Data Sheet

TEA19162T
PFC controller
Rev. 1 — 10 March 2016
Product data sheet
1. General description
The TEA19162T and TEA19161T are combined controller (combo) ICs for resonant
topologies including PFC. They provide high efficiency at all power levels. Together with
the TEA1995T dual LLC resonant SR controller, a cost-effective resonant power supply
can be built. This power supply meets the efficiency regulations of Energy Star, the
Department of Energy (DoE), the Eco-design Directive of the European Union, the
European Code of Conduct, and other guidelines.
The TEA19162T is a Power Factor Correction (PFC) controller. The IC communicates
with theTEA19161T on start-up sequence and protections. It also enables a fast latch
reset mechanism. To maximize the overall system efficiency, the TEA19161T allows
setting the TEA19162T PFC to burst mode at a low output power level.
Using the TEA19161T and TEA19162T combo together with the TEA1995T secondary
synchronous rectifier controller, a highly efficient and reliable power supply can be
designed with a minimum of external components. The target output power is between
90 W and 500 W.
The system provides a very low no-load input power (< 75 mW; total system including the
TEA19161T/TEA19162T combo and the TEA1995T) and high efficiency from minimum to
maximum load. So, no additional low-power supply is required.
TEA19162T
NXP Semiconductors
PFC controller
2. Features and benefits
2.1 Distinctive features





Complete functionality as TEA19161T/TEA19162T combo
Integrated X-capacitor discharge without additional external components
Universal mains supply operation (70 V (AC) to 276 V (AC))
Integrated soft start and soft stop
Accurate boost voltage regulation
2.2 Green features
 Valley/zero voltage switching for minimum switching losses
 Frequency limitation to reduce switching losses
 Reduced supply current (200 A) when in burst mode
2.3 Protection features









Safe restart mode for system fault conditions
Continuous mode protection with demagnetization detection
Accurate OverVoltage Protection (OVP)
Open-Loop Protection (OLP)
Short-Circuit Protection (SCP)
Internal and external IC OverTemperature Protection (OTP)
Low and adjustable OverCurrent Protection (OCP) trip level
Adjustable brownin/brownout protection
Supply UnderVoltage Protection (UVP)
3. Applications





Desktop and all-in-one PCs
LCD television
Notebook adapter
Printers
Gaming console power supplies
4. Ordering information
Table 1.
Ordering information
Type number
TEA19162T
Package
Name
Description
Version
SO8
plastic small outline package; 8 leads; body width 3.9 mm
SOT96-1
5. Block diagram
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
2 of 30
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
NXP Semiconductors
TEA19162T
Product data sheet
683,&
7($7
'(0$*1(7,=$7,21$1'9$//(<'(7(&7,21
6WDUW683,&
893PDLQV
2/3
893683,&
9
7,0(5—V
9
616$8;
GHPDJ
9$//(<
'(7(&7,21
7,0(5—V
5G
4
616&85
3URW$FWLYH
2&3
9
6
,QW([W273
(QG)DVW/DWFK
=(52
&855(17
6,*1$/
P9
&855(176(16,1*
6WDUW0DLQV
9$QD
9'LJ
9
,17(51$/
6833/,(6
3URW$FWLYH
'
6WDUW0DLQV
&
5
4
(QDEOH3IF
5HVHW)DVW/DWFK
67$5783
&21752/
4Q
*DWH3IF
6833/<
Rev. 1 — 10 March 2016
All information provided in this document is subject to legal disclaimers.
9
—$
3527(&7,216
([W273
17&
PHDVXUH
72Q3DVVHG
2&3
6160$,16
4
—$
0$,166(16,1*
&21752/
,QW273
'5,9(5
*DWH3IF
6
*$7(3)&
893683,&
*$7(&21752/
7,0(5PV
6WDUW683,&
273
5G
(QDEOH3IF
17&0HDVXUH
293
7(03(5$785(
6(16,1*
(QDEOH3IF
3)&
26&,//$725
([W273
0$,16
&855(17
75$&.,1*
3URW$FWLYH
8930DLQV
6WDUW0DLQV
6WDUW;&DS'LV
9
7,0(5
PV
UHVHW
9
PDLQV
FRPSHQVDWLRQ
FXUUHQW
FRPSDUDWRU
—$
*DWH3IF
0$,16
6(16,1*
72Q3DVVHG
;&$3
',6&+$5*(
&21752/
—$
*PDPSOLILHU
9
9
(QG)DVW/DWFK
7,0(5
PV
9
—$
VRIWVWRS
5HVHW)DVW/DWFK
616%2267
29%RRVW
—$
3URW$FWLYH
6RIW6WRS
—$
9
9
'(/$<
—V
2/3
29%RRVW
%2267
92/7$*(6(16,1*
Block diagram
*$7(
6(16,1*
6(16(
5(6,6725
6(16,1*
9
9
9
HQDEOH
3)&
3)&&203
Fig 1.
293
217,0(
&21752/
*1'
9
9
616&85
P9
P9
;&$3
',6&+$5*(
DDD
TEA19162T
293
FRQWURO
PFC controller
3 of 30
© NXP Semiconductors N.V. 2016. All rights reserved.
6RIW6WRS
9
TEA19162T
NXP Semiconductors
PFC controller
6. Pinning information
6.1 Pinning
*$7(3)&
*1'
616$8;
3)&&203
,&
616&85
6160$,16
683,&
616%2267
DDD
Fig 2.
Pin configuration
6.2 Pin description
Table 2.
TEA19162T
Product data sheet
Pin description
Symbol
Pin
Description
GATEPFC
1
gate driver output for PFC
GND
2
ground
SNSCUR
3
programmable current sense input for PFC
SUPIC
4
supply voltage
SNSBOOST
5
sense input for PFC output voltage
SNSMAINS
6
sense input for mains voltage
PFCCOMP
7
frequency compensation pin for PFC
SNSAUX
8
input from auxiliary winding for demagnetization timing and valley
detection for PFC
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
4 of 30
TEA19162T
NXP Semiconductors
PFC controller
7. Functional description
7.1 General control
The TEA19162T is a controller for a power factor correction circuit. Figure 3 shows a
typical configuration.
9PDLQV/
&ERRVW
9ERRVW
9PDLQV1
7($
5PDLQV
UHVRQDQWFRQYHUWHU
0
5DX[
616$8;
*$7(3)&
616&85
6160$,16
7($
5616&85
5VHQVH
683,&
*1'
&683,&
616%2267
3)&&203
5616%2267
DDD
Fig 3.
TEA19162T typical configuration
7.2 Supply voltage and start-up
When using the TEA19162T (PFC) together with the TEA19161T (LLC), connect the
SUPIC pin of the TEA19162T to the SUPIC pin of the TEA19161T. The LLC controller
then supplies the PFC either via the high-voltage supply pin of the TEA19161T (SUPHV)
or via the primary auxiliary winding.
To enable the PFC, the SUPIC voltage must exceed the Vstart(SUPIC) level (13 V typical).
Although the Vstart(SUPIC) level of the LLC is higher than the Vstart(SUPIC) level of the PFC,
the system ensures that both converters (PFC and LLC) start up at the same time.
Therefore, the LLC initially pulls down the SNSBOOST pin, disabling the PFC until the
SUPIC voltage reaches the Vstart(SUPIC) level of the LLC.
When both conditions are met and the SNSMAINS is above the brownin level, the PFC
starts up via an internal soft start (see Figure 4).
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
5 of 30
TEA19162T
NXP Semiconductors
PFC controller
3)&
9683,&
//&
9VWDUW683,&9
9VWDUWK\V683,&9
9XYS683,&9
9VWDUW683,&9
9XYS683,&9
9UVW683,&9
W
W
W
9ERRVW
W
9616%2267
9UHJ616%22679
9SXUVW616%22679
9VWDUW616%22679
W
9VFSVWRS9
WGVWDUW
W
9*$7(3)&
3)&PRGHRIRSHUDWLRQ
893
Fig 4.
6&3
ZDLW
21
DDD
Start-up of the PFC and LLC
The exact start-up sequence of the PFC depends on the availability of start-up conditions
(brownin level, Vstart(SUPIC) of the PFC, and Ien(PFC)).
Before t1, the SUPIC voltage is below the UVP level of the PFC and LLC. When the LLC
reaches a minimum supply voltage level (t1), the LLC pulls down the SNSBOOST pin to
disable the PFC.
At t2, the SUPIC voltage reaches the start level of the PFC converter. However, as the
LLC pulls low the SNSBOOST to below the PFC short protection level, the PFC is still off.
When the mains voltage exceeds the brownin level, the PFC resets its latched protection
by pulling VSNSBOOST to the Vpu(rst)SNSBOOST level (t3). However, the LLC returns it to the
protection mode. When at t4 the SUPIC voltage reaches the start level of the LLC, the
SNSBOOST is released. The SNSBOOST voltage increases because of the resistive
divider which is connected to the PFC bus voltage. To ensure that this voltage is
representative of the Vboost voltage before the system actually starts to switch, an
additional delay (td(start); 3.62 ms) is active before the PFC starts switching (t5).
Another important condition for the PFC start is a precharge of the compensation circuitry
connected to the PFCCOMP pin. This condition is met when the current out of the
PFCCOMP pin < |Ien(PFCCOMP)|.
When at t6 the SNSBOOST voltage reaches the start level of the LLC (Vstart(SNSBOOST)),
the LLC converter starts to switch.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
6 of 30
TEA19162T
NXP Semiconductors
PFC controller
When VSUPIC < Vuvp(SUPIC), the PFC controller stops switching immediately.
7.3 Protections
Table 3 gives an overview of the available protections.
Table 3.
Protections overview
Protection
Description
Action
LLC[2]
UVP-SUPIC
undervoltage protection
SUPIC
PFC = off;
restart when VSUPIC > Vstart(SUPIC);
SNSBOOST pulled low, disabling the LLC.
off
Section 7.2
OTP-internal
internal overtemperature
protection
latched; SNSBOOST pulled low, disabling
the LLC.
off
Section 7.3.1
OTP-external
external overtemperature
protection
latched; SNSBOOST pulled low, disabling
the LLC.
off
Section 7.3.2
brownout-mains
undervoltage protection
mains
PFC = off; restart when ISNSMAINS > Ibi[1]
-
Section 7.3.2
SoftStop-OVPSNSBOOST
overvoltage protection boost PFC = off via soft stop;
voltage followed by a soft stop restart when VSNSBOOST < Vovp(start)
-
Section 7.3.3
OVPSNSBOOST
overvoltage protection boost
voltage
PFC = off; restart when
VSNSBOOST < Vovp(SNSBOOST)
-
Section 7.3.4
SCP-SNSBOOST
short-circuit protection
PFC = off;
restart when VSNSBOOST > Vscp(start)
-
Section 7.3.5
OLP-PFC
open-loop protection
PFC = off;
restart when VSNSBOOST > Vscp(start)
-
Section 7.3.5
OCP
overcurrent protection
PFC MOSFET switched off,
continue operation
-
Section 7.3.6
[1]
At start-up, the PFC disables the LLC converter until the mains voltage exceeds the brownin level.
[2]
Some protections also disable the LLC (see Section 7.5.1).
7.3.1 Internal OverTemperature Protection (OTP)
An accurate internal temperature protection is provided in the circuit. When the junction
temperature exceeds the thermal shutdown temperature (Tpl(IC)), the IC stops switching.
The internal overtemperature protection is a latched protection. It also disables the LLC
converter by pulling down the SNSBOOST pin.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
7 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.3.2 Brownin/brownout and external overtemperature protection
On the TEA19162T, the mains measurement and external temperature are combined at
the SNSMAINS pin (see Figure 5).
PDLQV/
PDLQV1
96160$,169
P9
W
W
,6160$,16
W
W
W
—$
Fig 5.
DDD
Mains and external OTP measurement
At t1, the voltage at the SNSMAINS pin is internally regulated to Vregd(SNSMAINS) (250 mV).
The current into the SNSMAINS pin is a measure of the system input mains voltage. The
TEA19162T continuously measures the SNSMAINS current and waits until it detects a
peak in the measured current (t2). This peak current value is internally stored and used as
an input for the brownout/brownin detection and the mains compensation.
When, at t3, the current into the SNSMAINS pin is well below the brownin level
(< Ien(NTC)), the controller starts to measure the value of the external NTC. The external
NTC is measured by sourcing a current (Io(SNSMAINS)) out of the SNSMAINS pin. When,
after a maximum measuring time of tdet(NTC)max (1 ms), the voltage remains below
Vdet(SNSMAINS) during four consecutive NTC measurements, the OTP protection is
triggered (t5).
To prevent the PFC from operating at very low mains input voltages, the PFC stops
switching when the measured peak current drops to below Ibo. When the measured
current exceeds Ibi, the PFC restarts with a soft start.
7.3.3 Soft stop overvoltage protection (SNSBOOST pin)
When the SNSBOOST voltage is between the Vdet(L)SNSBOOST and Vdet(H)SNSBOOST, the
TEA19162T stops switching via a soft stop. The TEA19161T uses this function to force
the TEA19162T to operate in burst mode with a specific duty cycle (see Section 7.5.2).
Audible noise is avoided because at the end of a switching period, the PFC stops via a
soft stop. After an OVP event, the system always starts via a soft start.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
8 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.3.4 Overvoltage protection (SNSBOOST pin)
To prevent output overvoltage during load steps and mains transients, an overvoltage
protection circuit is built in.
When the voltage on the SNSBOOST pin exceeds the Vovp(stop) level and is outside the
Vdet(L)SNSBOOST and Vdet(H)SNSBOOST window for a minimum period of td(ovp) (100 s),
switching of the power factor correction circuit is inhibited. When the SNSBOOST pin
voltage drops to below the Vovp(start) (Vovp(stop)  Vhys(ovp)) level again, the switching of the
PFC recommences. The IC always restarts with a soft start (see Section 7.4.1).
7.3.5 PFC open-loop protection (VOSENSE pin)
The PFC does not start switching until the voltage on the SNSBOOST pin exceeds
Vscp(start). This function acts as short circuit protection for the boost voltage
(SCP-SNSBOOST; see Table 3).
7.3.6 Overcurrent protection (PFCSENSE pin)
Sensing the voltage across an external sense resistor, Rsense, on the source of the
external MOSFET, limits the maximum peak current cycle-by-cycle. The voltage is
measured via the SNSCUR pin.
7.3.7 Fast latch reset
The restart of the system after a protection is triggered depends on the type of protection.
In a safe restart protection (only applicable for the LLC), the system typically restarts after
the restart delay time (1 sec).
It is different for latched protections. Typically, in a latched protection, the SUPIC must
reach the undervoltage protection level to release the protection mode and to restart the
system. The release/restart can only be achieved by disconnecting the mains.
In the protection mode, the TEA19161T/TEA19161CT regulates the voltage of the SUPIC
pin to its start level. The PFC output capacitor supplies the SUPIC pin via the SUPHV pin
of the TEA19161T/TEA19161CT. So it takes a long time before the voltage of the SUPIC
pin drops below its undervoltage level after the mains is disconnected. To prevent this
delay, a special fast latch reset function is implemented in the TEA19162T, which also
releases the protection mode when the mains is reconnected.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
9 of 30
TEA19162T
NXP Semiconductors
PFC controller
9683,&
3)&
WGPDLQER
//&
9VWDUW683,& 9
9VWDUWK\V683,& 9
PDLQV
EURZQLQ
EURZQRXW
W
9UHJ616%2267 9
9VWDUW616%2267 9
9SXUVW616%2267 9
9616%2267
9VFSVWRS 9
9XYS616%2267 9
WGVWDUW
W
3)&
RII
ZDLW
EURZQRXW
RQ
W
//&
893616%2267
SURWHFWLRQ
RQ
W
9RXW
DDD
Fig 6.
Fast latch reset
Before t1, the LLC (and/or PFC) is in a (latched) protection and pulls down the
SNSBOOST pin, which also disables the PFC.
When the mains voltage drops to below the brownout level (Ibo) and the time td(det)bo
(50 ms) expires (t1), the PFC enters the brownout protection mode. When, in the
brownout protection mode, the mains voltage increases again and exceeds the brownin
level (Ibi; t2), the PFC pulls up the SNSBOOST voltage to the Vpu(rst)SNSBOOST level
(see Figure 6). Because the Vpu(rst)SNSBOOST level of the PFC exceeds the Vuvp(SNSBOOST)
level of the LLC, the LLC converter resets the protection mode. However, switching is still
inhibited as the SNSBOOST voltage remains below the start level (Vstart(SNSBOOST)) of the
LLC. The SUPIC voltage is still regulated to the Vstart(SUPIC) level of the LLC converter. To
ensure that the voltage at the SNSBOOST pin accurately reflects the output voltage of the
PFC, the PFC converter starts after a delay time (td(start)) (t3). The start of the PFC
converter is followed by a start-up of the LLC converter (t4).
7.4 Power factor correction regulation
The power factor correction circuit operates in quasi-resonant or discontinuous
conduction mode with valley switching. The next primary stroke is only started when the
previous secondary stroke has ended and the voltage across the PFC MOSFET has
reached a minimum value. To detect transformer demagnetization and the minimum
voltage across the external PFC MOSFET switch, the voltage on the SNSAUX pin is
used.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
10 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.4.1 Soft start (PFCSENSE pin)
To prevent audible transformer noise at start-up or during hiccup, the soft start function
slowly increases the transformer peak current (see Figure 7).
616%2267
W
W
9UHJRF
9VWDUWVRIWLQLW
616&85
WVWDUWVRIW
*$7(3)&
W
Fig 7.
DDD
PFC start-up
At t1, all conditions to start up the PFC are fulfilled. The maximum voltage on the
SNSCUR pin is limited to Vstart(soft)init (125 mV). When the PFC starts switching, the
maximum SNSCUR voltage is increased to Vreg(oc) within a time period of tstart(soft)
(3.62 ms) or until the ton regulation limits the on-time of the PFC external MOSFET.
7.4.2 ton control
The power factor correction circuit is operated in ton control. The resulting mains harmonic
reduction of a typical application is well within the class-D requirements.
The following circuits determine the on-time of the external PFC MOSFET:
• The error amplifier and the loop compensation which define the voltage on the
PFCCOMP pin. At Vtonzero(PFCCOMP) (3.5 V), the on-time is reduced to zero. At
Vtonmax(PFCCOMP) (1.93 V), the on-time is at a maximum.
• Mains compensation which uses the current through the SNSMAINS pin to represent
the mains input voltage level.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
11 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.4.3 PFC error amplifier (PFCCOMP and SNSBOOST pins)
The boost voltage is divided using a high-ohmic resistive divider and is supplied to the
SNSBOOST pin. The transconductance error amplifier, which compares the SNSBOOST
voltage with an accurate trimmed reference voltage (Vreg(SNSBOOST)) is connected to this
pin. The external loop compensation network on the PFCCOMP pin filters the output
current. In a typical application, a resistor and two capacitors set the regulation loop
bandwidth.
The transconductance of the error amplifier is not constant. To avoid triggering the OVP
during start-up and during a converter transient response, the transconductance is
increased to a level of Igm(high) starting at Vgm(high)start (see Figure 8).
O3)&&203
—$
OVLQN3)&&203
JP
P9
9JPKLJKVWDUW
P9
9RYSVWRS
9616%22679
JPKLJK
DDD
Fig 8.
Transconductance of the PFC error amplifier
7.4.4 Valley switching and demagnetization (PFCAUX pin)
To ensure that the TEA19162T operates in discontinuous or quasi-resonant mode, the
PFC MOSFET is switched on after the transformer is demagnetized. To reduce switching
losses and ElectroMagnetic Interference (EMI), the next stroke is started when the PFC
MOSFET drain-source voltage is at its minimum (valley switching). The demagnetization
and valley detection are measured via the SNSAUX pin.
If no demagnetization signal is detected on the SNSAUX pin, the controller generates a
demagnetization signal (tto(demag); 44.5 s typical) after the external MOSFET is switched
off.
If no valley signal is detected on the PFCAUX pin, the controller generates a valley signal
(tto(vrec); 3.8 s typical) after demagnetization is detected.
To protect the internal circuitry, for example during lightning events, connect a 5 k series
resistor (Raux; see Figure 13) to the PFCAUX pin. Also connect a 1 k (typical) external
sense resistor (RSNSCUR; see Figure 13) to the SNSCUR pin. To prevent incorrect
switching due to external disturbance, place the resistors close to the IC.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
12 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.4.5 Frequency limitation
To optimize the transformer and minimize switching losses, the switching frequency is
limited to fsw(PFC)max. If the frequency for quasi-resonant operation exceeds the fsw(PFC)max
limit, the system enters Discontinuous Conduction Mode (DCM). When the system is in
DCM, the PFC MOSFET switches on at a minimum voltage across the switch (valley
switching).
To ensure correct control of the PFC MOSFET under all circumstances, the minimum
off-time is limited at toff(PFC)min.
7.4.6 Mains voltage compensation (SNSMAINS pin)
The equation for the transfer function of a power factor corrector contains the square of
the mains input voltage. In a typical application, the result is a low bandwidth for low mains
input voltages. At high mains input voltages, the Mains Harmonic Reduction (MHR)
requirements may be hard to meet.
To compensate for the mains input voltage influence, the TEA19162T contains a
correction circuit. The input voltage is measured via the SNSMAINS pin
(see Section 7.3.2) and the information is fed to an internal mains compensation circuit
(see Figure 1). With this compensation, it is possible to keep the regulation loop
bandwidth constant over the full mains input range. The result is that a mains voltage
independent transient response on load steps is yielded, while still complying with class-D
MHR requirements.
In a typical application, an external circuitry at the PFCCOMP pin (see Section 7.4.3) sets
the bandwidth of the regulation loop.
7.4.7 Active X-capacitor discharge
The TEA19162T provides an active X-capacitor discharge after the mains voltage is
disconnected. When the mains input voltage (and so also the measured current into the
SNSMAINS pin) increases (see Figure 9, t2  t1), the system assumes the presence of a
mains voltage. When the mains voltage does not increase for a minimum period of td(dch),
the active X-capacitor discharge is activated (t3).
When the active X-capacitor discharge function is activated, the X-capacitor is discharged
via the external PFC MOSFET (see Figure 10). To avoid any increase of the PFC output
voltage, the external PFC MOSFET is slowly turned on until a small current is detected via
the SNSCUR pin (see Figure 9, t4). A slow increase of the GATEPFC voltage is achieved
via a current source (Ich(GATEPFC)) that slowly charges the external gate-source
capacitance of the external MOSFET.
When the voltage at the SNSCUR exceeds Vch(stop)SNSCUR level (10.5 mV), the voltage at
the GATEPFC pin slowly decreases by activating a current sink (Idch(GATEPFC)). As a
result, the gate-source capacitance of the external MOSFET is discharged. When the
voltage on the GATEPFC pin drops to below Vdch(stop)GATEPFC level (0.7 V), the current
sink is switched off. The charge/discharge cycle is repeated after the period toff(dch) (t5). As
for a typical power MOSFET the duration of charge/discharge pulses on the GATEPFC
pin is shorter than 2 ms, Tp (4 ms typical) defines the pulse repetition time.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
13 of 30
TEA19162T
NXP Semiconductors
PFC controller
When the voltage on the GATEPFC pin exceeds Vdch(GATEPFC) while the voltage on the
SNSCUR pin is still below Vch(stop)SNSCUR, the system assumes a full discharge of the
X-capacitor. It starts to ramp down the GATEPFC voltage. Unless the mains is
reconnected, the next active X-capacitor discharge cycle is started after td(dch).
Reconnecting the mains is detected via a positive dI/dt at the SNSMAINS pin.
While the GATEPFC pin discharges the X-capacitor, the mains can be reconnected. In
that case, the current through the external MOSFET increases rapidly. If the voltage on
the SNSCUR pin exceeds Vdch(SNSCUR), the internal driver stage rapidly turns off the
GATEPFC pin. When the mains is disconnected again (measured via the SNSMAINS
pin), the next active X-capacitor discharge cycle starts, followed by a delay of td(dch).
PDLQV/
PDLQV1
,FK*$7(3)&
,*$7(3)&
,GFK*$7(3)&
7S
9GFKVWRS*$7(3)&
WGGFK
9*$7(3)&
W
9FKVWRS616&85
9616&85
W
Fig 9.
TEA19162T
Product data sheet
W
WRIIGFK
W
W
DDD
TEA19162T active X-capacitor discharge
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
14 of 30
TEA19162T
NXP Semiconductors
PFC controller
PDLQV/
PDLQV1
HQDEOHWULVWDWH
*$7(3)&
*DWH'LJ
&ERRVW
GULYHU
893683,&
,FK*$7(3)&
9GLVGFK*$7(3)&
FKDUJH
7,0(5
WGGFK
UHVHW
,GFK*$7(3)&
9GFKVWRS*$7(3)&
616&85
;&$3$&,725
',6&+$5*(
&21752/
9FKVWRS616&85
5VHQVH
7,0(5
WRIIGFK
9GLVGFK616&85
,&
DDD
Fig 10. TEA19162T active X-capacitor discharge block diagram
7.5 PFC-LLC communication protocol
The TEA19162T (PFC controller) is designed to cooperate with the TEA19161T
(LLC controller) in one system. Both controllers can be seen as a combo IC, split up into
two packages. All required functionality between the TEA19162T and TEA19161T is
arranged via the combined SUPIC and SNSBOOST pins.
Both controllers are supplied via the SUPIC pin (see Section 7.2). The SNSBOOST pin is
used to communicate about the protection states of both controllers. The TEA19161T
forces the TEA19162T to enter burst mode also using the SNSBOOST pin.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
15 of 30
TEA19162T
NXP Semiconductors
PFC controller
7.5.1 Protections
When a protection is triggered in the PFC or the LLC, it can also disable the other
converter. For example, if an OVP is detected at the LLC, both converters are stopped.
Also, at initial start-up, the PFC disables the LLC converter until the brownin level of the
mains voltage is detected.
The SNSBOOST pin is used for the communication about such protection states. By
pulling down the SNSBOOST pin below the Vuvp(SNSBOOST) level of the LLC converter, the
PFC can disable the LLC converter. Similarly, by pulling down the SNSBOOST pin below
the short protection level Vscp(stop) of the PFC converter, the LLC can disable the PFC.
Table 3 in Section 7.3 gives an overview of all protections in the PFC converter. The PFC
protections that also disable the LLC are listed in the LLC-column.
When the mains voltage initially drops to below the brownout level and then increases to
above the brownin level, all protections of the PFC and the LLC are reset. A reset of all
protections is also communicated via the SNSBOOST pin by pulling it up to the
Vpu(rst)SNSBOOST level (see Section 7.3.7).
The IC starts and remains in the protection mode until the mains brownin level is reached.
The IC current consumption is then at power-saving level.
7.5.2 PFC burst mode
Based on the output power level of the LLC converter, the LLC determines when the PFC
enters burst mode. During the burst mode, the LLC converter disables the PFC by
increasing the SNSBOOST voltage to between Vdet(L)SNSBOOST and Vdet(H)SNSBOOST
(see Figure 11). It ensures a soft start and a soft stop at the start and the end of a
switching period, respectively. This increase in the voltage on the SNSBOOST pin is
achieved by an additional current out of the LLC converter towards the SNSBOOST pin.
The additional current creates a positive voltage shift because of the external resistive
network at the SNSBOOST pin.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
16 of 30
TEA19162T
NXP Semiconductors
PFC controller
3)&
//&
,RIIEXUVW —$
*0$03/,),(5
,FKVWRSVRIW —$
3)&EXUVWPRGH
9616%2267!9
T V
9
VRIWVWRS
U
616%2267
5(6(7
9RIIEXUVW
3)&&203
0$;
9$/8(
Nȍ
9
9
—V
'(/$<
293
9
DDD
a. Block diagram
3)&
//&
2))
21
2))
,RIIEXUVW
W
9616%2267
9GHW+616%2267 9
21
9RIIEXUVW P9
9GHW/616%2267 9
9RYSVWRS 9
9UHJ616%2267 9
9RQEXUVWPD[ 9
W
93)&&203
W
9FODPS3)&&203 9
9WRQ]HUR3)&&203 9
W
W
W
9*$7(3)&
DDD
b. Timing diagram
Fig 11. PFC burst mode
At t1, the current out of the LLC SNSBOOST pin (Istop(burst)) is activated and the voltage
on the SNSBOOST pin increases. When a 100 k external resistor RSNSBOOST between
the SNSBOOST pin and GND pin is used (see Figure 11), the SNSBOOST voltage
increase is about 640 mV (= Istop(burst)SNSBOOST * RSNSBOOST). As due to this increase the
SNSBOOST voltage is between Vdet(L)SNSBOOST and Vdet(H)SNSBOOST levels (t2), the soft
stop of the PFC converter is started. In the soft stop state, the current out of the
PFCCOMP pin (Ich(stop)soft) is activated. At the end of the soft stop, the PFC enters the
energy safe state and stops switching (t3). The voltage at the PFCCOMP pin is clamped
at Vtonzero(PFCCOMP) (3.5 V). It remains at this level during the energy safe state. As the
LLC converter operates continuously, even when the PFC is stopped, the PFC output
capacitor discharges.
When the PFC boost capacitor is discharged so much that the voltage on the SNSBOOST
pin drops by 100 mV (Voff(burst); t4), the internal current source in the LLC converter is
switched off. Because of the negative voltage drop at the SNSBOOST pin, the
SNSBOOST voltage drops below the regulation level (Vreg(SNSBOOST); t5). The PFC starts
switching again (t6). When VSNSBOOST exceeds the LLC Von(burst)max level (2.37 V) again,
the internal current is reactivated and the PFC stops switching again.
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
17 of 30
TEA19162T
NXP Semiconductors
PFC controller
The TEA19162T current consumption in the burst mode depends on whether the IC is
switching or not. During burst mode on-time and burst mode off-time, the current
consumption is at operating level and power-saving level, respectively.
7.5.3 Soft stop
A soft stop always precedes the PFC burst mode. It reduces audible noise of the
converter.
The internal current source activated in the LLC converter (see Figure 11) pulls up the
voltage at the PFC SNSBOOST pin. When the SNSBOOST pin voltage is between
Vdet(L)SNSBOOST (2.8 V) and Vdet(H)SNSBOOST (3.23 V), the PFC soft stop begins. Then, a
PFC internal current source Ich(stop)soft is activated and the transconductance error
amplifier in the PFC control loop is switched off (see Figure 11).
The activated current source provides a current of 32 A (Ich(stop)soft) out of the PFCCOMP
pin. This current slowly increases the voltage of the PFCCOMP pin, gradually reducing
the converter switching on-time. When the zero on-time is reached, the soft stop ends.
The zero on-time corresponds with the PFCCOMP pin voltage of Vtonzero(PFCCOMP) (3.5 V).
The detection of the overvoltage on the SNSBOOST pin at the normal OVP level
(Vovp(stop)) is delayed for the time td(ovp) (100 s). This additional delay is required to verify
if the system should stop immediately because of an OVP or via a soft stop when
activating the burst mode.
7.6 Driver (pin GATEPFC)
The driver circuit to the gate of the power MOSFET has a current sourcing capability of
600 mA and a current sink capability of 1.4 A typical. These capabilities allow a fast
turn-on and turn-off of the power MOSFET, ensuring efficient operation.
When the SUPIC voltage is below its start level, the internal keep-off circuitry of the PFC
driver pulls down the GATEPFC pin. The pulling down of the GATEPFC pin prevents that
an external power MOSFET is activated when the IC power supply is absent or when the
VSUPIC < Vstart(SUPIC). The keep-off circuitry (see Figure 12) is supplied via the GATEPFC
pin. So, if the actual IC supply is absent or too low (VSUPIC < Vstart(SUPIC)), the circuit works
correctly.
GULYHU
*$7(3)&
893683,&
,&
DDD
Fig 12. Keep-off circuitry at the GATEPFC pin
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
18 of 30
TEA19162T
NXP Semiconductors
PFC controller
8. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
Voltages
0.4
+38
V
VSNSMAINS voltage on pin SNSMAINS
current limited
0.4
+12
V
VPFCCOMP
voltage on pin PFCCOMP
current limited
0.4
+12
V
VSNSAUX
voltage on pin SNSAUX
current limited
25
+25
V
VSNSCUR
voltage on pin SNSCUR
current limited
0.4
+12
V
VSNSBOOST voltage on pin SNSBOOST current limited
0.4
+12
V
VSUPIC
VGATEPFC
voltage on pin SUPIC
voltage on pin GATEPFC
current limited
0.4
+12
V
Tamb < 75 C
General
Ptot
total power dissipation
-
0.45
W
Tstg
storage temperature
55
+150
C
Tj
junction temperature
40
+150
C
2000
+2000
V
-
200
V
500
+500
V
ESD
VESD
electrostatic discharge
voltage
human body
model
[1]
machine model
charged device
model
[2]
[1]
Equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
[2]
Equivalent to discharging a 200 pF capacitor through a 0.75 H coil and a 10  resistor.
9. Thermal characteristics
Table 5.
TEA19162T
Product data sheet
Thermal characteristics
Symbol
Parameter
Conditions
Typ
Unit
Rth(j-a)
thermal resistance from junction
to ambient
in free air;
JEDEC test board
150
K/W
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
19 of 30
TEA19162T
NXP Semiconductors
PFC controller
10. Characteristics
Table 6.
Characteristics
Tamb = 25 C; VSUPIC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into
the IC; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Supply (SUPIC pin)
Vstart(SUPIC)
start voltage on pin
SUPIC
12.35
13
13.65
V
Vuvp(SUPIC)
undervoltage
protection voltage
on pin SUPIC
8.55
9
9.45
V
ICC
supply current
operating mode; fsw = 100 kHz; pin
GATEPFC = floating; VSNSBOOST = 2.2 V
-
-
0.80
mA
power-save mode; pin
PFCCOMP = floating; VSNSBOOST = 2.7 V
-
-
0.20
mA
Gate driver output (GATEPFC pin)
Isource(GATEPFC)
source current on
pin GATEPFC
VGATEPFC = 2 V; VSUPIC  13 V
-
0.6
-
A
Isink(GATEPFC)
sink current on pin
GATEPFC
VGATEPFC = 2 V; VSUPIC  13 V
-
0.6
-
A
VGATEPFC = 10 V; VSUPIC  13 V
-
1.4
-
A
10.0
11.0
12.0
V
5.35
5.75
6.15
A
Vo(max)GATEPFC
maximum output
voltage on pin
GATEPFC
Mains voltage sensing (SNSMAINS pin)
Ibi
brownin current
4.65
5.00
5.35
A
640
750
820
nA
brownout detection
delay time
45.2
50
55.5
ms
regulated voltage
mains detection period;
on pin SNSMAINS no current at SNSMAINS;
Cmax(SNSMAINS) = 100 pF
230
250
270
mV
Ibo
brownout current
Ibo(hys)
hysteresis of
brownout current
td(det)bo
Vregd(SNSMAINS)
Ibi  Ibo
X-capacitor discharge (SNSCUR and GATEPFC pins)
td(dch)
discharge delay
time
x-capacitor discharge
109
118
128
ms
Ich(GATEPFC)
charge current on
pin GATEPFC
x-capacitor discharge
29
26
23
A
Idch(GATEPFC)
discharge current
on pin GATEPFC
x-capacitor discharge
23
26
29
A
Vch(stop)SNSCUR
stop charge
voltage on pin
SNSCUR
x-capacitor discharge;
stop of external MOST gate charge;
dV/dt = 0
8.00
10.50
12.50
mV
Vdch(stop)GATEPFC
stop discharge
voltage on pin
GATEPFC
x-capacitor discharge;
stop of external MOST gate discharge
0.3
0.7
1.1
V
toff(dch)
discharge off-time
x-capacitor; time between
discharge/charge pulses; GATEPFC pin
1.88
-
6.40
ms
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
20 of 30
TEA19162T
NXP Semiconductors
PFC controller
Table 6.
Characteristics …continued
Tamb = 25 C; VSUPIC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into
the IC; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Tp
pulse period
x-capacitor discharge;
pulse duration < 2 ms (typical);
GATEPFC pin
3.76
4.00
4.27
ms
Vdis(dch)GATEPFC
disable discharge
voltage on pin
GATEPFC
x-capacitor discharge
9.00
9.45
9.90
V
Vdis(dch)SNSCUR
disable discharge
voltage on pin
SNSCUR
x-capacitor discharge
44
50
56
mV
Output voltage sensing, regulation and compensation (SNSBOOST and PFCCOMP pins)
Vreg(SNSBOOST)
regulation voltage IPFCCOMP = 0 A
on pin SNSBOOST
2.475
2.500
2.525
V
gm
transconductance
90
75
60
A/V
error amplifier; VSNSBOOST to IPFCCOMP;
|VSNSBOOST  Vintregd(SNSBOOST)| < 40 mV
Isink(PFCCOMP)
sink current on pin
PFCCOMP
VSNSBOOST = 2 V; VPFCCOMP = 2.75 V
30.0
35.5
41.0
A
gm(high)
high
transconductance
error amplifier; VSNSBOOST to IPFCCOMP;
Vstart(gm)high  VSNSBOOST < Vstop(ovp)
-
1.26
-
mA/V
Vgm(high)start
start high
transconductance
voltage
pin SNSBOOST
2.56
2.60
2.63
V
Iclamp(max)
maximum clamp
current
pin PFCCOMP; energy save mode;
PFC off; VPFCCOMP = 0 V
260
220
190
A
Ien(PFC)
PFC enable
current
pin PFCCOMP
15
11.5
8
A
Vclamp(PFCCOMP)
clamp voltage on
pin PFCCOMP
bidirectional clamp; energy save mode;
PFC off
3.40
3.50
3.60
V
upper clamp voltage;
unidirectional clamp; operating mode;
PFC on; IPFCCOMP = 120 A
3.70
3.80
3.90
V
lower clamp voltage;
unidirectional clamp; operating mode;
PFC on; VSNSBOOST = 2.5 V;
IPFCCOMP = 30 A
Vton(max)PFCCOMP
V
Mains compensation
ton(PFC)
TEA19162T
Product data sheet
PFC on-time
minimum mains voltage compensation
current; VPFCCOMP = 2 V;
VSNSBOOST = 2.5 V;
Imvc(SNSMAINS) = 5.25 A
20
25
30
s
maximum mains voltage compensation
current; VPFCCOMP = 2 V;
VSNSBOOST = 2.5 V;
Imvc(SNSMAINS) = Imvc(SNSMAINS)max
1
2
3
s
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
21 of 30
TEA19162T
NXP Semiconductors
PFC controller
Table 6.
Characteristics …continued
Tamb = 25 C; VSUPIC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into
the IC; unless otherwise specified.
Symbol
Parameter
Imvc(max)SNSMAINS
maximum mains
voltage
compensation
current on pin
SNSMAINS
Conditions
Min
Typ
Max
Unit
18
20
22
A
PFC on-timer (PFCCOMP pin)
Vtonzero(PFCCOMP)
zero on-time
voltage on pin
PFCCOMP
3.40
3.50
3.60
V
Vtonmax(PFCCOMP)
maximum on-time
voltage on pin
PFCCOMP
1.88
1.93
1.98
V
fsw(PFC)max
maximum PFC
switching
frequency
120
134
148
kHz
toff(PFC)min
minimum PFC
off-time
1.25
1.55
1.85
s
Demagnetization sensing (pin SNSAUX)
Vdet(demag)SNSAUX
demagnetization
detection voltage
on pin SNSAUX
125
90
55
mV
tto(demag)
demagnetization
time-out time
37
44.5
52
s
Iprot(SNSAUX)
protection current
on pin SNSAUX
-
40
-
nA
1.7
V/s
pin SNSAUX = open; VSNSAUX = 50 mV
Valley sensing (SNSAUX pin)
(V/t)vrec(min)
minimum valley
recognition voltage
change with time
-
tto(vrec)
valley recognition
time-out time
3.0
3.8
4.6
s
Output current sensing (SNSCUR pin)
Vreg(oc)
overcurrent
regulation voltage
dV/dt = 0
0.48
0.50
0.52
V
td(swoff)driver
driver switch-off
delay time
pin GATEPFC
-
80
-
ns
tleb
leading edge
blanking time
VSNSCUR = 0.75 V
240
300
360
ns
Iprot(SNSCUR)
protection current
on pin SNSCUR
pin SNSCUR = open
-
50
-
nA
85
100
115
A
Output voltage protection sensing (pin SNSBOOST)
Ipd(SNSBOOST)
TEA19162T
Product data sheet
pull-down current
protection active; VSNSBOOST = 1.0 V;
on pin SNSBOOST
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
22 of 30
TEA19162T
NXP Semiconductors
PFC controller
Table 6.
Characteristics …continued
Tamb = 25 C; VSUPIC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into
the IC; unless otherwise specified.
Symbol
Parameter
Vscp(stop)
Conditions
Min
Typ
Max
Unit
stop short-circuit
protection voltage
0.35
0.40
0.45
V
Vscp(start)
start short-circuit
protection voltage
0.45
0.50
0.55
V
td(start)
start delay time
after short-circuit protection removed
3.30
3.62
4.00
ms
Ipu(rst)SNSBOOST
reset pull-up
current on pin
SNSBOOST
fast latch reset; VSNSBOOST = 1.5 V
245
210
175
A
Vpu(rst)SNSBOOST
reset pull-up
voltage on pin
SNSBOOST
fast latch reset
1.94
2.00
2.06
V
Iprot(SNSBOOST)
protection current
on open pin
SNSBOOST
pin SNSBOOST = open
-
35
-
nA
Vovp(stop)
stop overvoltage
protection voltage
2.59
2.63
2.67
V
Vovp(start)
start overvoltage
protection voltage
2.47
2.53
2.59
V
Vhys(ovp)
overvoltage
Vstop(ovp)  Vstart(ovp)
protection
hysteresis voltage
on pin SNSBOOST
0.07
0.10
0.13
V
Soft start (pin SNSCUR)
tstart(soft)
soft start time
3.30
3.62
4.00
ms
Vstart(soft)init
initial soft start
voltage
100
125
155
mV
Soft stop (pins SNSBOOST and PFCCOMP)
Vdet(L)SNSBOOST
LOW-level
soft stop
detection voltage
on pin SNSBOOST
2.74
2.80
2.86
V
Vdet(H)SNSBOOST
HIGH-level
soft stop
detection voltage
on pin SNSBOOST
3.17
3.23
3.29
V
Ich(stop)soft
soft stop charge
current
pin PFCCOMP
36
32
28
A
td(ovp)
overvoltage
protection delay
time
pin SNSBOOST
80
100
120
s
2.0
2.5
3.0
A
214
200
186
A
External and internal overtemperature measurement
Ien(NTC)
NTC enable
current
Io(SNSMAINS)
output current on
pin SNSMAINS
TEA19162T
Product data sheet
pin SNSMAINS; NTC measurement;
mains measurement period; falling slope
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
23 of 30
TEA19162T
NXP Semiconductors
PFC controller
Table 6.
Characteristics …continued
Tamb = 25 C; VSUPIC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into
the IC; unless otherwise specified.
Symbol
Parameter
tdet(NTC)max
Min
Typ
Max
Unit
maximum NTC
detection time
0.92
1.00
1.08
ms
Vdet(SNSMAINS)
detection voltage
NTC measurement; ISNSMAINS = 200 A
on pin SNSMAINS
1.95
2.00
2.05
V
Tpl(IC)
IC protection level
temperature
130
150
160
C
TEA19162T
Product data sheet
Conditions
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
24 of 30
TEA19162T
NXP Semiconductors
PFC controller
11. Application information
Capacitor CSUPIC filters the IC supply voltage, which must be supplied externally. Sense
resistor Rsense converts the current through the MOSFET M1 to a voltage on the SNSCUR
pin. The Rsense value determines the maximum primary peak current in MOSFET M1.
To limit the current into the SNSCUR pin due to negative voltage spikes across the sense
resistor, resistor RSNSCUR is added.
To protect the IC from damage during lightning events, resistor Raux is added.
9PDLQV/
&ERRVW
9ERRVW
9PDLQV1
7($
5PDLQV
UHVRQDQWFRQYHUWHU
0
5DX[
616$8;
*$7(3)&
616&85
6160$,16
7($
5616&85
5VHQVH
683,&
*1'
&683,&
616%2267
3)&&203
5616%2267
DDD
Fig 13. Application diagram
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
25 of 30
TEA19162T
NXP Semiconductors
PFC controller
12. Package outline
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP
627
'
(
$
;
F
\
+(
Y 0 $
=
4
$
$
$
$
SLQLQGH[
ș
/S
/
H
GHWDLO;
Z 0
ES
PP
VFDOH
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
81,7
$
PD[
$
$
$
ES
F
'
(
H
+(
/
/S
4
Y
Z
\
=
PP
LQFKHV ș
R
R
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
5()(5(1&(6
287/,1(
9(56,21
,(&
-('(&
627
(
06
-(,7$
(8523($1
352-(&7,21
,668('$7(
Fig 14. Package outline SOT096-1 (SO8)
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
26 of 30
TEA19162T
NXP Semiconductors
PFC controller
13. Revision history
Table 7.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
TEA19162T v.1
20160310
Product data sheet
-
-
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
27 of 30
TEA19162T
NXP Semiconductors
PFC controller
14. Legal information
14.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
14.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
14.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
TEA19162T
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
28 of 30
TEA19162T
NXP Semiconductors
PFC controller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
14.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
GreenChip — is a trademark of NXP B.V.
15. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
TEA19162T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 10 March 2016
© NXP Semiconductors N.V. 2016. All rights reserved.
29 of 30
TEA19162T
NXP Semiconductors
PFC controller
16. Contents
1
2
2.1
2.2
2.3
3
4
5
6
6.1
6.2
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.5
7.5.1
7.5.2
7.5.3
7.6
8
9
10
11
12
13
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 2
Distinctive features . . . . . . . . . . . . . . . . . . . . . . 2
Green features . . . . . . . . . . . . . . . . . . . . . . . . . 2
Protection features . . . . . . . . . . . . . . . . . . . . . . 2
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . . 5
General control . . . . . . . . . . . . . . . . . . . . . . . . . 5
Supply voltage and start-up . . . . . . . . . . . . . . . 5
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Internal OverTemperature Protection (OTP). . . 7
Brownin/brownout and external
overtemperature protection . . . . . . . . . . . . . . . 8
Soft stop overvoltage protection
(SNSBOOST pin) . . . . . . . . . . . . . . . . . . . . . . . 8
Overvoltage protection (SNSBOOST pin) . . . . 9
PFC open-loop protection (VOSENSE pin) . . . 9
Overcurrent protection (PFCSENSE pin) . . . . . 9
Fast latch reset . . . . . . . . . . . . . . . . . . . . . . . . . 9
Power factor correction regulation . . . . . . . . . 10
Soft start (PFCSENSE pin). . . . . . . . . . . . . . . 11
ton control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
PFC error amplifier (PFCCOMP
and SNSBOOST pins) . . . . . . . . . . . . . . . . . . 12
Valley switching and demagnetization
(PFCAUX pin) . . . . . . . . . . . . . . . . . . . . . . . . . 12
Frequency limitation . . . . . . . . . . . . . . . . . . . . 13
Mains voltage compensation
(SNSMAINS pin). . . . . . . . . . . . . . . . . . . . . . . 13
Active X-capacitor discharge . . . . . . . . . . . . . 13
PFC-LLC communication protocol . . . . . . . . . 15
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PFC burst mode . . . . . . . . . . . . . . . . . . . . . . . 16
Soft stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Driver (pin GATEPFC) . . . . . . . . . . . . . . . . . . 18
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 19
Thermal characteristics . . . . . . . . . . . . . . . . . 19
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 20
Application information. . . . . . . . . . . . . . . . . . 25
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 26
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 27
14
14.1
14.2
14.3
14.4
15
16
Legal information . . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
28
28
28
29
29
30
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP Semiconductors N.V. 2016.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 10 March 2016
Document identifier: TEA19162T