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-312: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-313: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-314: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-315: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 55 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-316: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-317: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-318: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 56 Typical Device FIGURE 1-319: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-320: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-321: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-322: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-323: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-324: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-325: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-326: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-327: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 57 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-328: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-329: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-330: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 58 Typical Device FIGURE 1-331: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-332: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-333: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-334: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-335: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-336: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-337: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-338: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-339: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 59 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-340: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Typical Device Device FIGURE 1-341: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-342: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 60 Typical Device FIGURE 1-343: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-344: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-345: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device Typical Device FIGURE 1-346: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). FIGURE 1-349: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device Typical Device FIGURE 1-347: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). FIGURE 1-350: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-348: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-351: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 61 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-352: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-353: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-354: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 62 Typical Device FIGURE 1-355: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-356: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-357: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-358: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-359: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-360: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-361: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-362: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-363: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 63 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-364: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-365: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-366: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 64 Typical Device FIGURE 1-367: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-368: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-369: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-370: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-371: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-372: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-373: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-374: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-375: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 65 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-376: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-377: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-378: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 66 Typical Device FIGURE 1-379: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-380: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-381: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-382: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-383: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-384: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-385: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-386: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-387: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 67 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-388: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-389: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-390: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 68 Typical Device FIGURE 1-391: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-392: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-393: INL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 10-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-394: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-395: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-396: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Single Channel - MCP48FXB11) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-397: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-398: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-399: DNL Error vs. DAC Code, and Temperature (Code 25 - 1000) (Dual Channel - MCP48FXB12) (10-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 69 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-400: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-401: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-402: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 70 Typical Device FIGURE 1-403: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-404: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-405: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-406: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-407: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-408: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-409: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-410: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-411: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 71 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘00’ (VDD Mode), Gx = ‘0’ (1x) Typical Device FIGURE 1-412: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-413: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-414: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). DS20005440A-page 72 Typical Device FIGURE 1-415: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-416: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)). Typical Device FIGURE 1-417: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VRxB:VRxA = ‘00’ (VDD), Gx = ‘0’ (1x)), (see Appendix B.1 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-418: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-419: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-420: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-421: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-422: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-423: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 73 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-424: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-425: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-426: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 74 Typical Device FIGURE 1-427: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-428: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-429: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘01’ (Bandgap Mode) Typical Device FIGURE 1-430: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-431: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-432: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-433: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘1’ (2x)). Typical Device FIGURE 1-434: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). Typical Device FIGURE 1-435: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VRxB:VRxA = ‘01’ (Bandgap), Gx = ‘0’ (1x)). DS20005440A-page 75 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-436: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-437: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-438: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 76 Typical Device FIGURE 1-439: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-440: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-441: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-442: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-443: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-444: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-445: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-446: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-447: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 77 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-448: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-449: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-450: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). DS20005440A-page 78 Typical Device FIGURE 1-451: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-452: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-453: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)), (see Appendix B.2 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-454: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-455: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-456: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-457: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-458: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-459: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 79 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-460: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-461: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-462: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 80 Typical Device FIGURE 1-463: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-464: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-465: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-466: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-467: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-468: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-469: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-470: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-471: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 81 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-472: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-473: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-474: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 82 Typical Device FIGURE 1-475: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-476: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-477: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-478: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-479: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-480: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-481: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-482: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-483: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 83 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-484: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-485: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-486: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). DS20005440A-page 84 Typical Device FIGURE 1-487: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-488: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-489: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)), (see Appendix B.3 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-490: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-491: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-492: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-493: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-494: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-495: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 85 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device FIGURE 1-496: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-497: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-498: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 86 Typical Device FIGURE 1-499: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-500: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-501: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘10’ (VREF Unbuffered Mode), VREF = 2.048V Typical Device Typical Device FIGURE 1-502: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). FIGURE 1-505: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-503: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-504: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-506: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-507: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘10’ (VREF Unbuffered), Gx = ‘0’ (1x)). DS20005440A-page 87 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-508: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-509: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-510: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 88 Typical Device FIGURE 1-511: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-512: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-513: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-514: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-515: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-516: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-517: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-518: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-519: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 89 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = VDD, Gx = ‘0’ (1x) Typical Device FIGURE 1-520: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-521: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-522: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). DS20005440A-page 90 Typical Device FIGURE 1-523: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-524: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-525: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = VDD, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)), (see Appendix B.4 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-526: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-527: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-528: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-529: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-530: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-531: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 91 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-532: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-533: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-534: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 92 Typical Device FIGURE 1-535: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-536: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-537: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘0’ (1x) Typical Device FIGURE 1-538: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-539: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-540: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-541: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-542: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-543: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 93 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-544: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-545: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-546: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 94 Typical Device FIGURE 1-547: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-548: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-549: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-550: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-551: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-552: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. Typical Device FIGURE 1-553: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-554: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-555: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 95 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 1V, Gx = ‘1’ (2x) Typical Device FIGURE 1-556: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-557: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-558: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). DS20005440A-page 96 Typical Device FIGURE 1-559: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-560: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-561: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 1.8V, VREF = 1V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)), (see Appendix B.5 for additional information). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-562: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-563: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-564: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-565: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-566: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-567: Total Unadjusted Error (VOUT) vs. DAC Code, and Temperature (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 97 MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-568: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-569: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-570: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 98 Typical Device FIGURE 1-571: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-572: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-573: INL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. MCP48FXBXX Note: Unless otherwise indicated, TA = +25°C, VDD = 5.5V. 8-bit: VRxB:VRxA = ‘11’ (VREF Buffered Mode), VREF = 2.048V Typical Device FIGURE 1-574: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-575: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-576: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Single Channel - MCP48FXB01) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). 2015 Microchip Technology Inc. Typical Device FIGURE 1-577: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘1’ (2x)). Typical Device FIGURE 1-578: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 5.5V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). Typical Device FIGURE 1-579: DNL Error vs. DAC Code, and Temperature (Code 6 - 250) (Dual Channel - MCP48FXB02) (8-bit: VDD = 2.7V, VREF = 2.048V, VRxB:VRxA = ‘11’ (VREF Buffered), Gx = ‘0’ (1x)). DS20005440A-page 99 MCP48FXBXX NOTES: DS20005440A-page 100 2015 Microchip Technology Inc. MCP48FXBXX APPENDIX A: REVISION HISTORY APPENDIX B: Revision A (September 2015) • Original Release of this Document. CHARACTERIZATION GRAPH PERFORMANCE INSIGHTS This Appendix discusses some of the device’s operational performance reflected in the supplied device performance graphs. The device’s performance is calibrated in a single configuration. This factory calibration is in the VDD mode (VRxB:VRxA = ‘00’) at 5V. An example of this is the observed device performance differences between VDD mode, VREF Unbuffered mode with VREF = VDD, and VREF Buffered mode with VREF = VDD. In an ideal implementation, the performance would be identical. Due to device circuit implementation differences, there are performance differences that occur. Looking at the Total Unadjusted Error graphs for each mode gives an indication of where the output buffer is no longer operating in the linear region. If this occurs before code 4000, the INL and DNL graphs will reflect this nonlinearity. INL data would be good if calculations were based on an upper code value that is in the linear range. Note: B.1 If output nonlinearity occurs before DAC code 4000, which is indicated by the Total Unadjusted Error curve changing from a straight line, the INL and DNL graphs will reflect this in their graphs as well. VDD Mode at VDD = 1.8V At low device voltages (such as 1.8V), the output buffer’s performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph. Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V. The device’s DNL is also affected once the output buffer is no longer in its linear range. 2015 Microchip Technology Inc. DS20005440A-page 101 MCP48FXBXX B.2 VREF Unbuffered Mode with VREF = VDD and a Gain of 1x at VDD = 1.8V B.4 VREF Buffered Mode with VREF = VDD and a Gain of 1x at VDD = 1.8V At low device voltages (such as 1.8V), the output buffer’s performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph. Due to the VREF input voltage being equal to the device VDD voltage, the VREF input buffer is saturated and the voltage on the resistor ladder is lower than either the VDD mode or the VREF Unbuffered mode. Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V. At low device voltages (such as 1.8V), the output buffer’s performance is degraded. That is, for high DAC register codes, the output voltage is no longer linear. This is shown in the Total Unadjusted Error graph. The device’s DNL is also affected once the output buffer is no longer in its linear range. • Total Unadjusted Error is worse than VDD mode • The output buffer saturates at a higher code than VDD mode B.3 VREF Unbuffered Mode with VREF = 1V and a Gain of 2x at VDD = 1.8V With a VREF of 1V and a Gain of 2x, theoretically, the output would go to 2V. But since VDD is at 1.8V, the output is “clipped”. This clipping impacts the graphs for Total Unadjusted Error, INL and DNL. If the INL for this data set is calculated with an upper point that was in the linear region (lower than code 4000), the INL graph would look similar to the 1.8V graph where Gain was set to 1x (in the calculated code range). Due to this decline in the voltage on the resistor ladder, the following occurs: Since INL is determined by the measured voltages at code 100 and code 4000, with code 4000 having significant error, the INL graph also reflects that error. If the INL for this data set is calculated with a high code still in the linear region, INL would look similar to the graph at 2.7V. The device’s DNL is also affected once the output buffer is no longer in its linear range. If the widest DAC code range for better INL performance is required, then evaluate this device configuration, but in most cases the VDD mode (VRxB:VRxA = ‘00’) is the suggested device configuration. B.5 VREF Buffered Mode with VREF = 1V and a Gain of 2x at VDD = 1.8V With a VREF of 1V and a Gain of 2x, theoretically, the output would go to 2V. But since VDD is at 1.8V, the output is “clipped”. This clipping impacts the graphs for Total Unadjusted Error, INL and DNL. If the INL for this data set is calculated with an upper point that was in the linear region (lower than code 4000), the INL graph would look similar to the 1.8V graph where Gain was set to 1x (in the calculated code range). DS20005440A-page 102 2015 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-63277-825-3 QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == 2015 Microchip Technology Inc. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS20005440A-page 103 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Germany - Dusseldorf Tel: 49-2129-3766400 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 Austin, TX Tel: 512-257-3370 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 China - Dongguan Tel: 86-769-8702-9880 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Kaohsiung Tel: 886-7-213-7828 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 07/14/15 DS20005440A-page 104 2015 Microchip Technology Inc.